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Recently, a new approach for the stabilization of the incompressible Navier–Stokes equations for high
Reynolds numbers was introduced based on the nonlinear differential filtering of solutions on every time
step of a discrete scheme. In this article, the stabilization is shown to be equivalent to a certain eddy-viscosity
model in Large Eddy Simulation. This allows a refined analysis and further understanding of desired filter
properties. We also consider the application of the filtering in a projection (pressure correction) method, the
standard splitting algorithm for time integration of the incompressible fluid equations. The article proves an
estimate on the convergence of the filtered numerical solution to the corresponding Navier-Stokes solution.
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I. INTRODUCTION

A stabilization of a numerical time-integration algorithm for the incompressible Navier–Stokes
equations

ut + (u · ∇)u − ν�u + ∇p = f

div u = 0
in � × (0, T ], (1)

for large Reynolds numbers with the help of an additional filtering step was recently introduced
in Ref. [1]. Denote by wn or un approximations to the Navier–Stokes system velocity solution at
time tn, and similarly pn approximates pressure p(tn). Let �t = tn+1 − tn. The algorithm, referred
to further as (A1), reads: For n = 0, 1, . . . and u0 = u(t0)
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1. compute intermediate velocity wn+1 from⎧⎨⎩
1

�t
(wn+1 − un) + (wn+1 · ∇)wn+1 + ∇pn+1 − ν�wn+1 = f n+1,

div wn+1 = 0,

subject to appropriate boundary conditions;
2. filter the intermediate velocity, wn+1 := F wn+1;
3. relax un+1 := (1 − χ)wn+1 + χwn+1, with a relaxation parameter χ ∈ [0, 1].

Here, F is a generic nonlinear filter acting from L2(�)3 to H 1(�)3. We shall consider further in
the article several examples of differential filters. The convergence of the finite element solutions
of (A1) to the smooth Navier–Stokes solution has been analyzed in Ref. [1]. One advantage of the
approach is the convenience of implementation within an existing CFD code for laminar flows and
flexibility in the choice of a filter. Numerical results from Refs. [1–5] with composite nonlinear
differential filters, as defined in Section III, consistently show more precise localization of model
viscosity and its more precise correlation with the action of nonlinearity on the smallest resolved
scales than plain Smagorinsky-type LES or Variational Multiscale methods. Thus, we deem the
approach deserves further study, should be put into perspective and related to developing LES
models.

In this article, we show that introducing the filter stabilization is closely related (and even equiv-
alent in a sense which is made precise further in the article) to adapting a certain eddy-viscosity
model for LES. The connection to a LES model helps us to quantify the model dissipation intro-
duced by the filter stabilization (Theorem 1), formulate stability criteria [see (6) and (8)], and
gives insight into the choice of the filter and the relaxation parameter. In particular, it provides
an explanation why the stabilization by the filtering avoids adding excessive model viscosity in
regions of larger velocity gradients, unlike most other eddy viscosity models.

The entire approach is specifically designed for treating high Reynolds number flows. There-
fore, it is natural to extend it to the Chorin–Temam–Yanenko-type splitting algorithms, which
are the prevailing method for the time-integration of the incompressible Navier–Stokes equations
for fast unsteady flows. Such (rather natural) extension is presented in the article together with
the relevant error analysis. We note right away that the analysis demonstrates the convergence
of numerical solutions to the Navier–Stokes smooth solution, while it would be also interest-
ing to analyze the error of the numerical solutions to a (presumably smoother) solution of the
corresponding LES model. However, the specific difficulty we faced in the latter case is the lack-
ing of the monotonicity property by most of eddy viscosity indicator functionals, which were
numerically proved to be useful in defining the filter F , see Section III. Though practically attrac-
tive, introducing such functionals makes the mathematical well-posedness of the LES model and
accordingly the error analysis hard to accomplish and we are unaware of relevant results in this
direction.

II. FILTER STABILIZATION AND LES MODEL

It is well known, see, for example, Refs. [6] or [7], that explicit filtering is related to adding eddy
or artificial viscosity. The connection of the filter stabilization as defined above to LES modeling
is easily recovered by noting that shifting the index n + 1 → n on Steps 2 and 3 and using Step 1
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gives the implicit discretization of the Navier–Stokes equations, with explicitly treated nonlinear
dissipation term:⎧⎨⎩

1

�t
(wn+1 − wn) + (wn+1 · ∇)wn+1 + ∇pn+1 − ν�wn+1 + χ

�t
Gwn = f n+1,

div wn+1 = 0,
(2)

with

G := I − F , I is the identity operator.

Assume χ = χ0�t , where χ0 is a time- and mesh-independent constant, then (2) can be treated
as the time-stepping scheme for{

wt + (w · ∇)w + ∇p − ν�w + χ0G w = f ,
div w = 0.

(3)

These arguments show that the numerical integrator (A1) with filter stabilization is the split-
ting scheme for solving (3). Furthermore, (3) can be observed as a LES model, with χ0G w

corresponding to the Reynolds stress tensor closure:

∇ · (w ⊗ w − w ⊗ w) ≈ χ0G w.

This simple observation leads to a refined analysis and better interpretation of the numerical
results and the method properties.

We note that χ = O(�t) is exactly the scaling of relaxation parameter which allows us to
prove optimal convergence result for a time-stepping splitting method (Theorem 3). Furthermore,
numerical experiments in Refs. [3,8] suggested that χ = O(�t) is indeed the right scaling of the
relaxation parameter with respect to numerical solution accuracy.

