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SUMMARY

We study different variants of the augmented Lagrangian (AL)-based block-triangular preconditioner
introduced by the first two authors in [SIAM J. Sci. Comput. 2006; 28: 2095–2113]. The preconditioners
are used to accelerate the convergence of the Generalized Minimal Residual method (GMRES) applied
to various finite element and Marker-and-Cell discretizations of the Oseen problem in two and three
space dimensions. Both steady and unsteady problems are considered. Numerical experiments show the
effectiveness of the proposed preconditioners for a wide range of problem parameters. Implementation on
parallel architectures is also considered. The AL-based approach is further generalized to deal with linear
systems from stabilized finite element discretizations. Copyright q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider the solution of the incompressible Navier–Stokes equations governing the flow of
viscous Newtonian fluids. For an open bounded domain �⊂Rd (d=2,3) with boundary ��, time
interval [0,T ], and data f, g and u0, the goal is to find a velocity field u=u(x, t) and pressure
field p= p(x, t) such that

�u
�t

−��u+(u·∇)u+∇ p= f on �×(0,T ], (1)

divu=0 on �×[0,T ], (2)

u=g on ��×[0,T ], (3)

u(x,0)=u0(x) on �, (4)
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where � is the kinematic viscosity, � is the Laplacian, ∇ is the gradient and div the divergence.
Implicit time discretization and linearization of the Navier–Stokes system (1)–(4) by the Picard
fixed-point iteration result in a sequence of (generalized) Oseen problems of the form

�u−��u+(v ·∇)u+∇ p= f in �, (5)

divu=0 in �, (6)

u=g on ��, (7)

where v is a known velocity field from a previous iteration or time step (the ‘wind’) and � is
proportional to the reciprocal of the time step (�=0 for a steady problem). When v=0 we have
a (generalized) Stokes problem.

Spatial discretization of (5)–(7) using finite differences or finite elements results in large, sparse
saddle-point systems of the form (

A BT

B −C

)(
u

p

)
=
(
f

g

)
, (8)

where u and p represent the discrete velocity and pressure, respectively, A is the discretization of
the diffusion, convection and time-dependent terms, BT is the discrete gradient, B the (negative)
discrete divergence, C is a stabilization matrix, and f and g contain forcing and boundary terms.
If the discretization satisfies the LBB (‘inf–sup’) stability condition, no pressure stabilization is
required and we can take C=0. If the LBB condition is not satisfied, the stabilization matrix C �=0
is symmetric and positive semidefinite (SPD) and the actual choice of C depends on the particular
finite element pair being used; see, e.g. [1].

The efficient solution of systems of the form (8) necessitates rapidly convergent iterative methods.
The two main approaches available are preconditioned Krylov subspace methods [2] and multigrid
methods [3–5]. The two approaches can be combined by using one or more multigrid cycles
as preconditioners for Krylov methods. In this paper, we focus on block preconditioners for
Generalized Minimal Residual method (GMRES) [6]; for related work on multigrid solvers, see [7].

In recent years, a considerable amount of work has been done in developing efficient precon-
ditioners for Krylov subspace methods applied to incompressible flow problems; see the compre-
hensive treatments in [1, 8] , as well as [5]. More recent contributions include the papers [9, 10]
on preconditioning based on the augmented Lagrangian (AL) approach [11], and [12] where the
least-squares commutator preconditioner (see [1, Section 8.2.2]) is generalized to stabilized finite
element discretizations of the Oseen problem. Other relevant work includes the development of
ILU-type preconditioners for saddle-point problems [13] and SIMPLE-type block preconditioners
[14]. In these papers, these preconditioners are analyzed and compared with other precondi-
tioners; see also [15, 16], where AL-based preconditioners were found to compare favorably with
other approaches.

In this paper we further develop the AL-based block-triangular preconditioner in various direc-
tions. It was shown in [9] that the AL-based approach results in preconditioners that are independent
of the mesh size h and fairly insensitive to the viscosity �, resulting in a remarkably robust and
nearly optimal solver for the steady Oseen problem up to Reynolds numbers of about 10 000.
It was further shown in [10] that the preconditioner performs quite well also for challenging
linear systems arising from the linear stability analysis of linearized (Newton) solutions of the
incompressible Navier–Stokes equations. As shown in these papers, the crucial ingredient for
the AL-based preconditioner was an efficient multigrid cycle used as an approximate solver for
the velocity subproblem associated with the (1,1) block of the preconditioner. For stable discretiza-
tions of the steady Oseen problem, excellent results were obtained in [9] with a geometric multigrid
scheme based on the method in [17].

Here we introduce a variant of the AL-based block-triangular preconditioner, which we refer to as
the modified AL preconditioner, which can be more readily implemented for general discretizations
and geometries using off-the-shelf algebraic solvers for scalar elliptic problems. In particular,

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:486–508
DOI: 10.1002/fld



488 M. BENZI, M. A. OLSHANSKII AND Z. WANG

state-of-the-art parallel algebraic multilevel solvers can be used to solve the subsystems arising in
the application of the preconditioner. Moreover, we extend the AL preconditioner to saddle-point
systems arising from stabilized finite element methods (C �=0 in (8)). This requires a different
approach to augment the linear system before constructing and applying the preconditioner. In
addition, we consider three-dimensional (3-D) Oseen problems discretized by the Marker-and-Cell
(MAC) [18] finite difference method. The staggered grid in MAC makes it a stable discretization
method, so the original and modified AL preconditioners can be applied directly. Our numerical
experiments show that in 3-D one can expect similar results to those obtained in 2-D using stable
finite elements.

This paper is organized as follows. In Section 2, the modified AL preconditioner is described
and applied to solve linear systems arising from 2-D stable finite element and 3-D stable MAC
discretizations. We consider both steady and unsteady problems. AL-based preconditioners for 2-D
stabilized (Q1-Q1 and Q1-P0) finite elements are developed in Section 3. Numerical experiments
(including a few on a parallel computer) are used throughout to illustrate the behavior of the
different methods. Some brief conclusive remarks are given in Section 4.

While some theoretical analysis is given to motivate the proposed preconditioners and to guide
in the choice of parameters, the paper is mostly about practical computational issues and numerical
results.

2. MODIFIED AL-BASED PRECONDITIONER FOR STABLE FINITE ELEMENTS

In this section we present the modified AL-based block-triangular preconditioner for the Oseen
problem discretized by stable finite element pairs, such as Q2-Q1 or Q2-P1; see, e.g. [1]. We begin
by recalling the original AL-based preconditioner described in [9]. We discuss first the 2-D case;
the extension to the 3-D case is given in Section 2.8.

2.1. Problem formulation

Here we consider solving the steady-state Oseen equations (�=0 in (5)). An LBB-stable finite
element discretization gives rise to the following system:

(
A BT

B 0

)(
u

p

)
=
(
f

g

)
or Ax=b. (9)

The equivalent AL formulation [11] is given by

(
A+�BTW−1B BT

B 0

)(
u

p

)
=
(
f̂

g

)
or Âx= b̂, (10)

where f̂ := f +�BTW−1g, W is SPD and �>0. A good choice of W is the pressure mass matrix,
Mp; in practice, we use the main diagonal of Mp instead, in order to maintain sparsity in A+
�BTW−1B. The choice of � is important and will be discussed below.