We start by showing several numerical properties of the approach. Throughout the article we
use (·, ·) and ‖ ·‖ to denote the L2 scalar product and the norm, respectively. For the sake of analy-
sis, assume the homogeneous Dirichlet boundary conditions for velocity. Taking the L2 scalar
product of (2) with 2�twn+1 and integrating by parts gives

‖wn+1‖2 − ‖wn‖2 + 1

2
‖wn+1 − wn‖2 + ν�t‖∇wn+1‖2 + χ(Gwn, wn+1) = �t(f n+1, wn+1).

(4)

For a self-adjoint filtering operator, that is, (Gu, v) = (Gv, u) for any u, v ∈ H 1
0 (�)3, the equality

(4) can be alternatively written as

‖wn+1‖2 − ‖wn‖2 + ν�t‖∇wn+1‖2 + χ

2

(
(Gwn+1, wn+1) + (Gwn, wn)

)
= �t(f , wn+1) + 1

2

(
χ(G(wn+1 − wn), wn+1 − wn) − ‖wn+1 − wn‖2

)
. (5)

Considering the last two terms on the right-hand side, we immediately get the sufficient condition
of the energy stability of (2) for the case of self-adjoint filters:

χ(Gu, u) ≤ ‖u‖2 ∀ u ∈ H 1
0 (�)3. (6)
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If G is not necessarily self-adjoint, one may rewrite (4) as

‖wn+1‖2 − ‖wn‖2 + 1

2
‖wn+1 − wn‖2 + ν�t‖∇wn+1‖2 + χ(Gwn, wn)

= �t(f , wn+1) + χ(Gwn, wn − wn+1).

Thanks to the Cauchy inequality one gets for any θ ∈ R:

‖wn+1‖2 − ‖wn‖2 + ν�t‖∇wn+1‖2 + (1 − θ)χ(Gwn, wn)

≤ �t(f , wn+1) − χ
(
θ(Gwn, wn) − χ

2
(Gwn, Gwn)

)
. (7)

In this more general case, one may consider the following sufficient condition for the energy
stability. Fixing, for example, θ = 1

2 , assures the sum of the last two terms in (7) is positive if

χ(Gu, Gu) ≤ (Gu, u) ∀ u ∈ H 1
0 (�)3. (8)

Assume G is self-adjoint and wn approximates a smooth in time Navier–Stokes solution, then
(5) leads to the following energy balance relation of the numerical method:

‖wN‖2 + ν

N∑
n=1

�t‖∇wn‖2 + χ0

N∑
n=1

�t(Gwn, wn) = ‖w0‖2 +
N∑

n=1

�t(f n, wn) + O(�t).

In particular, we may conclude that the filter stabilization introduces the model dissipation of

χ0

N∑
n=1

�t(Gwn, wn). (9)

Finally, we notice that the filtering and relaxation steps in (A1) can be rearranged as

un+1 − wn+1

�t
= −χ0G wn+1,

which is the explicit Euler method for integrating

ut = −χ0G u on [tn, tn+1], with u(tn) = w(tn+1). (10)

The coupling of a numerical method with the evolution Eq. (10) is known as another way of intro-
ducing explicit filtering in modeling of dynamical systems, for example, Ref. [6]. This suggests
that an improvement leading to higher-order methods for integrating (10) might be possible.

In the next section, we shall study properties of the operator G for a class of nonlinear
differential filters.

III. NONLINEAR DIFFERENTIAL FILTERS

Linear differential filters have a long history in LES, see Ref. [9]. We also point to Ref. [10]
and references therein for applications of linear differential filters in the Lagrange-averaging
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turbulence models. In this section, we consider a family of nonlinear differential filters for the
filtering procedure. Some conclusions will be drawn concerning the stability conditions (6), (8),
and equivalence to other approaches in the LES modelling. We use the following notation:

V := {
v ∈ H 1

0 (�)3 : div v = 0
}

, H = {
v ∈ L2(�)3 : div v = 0, v · n|∂� = 0

}
.

By P we denote the L2 orthogonal projector from L2(�)3 onto H .
For a given sufficiently smooth vector function u and w ∈ L2(�)3, we define F w as the

solution to

(δ2a(u)∇(F w), ∇v) + (F w, v) = (w, v) ∀v ∈ X, (11)

with an indicator functional 0 ≤ a(u) ≤ 1 and filtering radius δ2, which generally may depend on
x and t , δmax = maxx,t |δ|. Here, X = H 1

0 (�)3 or X = V , if the filter is div-free preserving. We
note that it is not immediately clear if the problem (11) is well-posed. In practice, this is not an
issue, as in a finite dimension setting, for example, for a finite element method, the bilinear form
from the left-hand side of (11) is elliptic and thus (11) is well-posed. Otherwise, we may assume
0 < ε ≤ a(u) ≤ 1 for some sufficiently small positive ε. If we assume this, none of our results
further in the article depend on the parameter ε. It is standard to base the indicator functional on
the input function w itself, that is u = w and we will denote w := F w in this case. However, in
the course of analysis, we need to consider (auxiliary) filtering with u �= w. If we need to show
explicitly the function used for the indicator, we shall write F(u)w instead of F w or F(w)w

instead of w.
The action of G = I − F , wg := G w, is defined formally as the solution to

(δ2a(u)∇wg , ∇v) + (wg , v) = (δ2a(u)∇w, ∇v) ∀v ∈ X. (12)

The operator G is self-adjoint on X and in the operator notation it can be written as

G = − [I − �a]−1 �a , (13)

with

�a :=
{

div(δ2a(u)∇) if X = H 1
0 (�)3,

P div(δ2a(u)∇) if X = V .

Because operator �a is self-adjoint and positive definite, one see from (13) that G ≤ I

and thus the sufficient stability condition (6) holds for any χ ∈ [0, 1]. This can be easily
verified in a formal way by substituting v = F w in (11) to get (w, F w) ≥ 0 and thus
(w, Gw) = (w, w − F w) ≤ ‖w‖2 for any w ∈ H 1

0 (�)3. Moreover, varying θ in (7) and
using (8), one shows the energy stability estimate for any χ ∈ [0, 2]. However, such refinement
is not important for our further analysis.

With the help of (9) and (13), we now quantify the model dissipation introduced by the
differential filters. To make notation shorter and without loss of generality, let χ = χ0�t .

First, representation (13) immediately implies G ≤ −�a . Thus, the additional dissipation
introduced by the differential filtering does not exceed those introduced by the LES closure
model:

div(w ⊗ w − w ⊗ w) ≈ −χ0�aw. (14)
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It is easy to show that for a discrete case and if the condition

δ � spatial mesh width

holds and 0 ≤ a(u) ≤ 1, then the dissipation introduced by the differential filtering (11) is
equivalent to the dissipation of the closure model (14).

We make the above statement more precise for a finite element discretization. To this end,
assume a consistent triangulation T of �, satisfying the minimal angle condition

inf
K∈T

ρ(K)/r(K) =: α0 > 0

where ρ(K) and r(K) are the diameters of inscribed and superscribed circles (spheres in 3D) for
a triangle (tetrahedron) K . We have the following result.

Theorem 1. Assume X is the finite element space of continuous functions which are polyno-
mials of degree p ≥ 1 on every element K and maxx∈K |δ(x)| ≤ Cδ r(K) for any K ∈ T , with a
constant Cδ independent of K . Then for any w ∈ X the equivalence

c̃ (δ2a(u)∇w, ∇w) ≤ (G w, w) ≤ (δ2a(u)∇w, ∇w) (15)

holds with a constant c̃ > 0 independent of w, the indicator a(·), and the filtering radius δ. The
constant c̃ > 0 may depend on p, Cδ , and α0.

Proof. Consider the finite element inverse inequality

‖∇w‖L2(K) ≤ c0ρ(K)−1‖w‖L2(K) ∀ w ∈ X, (16)

where the constant c0 depends only on the polynomial degree p and α0. The inequality (16), the
assumption on δ, and the minimal angle condition imply

‖δ∇w‖L2(K) ≤ C̃‖w‖L2(K), (17)

where the constant C̃ depends only on p, Cδ , and α0. Squaring (17), summing over all K ∈ T ,
and recalling that a(·) ≤ 1, implies

(δ2a(u)∇w, ∇w) ≤ C̃2‖w‖2. (18)

Denote wg = G w for some w ∈ X. We set v = wg and v = −w in (12) and sum up the equalities
to get

0 = (δ2a(u)∇wg , ∇wg) + (wg , wg) − 2(δ2a(u)∇w, ∇wg) − (wg , w) + (δ2a(u)∇w, ∇w)

= ‖wg‖2 − (wg , w) + (δ2a(u)∇(w − wg), ∇(w − wg)).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Thus, it holds ‖wg‖2 ≤ (wg , w), that is, the condition (8). Now we set v = w in (12) and use (8)
and (18) to estimate

(δ2a(u)∇w, ∇w) = (δ2a(u)∇wg , ∇w) + (wg , w)

≤ 1

2
(δ2a(u)∇wg , ∇wg) + 1

2
(δ2a(u)∇w, ∇w) + (wg , w)

≤ 1

2
C̃2‖wg‖2 + 1

2
(δ2a(u)∇w, ∇w) + (wg , w)

≤
(

1

2
C̃2 + 1

)
(wg , w) + 1

2
(δ2a(u)∇w, ∇w).

We proved the lower bound in (15).
To show the upper bound, we set v = wg and v = w in (12) and sum up the equalities to get

0 = (δ2a(u)∇wg , ∇wg) + (wg , wg) + (wg , w) − (δ2a(u)∇w, ∇w).

This yields the upper bound in (15): (wg , w) ≤ (δ2a(u)∇w, ∇w).

Few conclusions can be drawn from the equivalence result (15) concerning the relation of the
filter stabilization to some other eddy-viscosity models.

The use of the linear differential filter (a ≡ 1), as considered in Ref. [3], is equivalent to the
method of artificial viscosity. This means that the model dissipation is equivalent to the isotropic
diffusion scaled with χ0δ

2. Given what is known about the method of artificial viscosity, it is
not surprising that the method is not very accurate in this case. Thus, more elaborated indicator
functionals should be used. Generally, we may think of a(u) as a real valued functional, depending
on u, ∇u, and selected with the intent that

a(u(x)) ≈ 0 for laminar regions or persistent flow structures,

a(u(x)) ≈ 1 for flow structures which decay rapidly.