The use of the AL formulation (10) instead of the original one (9) can be justified in various
ways; see for instance the discussion in [9, 10]. Here we justify this choice by the observation that
preconditioning (10) allows us to circumvent the delicate issue of finding good approximations
for the pressure Schur complement BA−1BT or its inverse, which is crucial when constructing
preconditioners for the non-augmented system (9).

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:486–508
DOI: 10.1002/fld



PRECONDITIONERS FOR INCOMPRESSIBLE NAVIER–STOKES 489

2.2. The original AL-based preconditioner

Letting A� := A+�BTW−1B, an ideal preconditioner for problem (10) is given by the block-
triangular matrix

P=
⎛⎜⎝A� BT

0 −1

�
W

⎞⎟⎠ . (11)

Because of the identity

P−1=
(
A−1

� �A−1
� BTW−1

0 −�W−1

)
=
(
A−1

� 0

0 Im

)(
In BT

0 −Im

)(
In 0

0 �W−1

)
,

applying P−1 to a vector requires one solve with W and one with A�. The right-preconditioned
matrix is

ÂP−1=
(

In 0

BA−1
� �BA−1

� BTW−1

)
, (12)

showing that �=1 is an eigenvalue of multiplicity at least n. Additionally, there are m eigenvalues
� that satisfy the generalized eigenvalue problem

BA−1
� BT p=�

(
1

�
W

)
p.

Lemma 4.1 in [9] states that if all the relevant matrices are invertible,

(BA−1
� BT)−1=(B(A+�BTW−1B)−1BT)−1=(BA−1BT)−1+�W−1. (13)

Setting W =Mp (the pressure mass matrix), we thus have

�−1 p = 1

�
(BA−1

� BT)−1Mp p= 1

�
((BA−1BT)−1+�M−1

p )Mp p= 1

�
(BA−1BT)−1Mp p+ p

= 1

��
p+ p,

where � satisfies the generalized eigenproblem

(BA−1BT)q=�Mpq.

Hence, we obtain

�= ��

1+��
. (14)

Next, we derive bounds for the real and imaginary parts of �. Writing �=a�+ ib� and �=a�+ ib�,
where i=√−1, we have

a�+ ib� = �(a�+ ib�)

1+�(a�+ ib�)
= �a�(1+�a�)+�2b2�+ i�b�

(1+�a�)2+�2b2�
,

which implies

a� = �a�(1+�a�)+�2b2�
(1+�a�)2+�2b2�

and b� = �b�

(1+�a�)2+�2b2�
.

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:486–508
DOI: 10.1002/fld
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Table I. Eigenvalue bounds with the ideal AL preconditioner.

Grid maxa� mina� max |b�| maxa� mina� max |b�|
� 0.1
16×16 15.677 1.259 2.274 0.9411 0.5573 0.0127
32×32 19.355 1.277 4.323 0.9519 0.5608 0.0121
64×64 21.147 1.278 4.973 0.9553 0.5610 0.0185

� 0.01
16×16 132.77 9.16 38.22 0.9925 0.9016 0.0275
32×32 159.89 11.57 64.60 0.9938 0.9204 0.0292
64×64 192.85 12.65 88.61 0.9948 0.9267 0.0255

� 0.001
16×16 1279.6 2.3 148.9 0.9992 0.6961 0.0586
32×32 1477.7 2.2 301.3 0.9993 0.6914 0.0529
64×64 1584.5 2.3 452.2 0.9994 0.6968 0.0270

Following the argument in [19], it can be shown that the �’s are contained in a rectangle which
lies in the positive half plane Re(z)>0 and which does not depend on h. Easy manipulations give

0<min
�

�a�

1+�a�
�a��1, (15)

|b�|�max
�

min

{
�|b�|, 1

�|b�|
}

�1. (16)

Note that the real part of � is bounded away from zero uniformly in h, for all fixed �>0. Likewise,
the imaginary part of � is bounded uniformly in h by 1, for all fixed �>0. Furthermore, for �→∞
all eigenvalues tend to 1; see [9, Theorem 4.2].

In Table I we show the maximum and minimum of the real part and the maximum imaginary
part of � and � corresponding to a uniform Q2-Q1 discretization of the lid-driven cavity problem
described in [1, p. 316] (see also [20]). The value �=1 is used in the (ideal) AL preconditioner.
Notice that 0 is also an eigenvalue (corresponding to the hydrostatic pressure mode), which does not
affect the convergence of preconditioned GMRES and can be excluded from further consideration
(see [1, p. 83]). One can clearly see the independence of � with respect to h, and the near-
independence with respect to �. The real and imaginary parts of � show a weak dependence on h,
which according to the theory must disappear in the limit of h→0; note that the minimum of the
real part of � is already h-independent even for these rather coarse grids. On the other hand, there
is a strong dependence of � on the viscosity �, as already observed in [19].

Because of the expensive solve associated with the velocity submatrix A�, the ‘ideal’ precon-
ditioner P in (11) is not practical. It is necessary to replace the exact solves with inexact ones,
leading to preconditioners of the form

P=
(
Â� BT

0 Ŝ

)
, (17)

where Â� ≈ A+�BTW−1B and Ŝ are implicitly defined via the action of their inverses on vectors.
In [9], Â−1

� was implemented as a W-cycle of a non-standard geometric multigrid method based

on [17]; for Ŝ−1, a few Richardson iterations preconditioned with the diagonal M̂p of Mp were
used to approximately solve linear systems associated with Mp. (In practice, another acceptable
choice is to simply use Ŝ−1=−�M̂−1

p .) Theory and numerical experiments in [9] show that the
preconditioner (17) is nearly optimal, meaning that the rate of convergence of Krylov subspace
methods with this AL preconditioner is independent of the grid and almost insensitive to viscosity.

In the next subsection we consider some variants of this approach that do not require
sophisticated geometric multigrid techniques in the implementation of Â−1

� .
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2.3. The modified AL preconditioner

As already observed, the main cost associated with the application of the block-triangular precon-
ditioner P is associated with the (approximate) solution of linear systems with matrix A� =
A+�BTW−1B. Hence, how to simplify the action of A−1

� becomes the critical issue.
Using the fact that A is block diagonal: A=diag(A1, A2) and writing B=(B1, B2) we have

A� = A+�BTW−1B

=
(
A1 0

0 A2

)
+�

(
BT
1

BT
2

)
W−1(B1 B2)

=
(
A1+�BT

1 W
−1B1 �BT

1 W
−1B2

�BT
2 W

−1B1 A2+�BT
2 W

−1B2

)

=:
(
A11 A12

A21 A22

)
.

Consider the following block-triangular approximation to A�:

Ã� =
(
A1+�BT

1 W
−1B1 �BT

1 W
−1B2

0 A2+�BT
2 W

−1B2

)
=
(
A11 A12

0 A22

)
,

in which the (2,1) block A21 is dropped. We refer to the block-triangular matrix

P̃=
(
Ã� BT

0 Ŝ

)
=

⎛⎜⎜⎝
A11 A12 BT

1

0 A22 BT
2

0 0 Ŝ

⎞⎟⎟⎠ (18)

as to the modified AL preconditioner. Because of the block-triangular structure of P̃, most of the

work in computing the action of P̃
−1

on a vector lies in the solution of the two linear systems
with coefficient matrices A11 and A22. Observing that Aii= Ai +�BT

i W
−1Bi (i=1,2), in which

the Ai ’s represent discrete scalar convection–diffusion operators and the Bi ’s are discretizations
of the partial derivatives with respect to x and y, we immediately see that the Aii’s can be
interpreted as discrete scalar anisotropic convection–diffusion operators with diffusion anisotropy
ratio ≈1+�/�. Thus, applying A−1

11 and A−1
22 requires solving two scalar anisotropic convection–

diffusion problems (three in 3-D). These subsystems can be solved exactly or inexactly. For 2-D
problems, sparse direct solvers can be used to solve the subsystems efficiently. For 3-D problems,
however, direct solvers become prohibitively expensive for sufficiently fine meshes, and some inner
iterative method should be used instead. We will return to this issue later on.