The choice of the Smagorinsky-type indicator function, a(u) = |∇u|, does not necessarily
satisfy the condition a(u) ≤ 1. In this case, we do not have the equivalence result of the filter
stabilization to the Smagorinsky LES model. Only the upper bound in (15) is guaranteed to hold.
Thus, the dissipation introduced by the filtering with a(u) = |∇u| is likely less than that of the
Smagorinsky model. This can be a desirable property, as the Smagorinsky LES model is known
to be severely over-diffusive for certain flows, see, for example, Ref. [11], and several ad hoc
corrections were introduced such as the van Driest damping, dynamic models, and others, see
Refs. [12–14].

Several reasonable indicator functions a(u) are known to satisfy the boundedness condition:
0 ≤ a(u) ≤ 1. These are the renormalized Smagorinsky-type indicator [15], the indicator based
on the Q-criteria [16], and the Vreman indicators [17]; also an indicator based on the normalized
helical density distribution was considered in Ref. [2]. Given several indicators ai(·), i = 1, . . . , N ,
the combined indicator can be defined as the geometric mean: a(·) := (

∏N

i=1 ai(·)) 1
N .

We remark, that the convergence results proved further in this article do not rely on any
smoothness properties or particular form of a(·).

The last remark in this section is that Theorem 1 does not give much insight if enforcing the
divergence constraint in the filter is important or not. However, if we assume X = V in (11),
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that is, the filtered velocity satisfies the divergence free condition, then this slightly simplifies the
error analysis in Section VI.

IV. PROJECTION SCHEME WITH FILTER STABILIZATION

One idea behind introducing the filter stabilization or explicit filtering was to provide CFD soft-
ware users and developers with a simple way to enhance existing codes for laminar incompressible
flows to compute high Reynolds number flows. This goal is accomplished by making the filtering
procedure algorithmically independent of a time integration method. Driven by this intention, we
consider the Chorin [18] splitting (projection) scheme with an additional separate filtering step.
Projection methods are the common numerical approach to the incompressible Navier–Stokes
equations and form a family of splitting algorithms, see Refs. [19, 20]. We perform the numer-
ical analysis for the simplest first-order method given below. From the algorithmic standpoint,
the generalization to higher-order projection methods is straightforward, although analysis may
become considerably more involved.

Projection methods split the time evolution of the velocity vector field according to the momen-
tum equation and the projection of the velocity to satisfy the divergence-free condition. The
filtering step can be introduced before or after the projection step. In the former case, it is not
necessary to augment the filter with the div-free constraint, as the projection step takes care of the
keeping the approximates in the subspace of div-free functions. If the filter is div-free preserving,
then it is reasonable to put it after the projection. In this article, we consider the constrained filter.
We shall study the following algorithm:

Step 1: Solve the convection-diffusion-type problem: Given un, w∗, find w̃n+1:⎧⎪⎨⎪⎩
1

�t
(w̃n+1 − un) + (w∗ · ∇)w̃n+1 − ν�w̃n+1 = f n+1,

w̃n+1|∂� = 0.

(19)

The velocity w∗ is typically an interpolation from previous times, for example, w∗ := wn or a
higher-order interpolation. For the sake of analysis, we consider w∗ = wn.

Step 2: Project w̃n+1 on the div-free subspace: Find pn+1 and wn+1 solving the Neumann pressure
Poisson problem: ⎧⎪⎪⎨⎪⎪⎩

1

�t
(wn+1 − w̃n+1) + ∇pn+1 = 0,

div wn+1 = 0,
n · wn+1|∂� = 0.

(20)

Step 3: Filter: wn+1 := F wn+1;

Step 4: Relax:

un+1 := (1 − χ)wn+1 + χwn+1, (21)

with some χ ∈ [0, 1].
Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Similar to what was shown in section II, shifting the index n + 1 → n on steps 2–4 and
substituting into (19) gives for χ = χ0�t⎧⎪⎨⎪⎩

1

�t
(w̃n+1 − w̃n) + (w∗ · ∇)w̃n+1 + ∇pn+1 − ν�w̃n+1 + χ0Gw̃n − �tχ0G∇pn+1 = f n+1,

div w̃n+1 − �t�pn+1 = 0.
(22)

From (22), we see that the splitting scheme (19)–(21) is formally the first-order accurate
time-discretization of the LES model (3).

Further, we show that the splitting scheme (19)–(21) is stable. There are two well-known
approaches to accomplish the error analysis of projection methods. The one of Rannacher and
Prohl [20, 21] uses the relation between projection and quasicompressibility methods as it is
seen from (22). However, this analysis needs considerable effort to get extended to equations
different from the plain Navier–Stokes equations. Another framework is mainly due to Shen (see
Refs. [22, 23]), where convergence results were shown based on energy-type estimates. In our
error analysis, we follow (to a certain extent) arguments from these two papers.

V. STABILITY

To show the stability of the splitting scheme, we need the following simple auxiliary result:

Lemma 1. For wn+1 and un+1 from the algorithm (19)–(21) and the filter F defined in (11), it
holds

‖wn+1‖ ≥ ‖un+1‖.

Proof. From the definition (11), we obtain:

(δ2a(wn+1)∇wn+1, ∇wn+1) + ‖wn+1‖2 = (wn+1, wn+1)

= 1

2
(‖wn+1‖2 + ‖wn+1‖2 − ‖wn+1 − wn+1‖2).

This yields

‖wn+1‖2 = 2(δ2a(wn+1)∇wn+1, ∇wn+1) + ‖wn+1‖2 + ‖wn+1 − wn+1‖2.