The fact that the modified AL preconditioner is obtained from the ideal one by dropping a block
of the form �BT

2 W
−1B1 suggests that the parameter � should not be taken too large. This is also

desirable in view of the fact that when � is small, a small value of � ensures that the anisotropy ratio
1+�/� in the diagonal blocks Aii does not grow too large; this can be important if inner iterations
are used to solve the two linear systems associated with A11 and A22, since strong anisotropies
may cause difficulties for iterative solvers. This can be verified by numerical experiments; see
Section 2.4.

2.4. Numerical experiments: steady problems

In this section we compare the original (‘ideal’) and modified AL preconditioners on a standard 2-D
test problem, in order to assess the effect of dropping the A21 block from A� in the preconditioner
and to get some insight into the choice of �. Based on numerical evidence, we state an empirical
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rule to choose � for the modified preconditioner and then apply this rule to other types of problems
with more complicated geometries, showing its effectiveness. Finally, we present results of some
tests on a generalized (unsteady) Oseen problem, showing that the modified AL preconditioners
work well on these kinds of problems. We use IFISS [21, 22] to generate the Oseen problems in
this section and the next on 2-D stabilized finite elements. These computations are performed on
a Sun Microsystems SunFire V40z with 4 Dual Core AMD Opteron Processors and 32 GB of
memory.

The basic Krylov solver used in all our experiments is full GMRES [2], starting from a zero
initial guess. The iteration is stopped when the relative residual norm is reduced below 10−6.

First, the original and modified AL preconditioners are compared by using the lid-driven cavity
test problem on different grids and for different values of the viscosity �. The linearized Oseen
system is the one in the first step of the Picard iteration immediately following the initial one
(which reduces to a Stokes problem) and is discretized by uniform Q2-Q1 finite elements. The
behavior of the iterative solvers is similar at subsequent Picard steps. We take W equal to the
diagonal of the pressure mass matrix. For the original AL preconditioner, we use �=1 for all
the experiments; little is gained in tuning �. For the modified preconditioner, in contrast, the choice
of � has a considerable influence on the performance and cannot be made in a cavalier way. In our
first set of experiments, we find the value of � that minimizes the number of GMRES iterations by
performing experiments with different values of �. For �=0.1 , we take values of � in the interval
[0.1,1] with 0.1 increments. For �=0.01 and �=0.001 we take �∈[0.01,0.1] with increments of
0.01; experiments show that the optimal � lies in these intervals.

When applying the preconditioners we need to solve linear systems with A� (for the ideal
preconditioner) and with A11 and A22 (for the modified preconditioner). Here we performed exact
solves by first applying a column approximate AMD permutation [23] (using the MATLAB function
colamd) to A� (resp., to A11 and A22) followed by sparse LU factorization in MATLAB.

Results are shown in Table II. From these results we can see that the performance of the ideal
AL preconditioner is independent of both the mesh size h and the viscosity �. The eigenvalues of
the preconditioned matrices corresponding to �=0.1 and �=0.001 on the 32×32 grid are plotted
on the top two figures in Figure 1. The non-zero eigenvalues are bounded away from 0, and cluster
around 1 (note the different scales used for the horizontal and vertical axes). The only 0 eigenvalue
comes from the hydrostatic pressure mode, which makes the saddle-point system singular. Note
that for � smaller, the imaginary parts of the eigenvalues are slightly larger, as already shown in
Table I. The strong clustering of the eigenvalues is in agreement with the fast convergence of the
preconditioned GMRES iteration.

The convergence rate for the modified AL preconditioner depends on the mesh size and viscosity,
and some deterioration is observed when either decreases. The deterioration with respect to h is
mild when the viscosity is not too small, but it becomes more noticeable as � becomes smaller.
There is a clear deterioration with respect to decreasing viscosity for all h. Nonetheless, even the
‘worst’ result (65 iterations for the 128×128 mesh with �=0.001) is still quite acceptable, and
competitive with the results reported in [1, p. 357] using some of the best available preconditioners,
with a similar cost per iteration.

Table II. Number of GMRES iterations with the ideal and modified AL preconditioners for steady 2-D
Oseen problems (Q2-Q1 FEM). The optimal � is in parentheses.

Viscosity

0.1 0.01 0.001

Grid Original Modified Original Modified Original Modified

16×16 9 14 (0.5) 7 18 (0.08) 8 32 (0.04)
32×32 9 16 (0.4) 7 21 (0.06) 8 46 (0.03)
64×64 10 18 (0.3) 6 23 (0.04) 8 53 (0.02)
128×128 10 19 (0.3) 7 25 (0.03) 7 65 (0.02)

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:486–508
DOI: 10.1002/fld



PRECONDITIONERS FOR INCOMPRESSIBLE NAVIER–STOKES 493

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.005

0.01

0.015

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1 1.2

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Figure 1. Plots of eigenvalues of matrix with the AL original preconditioner (top) and the modified one
(bottom) on 32×32 grid, as �=0.1 (left) and 0.001(right) (Q2-Q1).

Table III. Timings for the original and modified AL preconditioners on 128×128 grid (Q2-Q1 FEM).

Original Modified

Viscosity Iter Time Iter Time

0.1 10 180.6/78.8 19 15.1/52.3
0.01 7 191.5/61.2 25 15.6/68.8
0.001 7 189.2/59.9 65 16.7/174.8

The eigenvalues of the preconditioned matrices using the modified AL preconditioner tend to
scatter as � gets small, as can be seen from the bottom two figures in Figure 1.

The advantage of the modified AL preconditioner over the ideal one is that the cost of forming
and applying the preconditioner is greatly reduced, both in terms of computing time and in terms
of storage. This reduction in costs more than compensates the increase in the number of iterations.

Some timings for the 128×128 grid are reported in Table III. Here, ‘Iter’ denotes the number
of iterations required to reduce the relative residual norm below 10−6, and ‘Time’ includes two
parts: the setup time for constructing and factoring the two preconditioners, and the computing
time for solving the linear system by preconditioned GMRES. For the modified AL preconditioner,
we exploit the fact that the diagonal blocks A11 or A22 are independent and can be factored in
parallel. We point out that the MATLAB codes used for these experiments are not highly optimized,
so the timings are shown here just to give an indication of the relative performance of the ideal
and modified preconditioners.
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Table IV. Iteration counts for different �, 2-D-driven cavity (Q2-Q1 FEM).

Viscosity

0.1 0.01 0.001

Grid �=0.3 Exp.
√
2 rule Exp.

√
2 rule Exp.

16×16 16 14 (0.5) 18 (0.08) 18 (0.08) 32 (0.04) 32 (0.04)
32×32 16 16 (0.3) 21 (0.0566) 21 (0.06) 47 (0.028) 46 (0.03)
64×64 18 18 (0.3) 23 (0.04) 23 (0.04) 53 (0.02) 53 (0.02)
128×128 19 19 (0.3) 25 (0.0283) 25 (0.03) 60 (0.0141) 60 (0.015)

Table V. Additional test results for the choice of � (Q2-Q1 FEM).