Hence, ‖wn+1‖ ≥ ‖wn+1‖. From (21), we get

‖un+1‖ ≤ (1 − χ)‖wn+1‖ + χ‖wn+1‖ ≤ ‖wn+1‖ for χ ∈ [0, 1].

Denote by ‖ · ‖−1 the L2-dual norm for H 1
0 (�)3. Now, we are ready to prove the following

stability result.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Theorem 2. The algorithm (19)–(21) is stable in the sense of the following a priori estimate:

‖wl‖2 +
l−1∑
n=0

‖wn+1 − w̃n+1‖2 +
l−1∑
n=0

‖w̃n+1 − un‖2 +
l−1∑
n=0

ν�t‖∇w̃n+1‖2

≤ ‖w0‖2 +
l−1∑
n=0

ν−1�t‖f (tn+1)‖2
−1 (23)

for any l = 1, 2, . . . .

Proof. Take the L2 scalar product of (19) with 2�tw̃n+1:

2(w̃n+1 − un, w̃n+1) + 2ν�t‖∇w̃n+1‖2 = 2�t(f n+1, w̃n+1) ≤ ν−1�t‖f n+1‖2
−1 + ν�t‖∇w̃n+1‖2.

Rewriting and simplifying this leads to:

‖w̃n+1‖2 − ‖un‖2 + ‖w̃n+1 − un‖2 + ν�t‖∇w̃n+1‖2 ≤ ν−1�t‖f n+1‖2
−1. (24)

The L2 scalar of (20) with 2�t wn+1 and div wn+1 = 0 gives

2(wn+1 − w̃n+1, wn+1) = 0 =⇒ ‖wn+1‖2 − ‖w̃n+1‖2 + ‖wn+1 − w̃n+1‖2 = 0.

Substituting ‖w̃n+1‖2 with ‖wn+1‖2 + ‖wn+1 − w̃n+1‖2 in (24) yields

‖wn+1‖2 − ‖un‖2 + ‖wn+1 − w̃n+1‖2 + ‖w̃n+1 − un‖2 + ν�t‖∇w̃n+1‖2 ≤ ν−1�t‖f n+1‖2
−1.

The application of Lemma 1 gives

(‖wn+1‖2 − ‖wn‖2) + ‖wn+1 − w̃n+1‖2 + ‖w̃n+1 − un‖2 + ν�t‖∇w̃n+1‖2 ≤ ν−1�t‖f n+1‖2
−1.

Summing up the inequality from n = 0, . . . , l − 1, we arrive at (23).

VI. ERROR ESTIMATES

We shall use 〈·, ·〉 to denote the duality product between H−s and Hs
0 (�) for all s ≥ 0. In the

following, we assume that the given data and solution to the Eq. (1) subject to the homogeneous
Dirichlet velocity boundary conditions satisfy⎧⎪⎪⎪⎨⎪⎪⎪⎩

u0 ∈ (H 2(�))d ∩ V ,

f ∈ L∞(0, T ; (L2(�))d) ∩ L2(0, T ; (H 1(�))d),

ft ∈ L2(0, T ; H−1),

supt∈[0,T ] ‖∇u(t)‖ ≤ C̃.

(25)

We shall use c and C as a generic positive constant which may depend on �, ν, T , constants from
various Sobolev inequalities, u0, f , and the solution u through the constant C̃ in (25).
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Under the assumption (25), one can prove the following inequalities, see Ref. [24]:

sup
t∈[0,T ]

{‖u(t)‖2 + ‖ut(t)‖ + ‖∇p(t)‖} ≤ C, (26)

∫ T

0
‖∇ut(t)‖2 + t‖utt‖2dt ≤ C, (27)

which will be used in the sequel. Further, we often use the following well-known [25] estimates
for the bilinear form b(u, v, w) = ∫

�
(u · ∇)v · w dx:

b(u, v, w) ≤
⎧⎨⎩c‖∇u‖‖∇v‖ 1

2 ‖v‖ 1
2 ‖∇w‖,

c‖u‖2‖v‖‖∇w‖,
c‖∇u‖‖v‖2‖w‖.

and b(u, v, w) = −b(u, w, v) for u ∈ H .
Define the Stokes operator Au = −P�u, ∀ u ∈ D(A) = V ∩ H 2(�)3. We will use the

following properties: A is an unbounded positive self-adjoint closed operator in H with domain
D(A), and its inverse A−1 is compact in H and satisfies the following relations [22, 23]:

∃ c, C > 0, such that ∀u ∈ H :

{‖A−1u‖2 ≤ c‖u‖ and ‖A−1u‖ ≤ c‖u‖V ′ ,
c‖u‖2

V ′ ≤ (A−1u, u) ≤ C‖u‖2
V ′ .

Before we proceed with the error analysis, we prove several auxiliary results given below in
Lemma 2. The lemma gives estimates on the difference between a velocity w and the filtered
velocity F(u)w.

Lemma 2. Consider the differential filter F defined in (11) with some sufficiently smooth vector
function u. For any w ∈ V and Fw ∈ V it holds

‖w − Fw‖ ≤ δmax‖∇w‖, (28)

‖w − Fw‖V ′ ≤ δ2
max‖∇w‖. (29)

Proof. Denote e = w − Fw. The Eq. (11) gives

(δ2a(u)∇e, ∇v) + (e, v) = (δ2a(u)∇w, ∇v) ∀ v ∈ V .