Lid-driven cavity (stretched grid) Backward facing step (uniform grid)
√
2 rule Exp.

√
2 rule Exp.

Grid � Iter � Iter Grid � Iter � Iter

16×16 0.04 29 0.04 29 16×48 0.1 25 0.1 25
32×32 0.0283 37 0.03 37 32×96 0.0707 25 0.07 25
64×64 0.02 47 0.02 47 64×192 0.05 28 0.06 27
128×128 0.0141 56 0.015 56 128×384 0.0354 32 0.05 29

2.5. Choosing the parameter �

We now turn to the important issue of how to choose � when using the modified AL preconditioner.
The ‘best’ values of � (in terms of iteration counts) in the previous set of experiments are displayed
in the 3rd, 5th and 7th columns of Table IV under ‘Exp.’, since they were determined experimentally.
We make the following observations. First, when �=0.1 the modified AL preconditioner is not
sensitive to �, and taking �=0.3 turns out to be a good choice. Second, for other values of the
viscosity, the experimentally found optimal � for the coarsest grid is divided by a factor of about√
2 when the mesh size h is divided by 2. Hence, for fixed �, letting �0 be the � for the coarsest

grid, we use �0/
√
2, �0/2 and �0/2

√
2 for each refined grid. We call this the ‘

√
2 rule’. The 2nd

column of Table IV displays the iteration count for the case �=0.1 using �=0.3, whereas the 4th
and 6th columns display the number of GMRES iterations for �=0.01 and �=0.001, respectively,
using the value of � given in parentheses. One can see that these �’s give results that are essentially
identical to those obtained with the optimal choice of �. Note that for the 128×128 grid and
�=0.001, �=0.015 is used in the last column to compare with �=0.0141.

Next, we test the ‘
√
2 rule’ on two other problems from [1], namely, the lid-driven cavity

discretized on a stretched grid and the flow over a backward facing step on a uniform grid.
Here we only consider the cases �=0.001 for the driven cavity and �=0.005 for the backward

facing step, since the performance of the modified AL preconditioner is less sensitive to the choice
of � for larger values of �. For the backward facing step we do not consider smaller values of �,
since as pointed out in [1, p. 316], the flow becomes unstable already for fairly moderate Reynolds
numbers and computing a steady solution for smaller values of � would not be meaningful. The
results obtained with the choice of � based on the ‘

√
2 rule’ are compared with the best ones found

by numerical experiment in Table V. It is clear that the ‘
√
2 rule’ works remarkably well also

in these cases. Streamline and pressure plots of the approximate solutions of the Navier–Stokes
equations (computed with IFISS) for the driven cavity and backward facing step problems are
shown in Figures 2 and 3, respectively.

2.6. Numerical experiments: unsteady problems

Here we present some results for unsteady (generalized) Oseen problems. In this type of problem
the (1,1) block A of the saddle-point matrix contains an additional term of the form �Mu where
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Figure 2. Streamline plot (left) and pressure plot (right) for lid-driven cavity problem (�=0.001) using
Q2-Q1 approximation on 128×128 grid.
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Figure 3. Streamline plot (above) and pressure plot (below) for backward facing step problem (�=0.005)
using Q2-Q1 approximation on 64×192 grid.

� is the reciprocal of the time step �t and Mu is the velocity mass matrix. Linear systems of this
type tend to be easier to solve than the ones arising in the steady case, since the presence of the
additional positive-definite term �Mu makes the (1,1) block more diagonally dominant, especially
when �t is sufficiently small. On the other hand, many such systems (one for each time step) have
to be solved during a simulation, so fast solvers are absolutely indispensable.

We have performed numerical experiments for both the driven cavity and the backward facing
step problems. In our experiments we let �=h−1, where h is the mesh size. It turns out that
the simple choice �=1 works well in all cases. The results are shown in Table VI. Clearly, the
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Table VI. GMRES iterations with the original and modified AL preconditioners for unsteady
driven cavity problem (Q2-Q1 FEM).

Viscosity

0.1 0.01 0.001

Grid Original Modified Original Modified Original Modified

16×16 11 11 10 12 8 13
32×32 13 15 13 16 13 17
64×64 17 18 17 20 17 22
128×128 22 23 22 25 22 27

Table VII. GMRES iterations for unsteady driven cavity problem with improved Ŝ−1.

Viscosity

0.1 0.01 0.001

Grid Original Modified Original Modified Original Modified

16×16 8 15 9 18 10 19
32×32 9 16 11 20 12 23
64×64 8 15 9 20 11 23
128×128 7 14 7 18 7 20

modified AL preconditioner is comparable to the original one in terms of iteration numbers (and
therefore much faster in terms of computing times). This is not surprising, since the presence
of the additional term �Mu makes the diagonal sub-blocks A11 and A22 much larger in norm
than the off-diagonal ones, and consequently dropping one of the off-diagonal blocks has only a
marginal effect on the quality of the preconditioner, while drastically reducing the associated costs.
Notice that both preconditioners are essentially insensitive to the viscosity, �. There is, however,
a dependence on h. To improve the convergence behavior as h→0, a different choice for the
(2,2) block of the preconditioner is needed (currently, it is just a diagonal matrix). Similar to the
well-known Cahouet–Chabard [24] preconditioner for the unsteady Stokes problem, we modify
the (2,2) block of the preconditioner (implicitly defined by its inverse) by using

Ŝ−1=−�M̂−1
p −�(BM̂−1

u BT)−1 (19)

instead of Ŝ−1=−�M̂−1
p . Here M̂u denotes the diagonal of the velocity mass matrix; moreover, the

action of the (pseudo-)inverse of the scaled discrete Laplacian BM̂−1
u BT is implemented inexactly

via a single iteration (‘K-cycle’) of Yvan Notay’s algebraic multigrid method [25, 26]. We observe
that a more natural scaling of the inverse pressure mass matrix in (19) would use � (or �+�)
instead of � and indeed this choice leads to better results in some cases, especially for the lid
problem. However, our experience is that when inexact solves are used in the implementation of
the action of (19), scaling with � results in faster convergence in many cases, especially for the
step problem.

Iteration counts are shown in Table VII for the lid-driven cavity and Table VIII for the backward
facing step problem. As before, the ‘Original’ preconditioner requires exact solves with A�, the
modified one only with the diagonal sub-blocks A11 and A22. Both preconditioners are now quite
robust and stable with respect to h on sufficiently fine meshes. In the case of the backward facing
step, we observe some dependence on �. Also, for �=0.001 there is a noticeable dependence on h
with the modified preconditioner. This dependence persists even when the action of the improved
inverse Schur complement Ŝ−1 is computed ‘exactly’.

It is important to point out that in actual unsteady flow calculations the number of iterations
can be expected to be significantly less than reported above, since one takes the solution from
the previous time step for the initial guess. Indeed, using the solution at the previous time step
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Table VIII. GMRES iterations for unsteady flow over a step problem with improved Ŝ−1.

Viscosity

0.1 0.01 0.001

Grid Original Modified Original Modified Original Modified

16×48 11 18 15 25 16 27
32×96 9 18 15 30 17 35
64×192 9 18 17 34 20 44
128×394 9 17 18 36 22 53

typically results in an initial residual that is much smaller in norm than the residual corresponding
to the zero initial guess; therefore, leading to fewer iterations required to satisfy the same reduction
in the relative size of the residual norm.

We conclude this section with a few remarks about the performance of the classical Cahouet–
Chabard preconditioner [24] applied to the unsteady Oseen problem. It turns out that without
augmentation (that is, working with the original system (9) rather than the augmented one), this
block-triangular preconditioner is almost always more efficient than the AL-based approach, except
for some cases with small viscosity and large time steps. This is mainly due to the fact that with
augmentation, the linear systems associated with the velocity unknowns that must be solved (exactly
or inexactly) at each application of the preconditioner become more complicated. Therefore, even
though the Cahouet–Chabard preconditioner typically requires more iterations than the AL-based
one (especially for small values of the viscosity), it is actually faster in terms of solution time.

It should be pointed out, however, that there are important situations where the augmentation
term arises naturally, in which case the AL-based preconditioner will be a good candidate. We note
that the algebraic augmentation is closely related to the so-called grad-div stabilization [27] of the
Galerkin method for the incompressible Navier–Stokes equations. The stabilization is a commonly
used one for those problems which require additional subgrid pressure modeling or enhanced mass
conservation [28, 29]. It is also an important ingredient of some turbulence models [30]. The least-
square term added in such models gives rise to a matrix G with elements gij=�

∫
� div�i div� j dx,

where the �i are basis functions of a discrete (e.g. FE) velocity space. This matrix is added to
the velocity (1,1) block and possesses a block structure and algebraic properties similar to those
of �BTW−1B (algebraic augmentation). Therefore, the solvers studied in this paper should be
useful for handling algebraic systems resulting from such stabilized Galerkin discretizations. Yet
another example is the formulation of the Navier–Stokes equations in the context of fluid–structure
interaction problems, where it is essential that the velocity rate of deformation tensor (∇u+∇uT)/2
is retained in its entirety in the equations in order to ensure good momentum conservation properties
during the numerical solution. This point of view is adopted in, e.g. [31, Chapter 9].

2.7. Parallel results

In this subsection we show the results of a few numerical experiments on a compute cluster. The
test problem is the unsteady 2-D Oseen problem for the lid-driven cavity discretized with Q2-Q1
finite elements, using �=h−1. The value of the viscosity is �=0.01. The preconditioner is the
modified AL preconditioner, where the linear systems associated with the diagonal sub-blocks Aii
are solved by a parallel iterative solver, using 10−2 as the inner relative residual tolerance and
a maximum of 20 inner iterations (in practice, about five inner iterations suffice). For the (2,2)
block, we use Ŝ−1=−�M̂−1

p . We experimented with an inner flexible GMRES (FGMRES, see
[32]) iteration preconditioned with the smoothed aggregation AMG preconditioner ML from the
Trilinos package [33]. The reason why FGMRES is needed is because the number of cycles with
the AMG preconditioner is not fixed and therefore the preconditioner is a variable one. Of course,
this means that the outer iteration used to solve the whole saddle-point system must also be a
flexible one.
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Table IX. Timings and iteration numbers for the parallel implementation with Trilinos ML AMG solver.

Number of processors

Problem size 2 4 8 16

2466 0.048/18 0.031/18 0.13/18 0.44/18
9538 0.34/19 0.16/20 0.19/20 0.23/20
37 506 1.97/26 1.17/26 0.77/27 0.72/27
148 738 11.9/33 6.64/33 3.72/33 2.57/27

The experiments are performed on a cluster consisting of 32 nodes and 128 processor cores.
Each node has two dual core AMD 2214 2.2GHz Opteron CPUs, 4GB RAM and an 80GB drive.
The program is compiled and run with Open MPI. Timings and (outer) FGMRES iteration counts
using p=2,4,8 and 16 processors are shown in Table IX for four different problem sizes.

The results show fairly good scalability when the problem is sufficiently large. Clearly, using
more than 16 processors would not be warranted, even for the larger problem size. The observed
variability in the iteration count for different numbers of processors (especially going from 8 to
16 processors) can be explained by the fact that the ML preconditioner changes with p; therefore,
the inner solves produce different approximate solutions for different p.

2.8. Extension to 3-D case

In this subsection we evaluate the performance of the ideal and modified AL preconditioners for
Stokes and Oseen problems in 3-D. Besides the usual (convective) form of the Oseen equations,
we also consider linearizations of the Navier–Stokes equations in rotation form; see, e.g. [34, 35]
and references therein for details.

For a stable discretization, the saddle-point system is again of the form(
A BT

B 0

)(
u

p

)
=
(
f

g

)
or Ax=b, (20)

where for 3-D problems A=diag(A1, A2, A3) and B=(B1, B2, B3). Therefore, for the convection
form the coefficient matrix of the equivalent AL formulation is

A� = A+�BTTW−1B

=

⎛⎜⎜⎝
A1 0 0

0 A2 0

0 0 A3

⎞⎟⎟⎠+�

⎛⎜⎜⎝
BT
1

BT
2

BT
3

⎞⎟⎟⎠W−1(B1 B2 B3)

=

⎛⎜⎜⎝
A1+�BT

1 W
−1B1 �BT

1 W
−1B2 �BT

1 W
−1B3

�BT
2 W

−1B1 A2+�BT
2 W

−1B2 �BT
2 W

−1B3

�BT
3 W

−1B1 �BT
3 W

−1B2 A3+�BT
3 W

−1B3

⎞⎟⎟⎠

= :
⎛⎜⎝
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞⎟⎠ .
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Table X. GMRES iterations with the original and modified AL preconditioners for
steady 3-D Stokes problems (MAC).

Original Modified

Grid Iter Iter

8×8×8 9 12
16×16×16 9 12
24×24×24 — 13

The ideal AL preconditioner is again given by (11). In the modified variant we replace A� with
the block-triangular approximation

Ã� =

⎛⎜⎜⎝
A1+�BT

1 W
−1B1 �BT

1 W
−1B2 �BT

1 W
−1B3

0 A2+�BT
2 W

−1B2 �BT
2 W

−1B3

0 0 A3+�BT
3 W

−1B3

⎞⎟⎟⎠=
⎛⎜⎝
A11 A12 A13

0 A22 A23

0 0 A33

⎞⎟⎠ .

Note that in the 3-D case we drop three blocks: the (2,1), (3,1) and (3,2) blocks of A�, so the
performance could be affected more than in the 2-D case. As in the 2-D case, each diagonal block
Aii represents a discrete scalar convection–diffusion operator. For the Stokes problem and for the
rotation form of the Navier–Stokes equations, no convective term is present and each sub-block Aii
is SPD. On the other hand, in the rotation form each off-diagonal block Aij (with i �= j) contains
additional coupling terms not present in the standard form of the Oseen problem. Finally, for
unsteady problems an additional reaction term (also SPD) is present in each diagonal sub-block.

2.9. Numerical experiments: 3-D examples

We use an MAC scheme, see [18], to discretize the Stokes and Oseen problems on the unit cube
�=[0,1]×[0,1]×[0,1]. This scheme is known to be div-stable, hence no pressure stabilization
is needed and the (2,2) block C in the saddle-point problem (8) is zero. Homogeneous Dirichlet
boundary conditions are imposed on the velocity components.