Letting v = e yields

‖δ√a(u)∇e‖2 + ‖e‖2 = (δ2a(u)∇w, ∇e) ≤ ‖δ√a(u)∇w‖‖δ√a(u)∇e‖

≤ ‖δ√a(u)∇e‖2 + 1

4
‖δ√a(u)∇w‖2 ≤ ‖δ√a(u)∇e‖2 + 1

4
δ2

max‖∇w‖2.

This proves (28). To show (29), we note that setting v = F w − w in (11) gives

(δ2a(u)∇F w, ∇(Fw − w)) = −‖Fw − w‖2 ≤ 0.

Hence, we obtain:

‖δ√a(u)∇Fw‖2 ≤ ‖δ√a(u)∇w‖2. (30)
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Allowing v = A−1(w − Fw) in (11) leads to the following relations:

‖w − Fw‖2
V ′ = (w − Fw, A−1(w − Fw)) = (δ2a(u)∇F w, ∇A−1(w − Fw))

≤ ‖δ2a(u)∇Fw‖‖∇A−1(w − Fw)‖ ≤ 1

2
(‖δ2a(u)∇Fw‖2 + ‖w − Fw‖2

V ′)

≤ 1

2
δ2

max‖δ
√

a(u)∇Fw‖2 + 1

2
‖w − Fw‖2

V ′ .

The last estimate and (30) implies (29).

Further in this section, we show that wn+1, wn+1, and un+1 are all strongly O((�t)
1
2 + δ)

approximations to u(tn+1) in L2(�)3 provided χ = χ0�t . Then, we use this result to improve the
error estimates to weakly O(�t+δ2) approximations. This analysis largely follows the framework
from Refs. [22] and [23] for the pure (non-filtered) Navier–Stokes equations, so we shall refer to
these papers and Ref. [26] for some arguments which do not depend on the filtering procedure.

Lemma 3. Let u be the solution to the Navier–Stokes system, satisfying (25). Denote

ε̃n+1 = u(tn+1) − w̃n+1, εn+1 = u(tn+1) − wn+1, and en+1 = u(tn+1) − un+1.

The following estimate holds

‖ε̃l‖2 +
l−1∑
n=0

(‖εn+1 − ε̃n+1‖2 + ‖ε̃n+1 − en‖2) +
l−1∑
n=0

2ν�t‖∇ ε̃n+1‖2 ≤ C(�t + δ2
max). (31)

Proof. Let Rn denote the truncation error defined by

1

�t
(u(tn+1) − u(tn)) − ν�u(tn+1) + (u(tn+1) · ∇)u(tn+1) + ∇p(tn+1) = f n+1 + Rn, (32)

where Rn is the integral residual of the Taylor series, that is,

Rn = 1

�t

∫ tn+1

tn

(t − tn)utt (t)dt .

By subtracting (19) from (32), we obtain

1

�t
(ε̃n+1 − en) − ν�ε̃n+1 = (wn · ∇)w̃n+1 − (u(tn+1) · ∇)u(tn+1) − ∇p(tn+1) + Rn. (33)

Taking the L2 scalar product of (33) with 2�t ε̃n+1, we get

‖ε̃n+1‖2 − ‖en‖2 + ‖ε̃n+1 − en‖2 + 2ν�t‖∇ ε̃n+1‖2 = 2�t(Rn, ε̃n+1) − 2�t(∇p(tn+1), ε̃n+1)

+ 2�tb∗(wn, w̃n+1, ε̃n+1) − 2�tb∗(u(tn+1), u(tn+1), ε̃n+1). (34)
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The terms on the right-hand side are bounded exactly the same way as in Ref. [22] p.64 and
Ref. [23] p.512, leading to the estimates:

�t |b∗(wn, w̃n+1, ε̃n+1) − b∗(u(tn+1), u(tn+1), ε̃n+1)|

≤ ν�t

2
‖∇ ε̃n+1‖2 + C�t‖εn‖2 + C(�t)2

∫ tn+1

tn

‖ut‖2dt , (35)

2�t(Rn, ε̃n+1) ≤ ν�t

4
‖∇ ε̃n+1‖2 + C(�t)2

∫ tn+1

tn

t‖utt‖2
−1dt , (36)

2�t(∇p(tn+1), ε̃n+1) = 2�t(∇p(tn+1), ε̃n+1 − en) ≤ 1

2
‖ε̃n+1 − en‖2 + 2(�t)2‖∇p(tn+1)‖2.

(37)

Combining the inequalities (34), (35), (36), (37), and rearranging terms, we obtain

‖ε̃n+1‖2 − ‖en‖2 + 1

2
‖ε̃n+1 − en‖2 + ν�t‖∇ ε̃n+1‖2

≤ 2(�t)2‖∇p(tn+1)‖2 + C�t‖εn‖2 + C(�t)2

(∫ tn+1

tn

t‖utt‖2
−1dt +

∫ tn+1

tn

‖ut‖2dt

)
. (38)

The Step 4 of the algorithm (19)–(21) yields

en = (1 − χ)εn + χF(wn+1)εn + χ(u(tn) − F(wn+1)u(tn)). (39)

The definition of the filter and recalling that εn is the L2 projection of ε̃n give ‖F(wn+1)εn‖ ≤
‖εn‖ ≤ ‖ε̃n‖. We use this to deduce from (39) the following estimate:

‖en‖ = (1 − χ)‖εn‖ + χ‖F(wn+1)εn‖ + χ‖u(tn) − F(wn+1)u(tn)‖
≤ ‖ε̃n‖ + χ‖u(tn) − F(wn+1)u(tn)‖.