In the first experiment, we compare the original and the modified AL preconditioners on a steady
Stokes problems. We use �=1 for both preconditioners for simplicity, and because it gives good
results. Iteration counts for three grids of increasing size are shown in Table X. A ‘—’ means that
the problem has exceeded the memory constraint. Using a complete sparse Cholesky factorization
on the sub-matrix A� makes the ideal AL preconditioner unfeasible already for rather coarse grids
in 3-D. On the other hand, the modified AL preconditioner is able to handle larger problems, since
only the diagonal blocks Aii of A� need to be factored.

Our results indicate that for this problem, the rate of convergence with the modified AL precon-
ditioner is independent of the mesh size.

Next, we proceed to the more challenging case of 3-D Oseen problems, in both convection and
rotation forms. The divergence-free wind function (v in (5)) is taken to be

v=
⎛⎜⎝

(2y−1)x(1−x)

(2x−1)y(1− y)

−2z(1−2x)(2y−1)

⎞⎟⎠ .

The results are shown in Tables XI and XII. The use of LU factorization makes the original
preconditioner unfeasible on 24×24×24 or larger grids due to exceeded memory limits. We set
�=1 for the original preconditioner; for the modified one, � is given in parentheses after the
number of GMRES iterations.

While the ideal AL preconditioner is independent of the mesh size and viscosity, the modified
preconditioner appears to be independent of h but shows a degradation of convergence rate when �
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Table XI. GMRES iterations with the original and modified AL preconditioners for steady 3-D Oseen
problem in convection form (MAC).

Viscosity

0.1 0.01 0.001

Grid Original Modified Original Modified Original Modified

8×8×8 6 11 (1) 5 17 (0.1) 5 59 (0.01)
16×16×16 6 11 (1) 5 16 (0.1) 5 63 (0.01)
24×24×24 — 13 (0.1) — 16 (0.1) — 65 (0.01)
32×32×32 — 13 (0.1) — 16 (0.1) — 65 (0.01)

Table XII. GMRES iterations with the original and modified AL preconditioners for steady 3-D Oseen
problem in rotation form (MAC).

Viscosity

0.1 0.01 0.001

Grid Original Modified Original Modified Original Modified

8×8×8 6 12 (1) 5 20 (0.1) 5 152 (0.01)
16×16×16 6 12 (1) 5 16 (0.1) 5 127 (0.01)
24×24×24 — 15 (0.1) — 18 (0.1) — 116 (0.01)
32×32×32 — 15 (0.1) — 18 (0.1) — 114 (0.01)

Table XIII. GMRES iterations with the original and modified AL preconditioners for unsteady 3-D Oseen
problem in convection form (MAC).

Viscosity

0.1 0.01 0.001

Grid Original Modified Original Modified Original Modified

8×8×8 7 9 7 19 6 26
16×16×16 8 10 7 17 7 26
24×24×24 — 10 — 15 — 22
32×32×32 — 12 — 15 — 19

becomes very small. Also notice that � must be taken smaller when �=0.001. Also for small � the
modified preconditioner is less effective for the rotation form than for the convection form. This is
due to the presence, in the rotation form, of relatively stronger coupling terms in the off-diagonal
blocks Aij (i> j) that are neglected when forming the preconditioner.

Next, we consider unsteady Oseen problems with �=h−1. Because of the dominance of the
block-diagonal part of the (1,1) block of the saddle-point system, we can expect good performance
of the modified AL preconditioner. As in 2-D, we set �=1 for both preconditioners. The (2,2)
block is given by Ŝ−1=−�M̂−1

p . Iteration counts are shown in Tables XIII (convection form) and
XIV (rotation from).

The performance of the modified AL preconditioner is quite satisfactory though some (mild)
deterioration is observed with respect to �. On the other hand, for �=0.1 the iteration number is
essentially independent of the mesh size, whereas for smaller � the rate of convergence actually
improves when the grid becomes finer.
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Table XIV. GMRES iterations with the original and modified AL preconditioners for unsteady 3-D Oseen
problem in rotation form (MAC).

Viscosity

0.1 0.01 0.001

Grid Original Modified Original Modified Original Modified

8×8×8 7 10 6 20 6 25
16×16×16 8 10 7 18 6 25
24×24×24 — 11 — 16 — 22
32×32×32 — 11 — 13 — 19

3. AL-TYPE PRECONDITIONERS FOR STABILIZED FINITE ELEMENTS

In this section, we consider the Oseen problem discretized by stabilized finite elements, e.g. Q1-Q1
or Q1-P0 elements. We generalize the original AL preconditioner to stabilized elements, aiming
to achieve robustness with respect to h and �.

3.1. Problem formulation

Discretizing (1)–(4) with LBB-unstable elements requires additional pressure stabilization terms in
the finite element problem formulation, see e.g. [36]. In this case, the (2,2) block of the saddle-point
matrix is no longer zero; it is replaced by −C with some SPD matrix C , see the remark below.

Remark 1
We use the least-squares-type pressure stabilization of Hughes et al. [36] for Q1-Q1 elements and
of Brezzi–Pitkäranta [37] for Q1-P0 elements. For the case of continuous pressure elements, the
matrix C corresponds to the bilinear form

∑
K∈T�

∫
K ∇ p∇q dx, where the summation runs over

all triangles K in the triangulation T of �. For P0 pressure elements the corresponding bilinear
form

∑
�∈T �|�|−1

∫
�[p][q]ds penalizes the pressure jumps [p] over all internal edges � of the

triangulationT; � is a stabilization parameter. In either case the spectral properties of the matrix C
are somewhat similar to those of a scaled Laplacian discretization. We note that different pressure
stabilization methods can be applied, including those based on residual-free bubbles [38], local
projection [39] as well as the method in [40]. In general they lead to matrices C with similar
algebraic properties. Note also that C is symmetric.

We use the following choice of the stabilization parameter (see [41]): �=	h2/(�+h‖v‖), where
h is the mesh size, v is the wind function and 	=1. Assuming (for ease of notation) that g=0,
the resulting linear system reads (

A BT

B −C

)(
u

p

)
=
(
f

0

)
. (21)

3.2. Augmented linear systems and an AL preconditioner

Owing to the presence of a non-zero (2,2) block, the augmentation of system (21) must be done
differently than in the case of stable finite elements. As before, let �>0 and let W be a SPD matrix.
Then from Bu−Cp=0 it follows that

�BTW−1Bu−�BTW−1Cp=0.

Adding the above equation to Au+BT p= f gives

(A+�BTW−1B)u+(BT−�BTW−1C)p= f.
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Therefore, the (first) augmented linear system is(
A� BT

�

B −C

)(
u

p

)
=
(
f

0

)
or Âx=b, (22)

where A� = A+�BTW−1B and BT
� = BT−�BTW−1C .

Notice that in (22), the (1,2) block BT
� is not equal to the transpose of the (2,1) block B. To

get a more ‘symmetric’ augmented linear system, we can obtain from Bu−Cp=0 the equation

−�CW−1Bu+�CW−1Cp=0.

Then, combining this equation with Bu−Cp=0, we have

(B−�CW−1B)u−(C−�CW−1C)p=0.

Letting C� =C−�CW−1C , we obtain the second augmented system(
A� BT

�

B� −C�

)(
u

p

)
=
(
f

0

)
. (23)

Numerical experiments suggest that applying the AL preconditioner to (22) produces almost the
same results as to (23). Therefore, all results of numerical experiments will be shown for (22) in
the sequel.

Similar to the stable FE case, we build the block-triangular preconditioner in the form

P=
(
A� 0

B −Ŝ

)
. (24)

Here in order to simplify the action of P−1 we use a block lower triangular AL preconditioner
so as to have B in the (2,1) block rather than the more cumbersome BT

� in the (1,2) block.
For the ‘symmetrized’ system (23), B should be replaced by B�; both lower and upper triangular
preconditioners are essentially equivalent in this case.

For LBB-stable elements, in Section 2.2 we set Ŝ=�−1W =�−1M̂p. As we will see, for the case
ofC �=0 the choice of Ŝ andW is more delicate. From (12) one notices that Ŝ intends to approximate
the pressure Schur complement of the augmented system, i.e. the matrices S� := B�A−1

� BT
� +C�

for (23) and S̃� := BA−1
� BT

� +C for (22). Recall the notation for the pressure Schur complement

matrix of the non-augmented problem: S= BA−1BT+C . The following result, which extends the
representation in (13) to the case of C �=0, will help us to set W , build the preconditioner Ŝ, and
analyze the spectrum of the preconditioned system.

Lemma 1
Assuming all the relevant matrices are invertible, it holds

S−1
� = S−1+�(W −�C)−1, (25)

S̃−1
� = S−1(I −�CW−1)+�W−1. (26)

Proof
The matrix X :=−S−1

� is the (2,2) block of the inverse of the coefficient matrix in (23). Denoting
by Y the (1,2) block of this inverse matrix we get the following system of matrix equations:

(A+�BTW−1B)Y +BT(I −�W−1C)X =0, (27)

(I −�CW−1)BY−(I −�CW−1)CX= I. (28)

From (28) we get BY =(I −�CW−1)−1+CX . Substituting this into (27) and applying A−1 lead to

Y =−�A−1BTW−1(I −�CW−1)−1−A−1BTX.
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Now substituting Y to (28) gives, after simple manipulations,

−(BA−1BT+C)X (I −�CW−1)= I +�BA−1BTW−1.

By straightforward computations one verifies that the last equation is solved by matrix X =
−(BA−1BT+C)−1−�(W −�C)−1. Thus, (25) is proved. The result in (26) follows from the
obvious identity (I −�CW−1)S̃� = S�. �

The expressions (25) and (26) suggest that the auxiliary matrix W should be such that W −�C
is positive definite. Below we consider the following two choices of W satisfying this constraint:

W1 :=Mp+�C,

W2 :=Mp with 0<��(2‖M−1
p C‖)−1.

Similar to the LBB-stable case, in practical computations Mp is replaced by its diagonal approxi-
mation M̂p. Let us briefly comment on both choices of W .

Remark 2
Setting W =W1 will lead to a simple choice of preconditioner Ŝ such that the preconditioned
system enjoys the same eigenvalue bounds as in the LBB-stable case, i.e. (15)–(16). At the same
time, W =W1 involves the Laplacian-type matrix C , cf. Remark 1. Hence the inverse W−1 may
become an (almost) full matrix, resulting in that A� = A+BTW−1B is an (almost) full matrix and
consequently making the solution of linear systems with A� much more difficult. This happens
for example with Q1−Q1 elements. For Q1-P0 elements, however, the matrix C has a special
block-diagonal structure, which leads to a relatively cheap solve with A�. In numerical experiments
we will use W1 only with Q1−P0 elements.

The choiceW =W2 preserves the sparsity of A�. However, the restriction on � yields the decrease
of � when � is small and h tends to zero, since for small � it holds ‖M−1

p C‖=O(h−1), see the
discussion on matrix C in Remark 1. Thus, less augmentation is introduced and the performance
of the solver becomes more sensitive to the variation in � and h.

In the next section we present the eigenvalue analysis and show the corresponding choices of
Ŝ for both cases W =W1 and W =W2. We shall also discuss a third (intermediate) alternative of
setting the augmentation and preconditioning, which is not covered by our analysis, but shows
stable and almost � and h-independent convergence behavior while keeping the matrix A� sparse.

3.3. Eigenvalue analysis and the choice of Ŝ

We consider the following generalized eigenvalue problem:(
A� BT

�

B −C

)(
u

p

)
=�

(
A� 0

B −Ŝ

)(
u

p

)
. (29)

For the symmetrized system, matrix B in the (2,1) block is replaced by B� and matrix C in the
(2,2) block by C�. As in the case of stable finite elements, we consider the eigenvalue problem

Sq=�Mpq, (30)

where S= BA−1BT+C , and obtain bounds on � in terms of �.
For W =W1 one immediately gets from (25) and (26)

S−1
� = S−1+�M−1

p ,

S̃−1
� = S−1Mp(Mp+�C)−1+�(Mp+�C)−1.

Therefore, setting

Ŝ :=�−1Mp+C for (22) or Ŝ :=�−1Mp for (23), (31)
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we obtain with the same arguments as for the case of C=0 in Section 2.2 that all non-unit
eigenvalues of (29) satisfy S−1 p+�M−1

p p=�−1�M−1
p p, where p �=0, and thus

�= ��

1+��
.

This representation is identical to the one in (14). Therefore, we obtain the following theorem.

Theorem 1
Assume W =W1 and Ŝ is defined as in (31). The preconditioned matrix P−1Â has the eigenvalue
1 of multiplicity at least n. All other (non-unit) eigenvalues satisfy the following bounds:

0<min
�

�a�

1+�a�
�a��1, |b�|�max

�
min

{
�|b�|, 1

�|b�|
}

�1,

where �=a�+ ib� and �=a�+ ib�.

We noted already that the choice W =W1 is not always practical. The next theorem shows
eigenvalue bounds for the case W =W2 in terms of the bounds given by Bendixson’s Theorem
[42] for the generalized eigenvalue problem (30):


� :=min
p �=0

pTDp

pTMp p
�a�, |b�|�	� :=max

p �=0

|pTRp|
pTMp p

, (32)

where �=a�+ ib�, D= B((A−1+A−T)/2)BT+C is the symmetric part of S, and R= B((A−1−
A−T)/2)BT is its skew-symmetric part.

Theorem 2
Assume W =W2, 0<��(2‖M−1

p C‖)−1 and Ŝ=�−1Mp. The preconditioned matrix P−1Â has
the eigenvalue 1 of multiplicity at least n. All other (non-unit) eigenvalues satisfy the following
bounds for the non-symmetric augmentation (22),

0<
�
�

1+�
�
�a��1, |b�|�max

�
min{�	�,1}�1, (33)

where �=a�+ ib�.

Proof
From (29), we immediately get that �=1 is eigenvalue of multiplicity (at least) n and any vector
[u;0] with u �=0 is a corresponding eigenvector. The remaining eigenvalues � satisfy

S̃� p=�Ŝ p.

For W =Mp, Ŝ=�−1Mp, using representation (26), we obtain

Sp= �

1−�

(
1

�
Mp−C

)
p. (34)

For brevity, we let �=�/(1−�) and Q=(1/�)Mp−C . It follows from Bendixson’s Theorem that

min
p �=0

pTDp

pTQp
�a��max

p �=0

pTDp

pTQp
, |b�|�max

p �=0

|pTRp|
pTQp

,

where �=a�+ ib�. Using (34) we shall obtain bounds for � in terms of � from (30). Since �
satisfies 0<��(2‖M−1

p C‖)−1, it holds

1

2�
Mp�

1

�
Mp−C�1

�
Mp. (35)
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Therefore, we have

�min
p �=0

pTDp

pTMp p
�min

p �=0

pTDp

pTQp
�a��max

p �=0

pTDp

pTQp
�2�max

p �=0

pTDp

pTMp p
,

|b�| �max
p �=0

|pTRp|
pTQp

�2�max
p �=0

|pTRp|
pTMp p

.