Now we apply (28) and square the resulting inequality to get (for the sake of convenience we
assume �t ≤ C and recall χ = χ0�t):

‖en‖2 ≤ (1 + �t)‖ε̃n‖2 + C�tδ2
max. (40)

We substitute (40) to the left-hand side of (38) for ‖en‖, use ‖εn‖ ≤ ‖ε̃n‖ and arrive at

‖ε̃n+1‖2 − ‖ε̃n‖2 + ‖εn+1 − ε̃n+1‖2 + 1

2
‖ε̃n+1 − en‖2 + ν�t‖∇ ε̃n+1‖2

≤ 2(�t)2‖∇p(tn+1)‖2 +C�t‖ε̃n‖2 +C(�t)2

(∫ tn+1

tn

t‖utt‖2
−1dt +

∫ tn+1

tn

‖ut‖2dt

)
+C�tδ2

max.

(41)
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Summing up (41) from n = 0 to n = l − 1, assuming that w̃0 = w0 = u0 (this implies
‖e0‖ = ‖ε0‖ = 0), we obtain

‖ε̃l‖2 +
l−1∑
n=0

‖εn+1 − ε̃n+1‖2 + 1

2

l−1∑
n=0

‖ε̃n+1 − en‖2 +
l−1∑
n=0

ν�t‖∇ ε̃n+1‖2

≤
l−l∑
n=0

C�t‖ε̃n‖2 +2(�t)2
l−1∑
n=0

‖∇p(tn+1)‖2 +C(�t)2

(∫ tl

t0

t‖utt‖2
−1dt +

∫ tl

t0

‖ut‖2dt

)
+Cδ2

max

≤
l−1∑
n=0

C�t‖ε̃n‖2 + C�t + Cδ2
max.

Applying the discrete Gronwall inequality yields (31).

Now, we will use the result of the lemma and improve the predicted order of convergence for

the velocity. The main result in this section is the following theorem, stating that all w̃n+1, wn+1

and, un+1 are first-order approximations to the Navier–Stokes solution.

Theorem 3. Assume the solution to the Navier–Stokes system satisfies (25) and χ = χ0�t .
Suppose ∂� ∈ C1,1 or � is convex. It holds

�t

l∑
n=1

(‖ε̃n‖2 + ‖εn‖2 + ‖en‖2) ≤ C((�t)2 + δ4
max). (42)

Additionally assume
∫ T

0 ‖∇pt‖2 ≤ C and the filtering radius is bounded as δ4
max ≤ C �t , then

pn is an approximation to p(tn) in L2(�)/R in the following sense:

�t

l∑
n=1

‖pn − p(tn)‖2 ≤ C(�t + δ2
max). (43)

Proof. Literally reaping the arguments from Ref. [22], pp. 66–69, one shows the estimate

‖εn+1‖2
V ′ − ‖en‖2

V ′ + ‖εn+1 − en‖2
V ′ + ν�t‖εn+1‖2

≤ C

(
�t‖εn+1‖2

V ′(�t)2

∫ tn+1

tn

(t‖utt‖2
−1 + ‖ut‖2)dt + (�t)2‖∇ ε̃n+1‖2

+ �t‖ε̃n+1 − en‖2 + �t‖εn+1 − ε̃n+1‖2

)
. (44)

The estimate (29) gives ‖Fεn‖V ′ ≤ ‖εn‖V ′ + δ2
max‖∇εn‖. Here and in the rest of the proof, the

filtering is based on the wn+1 velocity, that is F · := F(wn+1)·. Due to the assumption ∂� ∈ C1,1

or � is convex, the L2 projection on H is H 1 stable, that is, ‖∇εn‖ ≤ C‖∇ ε̃n‖ and therefore we
conclude

‖Fεn‖V ′ ≤ ‖εn‖V ′ + Cδ2
max‖∇ ε̃n‖.
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Using this and (29), we get from (39) for χ = χ0�t

‖en‖V ′ = (1 − χ)‖εn‖V ′ + χ‖Fεn‖V ′ + χ‖u(tn) − Fu(tn)‖V ′

≤ ‖εn‖V ′ + C�t
(
δ2

max‖∇ ε̃n‖ + ‖u(tn) − Fu(tn)‖V ′
)

≤ ‖εn‖V ′ + C�tδ2
max

(‖∇ ε̃n‖ + 1
)

.

Squaring the inequality, we get after elementary calculations

‖en‖2
V ′ ≤ (1 + �t)‖εn‖2

V ′ + C�tδ4
max

(‖∇ ε̃n‖2 + 1
)

.

We substitute the above estimate to the left-hand side of (44) and arrive at

‖εn+1‖2
V ′ − ‖εn‖2

V ′ + ‖εn+1 − en‖2
V ′ + ν�t‖εn+1‖2

≤ C

(
�t(‖εn+1‖2

V ′ + ‖εn‖2
V ′) + (�t)2

∫ tn+1

tn

(t‖utt‖2
−1 + ‖ut‖2)dt + (�t)2‖∇ ε̃n+1‖2

+�t(‖ε̃n+1 − en‖2 + ‖εn+1 − ε̃n+1‖2) + �tδ4
max(1 + ‖∇ ε̃n‖2)

)
.