Applying (32) yields

a���
�>0, |b�|�2�	�. (36)

Solving �=�/(1−�) for a� and b�, we have

a� = a�(1+a�)+b2�
(1+a�)2+b2�

, b� = b�

(1+a�)2+b2�
.

From this and (36) the result in (33) follows. �

The bounds for � in Theorems 1 and 2 are written in terms of bounds for the eigenvalues �
from (30). Following the same argument as in [19], we can prove that 
� and 	� from (32) and
hence the smallest real and the largest imaginary parts of � are independent of h, but depend
on �. The resulting eigenvalue bounds for � are very similar to those for the LBB-stable case
(C=0) from Section 2 and [9]. This suggests that the choice �=O(1) leads to a method that is
essentially insensitive to variations of parameters � and h. However, for the practical choice of
W = M̂p we have the restriction on �. Numerical experiments show that with the setting of W and
Ŝ from Theorem 2 the restriction is indeed important and prohibits the choice �=O(1) for all
values � and h of interest. The situation looks better from the numerical viewpoint if one sets (for
non-symmetrized case (22))

W = M̂p, Ŝ :=�−1Mp+C. (37)

This combination of the augmentation and preconditioning, which is intermediate between those
in Theorems 1 and 2, is not covered by the eigenvalue analysis above. However, in practice it
leads to performance which is nearly robust with respect to � and h.

3.4. Numerical experiments

In this subsection, we study the numerical behavior of the AL preconditioners. Two choices of
� are tested. The first one is to set �=1 as in the stable case, whereas the second follows the
restriction of Theorem 2, i.e. �=(2‖M−1

p C‖)−1.
The first set of experiments is to use the AL preconditioner to solve the lid-driven cavity

problem discretized by Q1-P0 finite elements. With this choice of elements one can set W =
M̂p+�C , Ŝ=�−1M̂+C for the AL preconditioner, cf. Remark 2. In this case no restriction on �
applies (see Theorem 1), so we set �=1. The results are shown in Table XV for the lid-driven
cavity problem on both uniform and stretched grids. The h-independence and �-independence of
the AL preconditioner are obvious from the data.

For the case of Q1-Q1 elements the choice of W = M̂p+�C is not practical, cf. Remark 2.
Thus, in all further experiments we set W = M̂p and show results with only Q1-Q1 elements.
For Q1-P0 elements, the results were found to be quite similar. First, we try the simple choice
of preconditioner Ŝ :=�−1M̂p. From Table XVI, we can see that the AL preconditioner performs
quite well with this stabilization, but no h-independence is achieved, except for the case �=0.1.
Moreover, �=1 cannot be recommended, as has been predicted by the eigenvalue analysis in the
previous section. The values for �=(2‖M−1

p C‖)−1 are shown in parentheses, and they decrease
as the grid is refined. This explains why we cannot get h-independence. As � becomes smaller,
the smallest real parts of the eigenvalues of the preconditioned coefficient matrix also get smaller.
We can observe this from Table XVII for �=0.001.
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Table XV. GMRES iterations with the AL preconditioner for steady 2-D lid-driven cavity problem (Q1-P0
FEM), W = M̂p+�C , Ŝ=�−1M̂+C , �=1.

Viscosity

0.1 0.01 0.001 0.1 0.01 0.001

Grid Uniform grid Stretched grid

16×16 7 6 5 7 6 5
32×32 8 6 6 8 6 6
64×64 8 7 7 9 7 7
128×128 9 6 8 9 7 7

Table XVI. GMRES iterations for steady 2-D-driven cavity problem (Q1-Q1 FEM), W = M̂p , Ŝ=�−1M̂ .

Viscosity

0.1 0.01 0.001

Grid �=1 �= 1
2‖M−1

p C‖ �=1 �= 1
2‖M−1

p C‖ �=1 �= 1
2‖M−1

p C‖
16×16 14 16 (0.1467) 16 19 (0.0880) 16 22 (0.0821)
32×32 18 16 (0.1061) 25 22 (0.0473) 23 28 (0.0415)
64×64 23 16 (0.0857) 36 25 (0.0269) 36 36 (0.0211)
128×128 25 17 (0.0755) 49 30 (0.0167) 58 52 (0.0109)

Table XVII. The smallest real parts of the eigenvalues
from (29), W = M̂p , Ŝ=�−1M̂ .

Grid The smallest real part

16×16 0.163
32×32 0.0929
64×64 0.0481

Table XVIII. GMRES iterations with original and modified AL preconditioners for steady lid-driven cavity
problem (Q1-Q1 FEM), W = M̂p , Ŝ=�−1M̂+C ,

√
2 rule.

Viscosity

0.1 0.01 0.001

Grid Original Modified Original Modified Original Modified

16×16 10 11 13 19 15 37
32×32 10 12 14 18 18 41
64×64 11 12 16 16 20 41
128×128 11 12 18 15 22 40

We also experiment with replacing Ŝ=�−1M̂ with Ŝ=�−1M̂+C in the preconditioner and show
the results in Table XVIII for the lid-driven cavity and Table XIX for the backward facing step. The
iteration counts with exact solves are presented in the ‘Original’ columns, whereas the ‘Modified’
ones show using the block-triangular approximation of A�, as in Section 2. We choose �=1 for
the original preconditioner; for the modified one, first, we determine the optimal � experimentally
on the coarsest grid, then we use the

√
2 rule for the finer grids. The iteration counts show the

excellent behavior of both preconditioners, with (near) independence on the mesh size and a mild
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Table XIX. GMRES iterations with original and modified AL preconditioners for steady backward facing
step problem (Q1-Q1 FEM), W = M̂p , Ŝ=�−1M̂+C ,

√
2 rule.

Viscosity

0.1 0.01 0.005

Grid Original Modified Original Modified Original Modified

16×48 10 15 13 23 14 25
32×96 11 15 15 23 16 28
64×192 11 16 17 25 18 32
128×384 12 17 19 28 20 39

dependence on �. In the case of small viscosity in the backward facing step problem, a modest
deterioration in the performance of the modified AL preconditioner is observed as the grid is
refined, but even in that case the convergence is quite fast.

4. CONCLUSIONS

In this paper, we have introduced and studied modifications of the AL-based preconditioner for
Oseen-type problems. In addition, we have extended the AL approach to the case of stabilized
finite element pairs, and heuristics for the choice of the augmentation parameter � have been
investigated. Theoretical analysis and extensive numerical experimentation on a variety of test
problems indicate that overall, the modified AL preconditioners are very robust and perform quite
well on both steady and unsteady problems over a wide range of values of the viscosity �.

One advantage of the modified AL preconditioners proposed in this paper is that they can
be readily implemented using standard off-the-shelf algebraic multilevel solvers developed for
elliptic PDEs, in particular parallel AMG-type solvers. Our experiments show that this can be an
effective approach for the parallel solution of finite element discretizations of the incompressible
Navier–Stokes equations.
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