Assume for the sake of convenience δmax ≤ C. Summing up the inequalities for n = 0, . . . , l − 1,
we get

‖εl‖2
V ′ +

l−1∑
n=0

‖εn+1 − en‖2
V ′ +

l−1∑
n=0

ν�t‖εn+1‖2

≤ C

(
l−1∑
n=0

�t‖εn+1‖2
V ′ + (�t)2

∫ tl

t0

(‖utt‖2
V ′ + ‖ut‖2)dt + δ4

max

l−1∑
n=0

�t‖∇ ε̃n‖2

+
l−1∑
n=0

�t‖ε̃n+1 − en‖2 +
l−1∑
n=0

�t‖εn+1 − ε̃n+1‖2 + �tδ4
max

)
. (45)

Now we use the result of the Lemma 3 to bound

�t‖εl‖2
V ′ + δ4

max

l−1∑
n=0

�t‖∇ ε̃n+1‖2 +
l−1∑
n=0

�t‖ε̃n+1 − en‖2 +
l−1∑
n=0

�t‖εn+1 − ε̃n+1‖2

≤ C((�t)2 + �tδ2
max + δ4

max).

Thus, applying the Gronwall inequality to (45) yields

‖εl‖2
V ′ +

l−1∑
n=0

‖εn+1 − en‖2
V ′ +

l−1∑
n=0

ν�t‖εn+1‖2 ≤ C((�t)2 + δ4
max). (46)
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Here, we also used �tδ2
max ≤ (�t)2 + δ4

max. Finally, the Lemma 3 helps us to estimate

�t

l−1∑
n=0

‖ε̃n+1‖2 ≤ �t

l−1∑
n=0

‖εn+1 − ε̃n+1‖2 + �t

l−1∑
n=0

‖εn+1‖2 ≤ C((�t)2 + δ4
max).

�t

l∑
n=0

‖en‖2 ≤ �t

l−1∑
n=0

‖εn+1 − en‖2 + �t

l−1∑
n=0

‖εn+1‖2 ≤ C((�t)2 + δ4
max).

These estimates together with (46) proves the velocity error estimate of the theorem.
Further, we show that the pressure is weakly 1

2 order convergent to the true solution. Denote
the pressure error as qn = pn − p(tn). We may assume (qn, 1) = 0. It holds

−∇qn+1 = − 1

�t
(εn+1 − en) + ν�ε̃n+1 + (wn · ∇)w̃n+1 − (u(tn+1) · ∇)u(tn+1) + Rn. (47)

Repeating the arguments from Ref. [22] and using the Nečas inequality, see Ref. [27], one deduces
from (47)

‖qn+1‖ ≤ c sup
v∈H1

0 (�)3

(∇qn+1, v)

‖∇v‖

≤ 1

�t
‖εn+1 − en‖−1 + C(‖Rn‖−1 + ‖∇ ε̃n+1‖ + ‖∇εn+1‖ + ‖u(tn+1) − u(tn)‖).

Therefore, by using (31), we get

�t

l−1∑
n=0

‖qn+1‖2 ≤ 1

�t

l−1∑
n=0

‖∇(εn+1 − en)‖2
−1 + C(�t + δ2

max). (48)

To bound the first term on the right-hand side of (48), one estimates:

‖εn+1 − en‖−1 ≤ c‖εn+1 − en‖ ≤ c(‖εn+1 − εn‖ + ‖εn − en‖) ≤ c(‖ε̃n+1 − ε̃n‖ + ‖εn − en‖).
(49)

The estimate for the second term on the right-hand side of (49) follows from (39):

‖εn − en‖ ≤ χ0�t(‖εn − Fεn‖ + ‖u(tn) − Fu(tn)‖)
≤ χ0�t(‖εn‖ + ‖Fεn‖ + ‖u(tn) − Fu(tn)‖).

Thanks to (28), (31), and ‖Fεn‖ ≤ ‖εn‖, we continue the above estimate as

‖εn − en‖ ≤ C((�t)
3
2 + �tδmax). (50)

Below we shall prove the bound

l−1∑
n=0

‖ε̃n+1 − ε̃n‖2 ≤ C((�t)2 + �tδ2
max).
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From (19) and (21), we get

1

�t
(ε̃n+1 − en) − ν�ε̃n+1 + ∇p(tn+1) + (wn · ∇)w̃n+1 − (u(tn+1) · ∇)u(tn+1) = Rn. (51)

The projection step (20) gives εn = ε̃n + �t∇pn, so (39) yields

en = (1 − χ)(ε̃n + �t∇pn) + χFεn + χ(u(tn) − Fu(tn)).

Substituting this in (51) implies

1

�t
(ε̃n+1 − ε̃n) − ν�ε̃n+1 + (1 − χ)∇(p(tn+1) − pn) + χ∇p(tn+1) − χ

�t
(F εn − ε̃n)

− χ

�t
(u(tn) − Fu(tn)) + (wn · ∇)w̃n+1 − (u(tn+1) · ∇)u(tn+1) = Rn. (52)

The inner product of (52) with �t(ε̃n+1 − ε̃n) gives

‖ε̃n+1 − ε̃n‖2 + ν�t

2
(‖∇ ε̃n+1‖2 − ‖∇ ε̃n‖2 + ‖∇(ε̃n+1 − ε̃n)‖2)

= �t(Rn, ε̃n+1 − ε̃n) + (1 − χ)�t(p(tn+1) − pn, div(ε̃n+1 − ε̃n))

+ �t((wn · ∇)w̃n+1 − (u(tn+1) · ∇)u(tn+1), ε̃n+1 − ε̃n)

− χ�t(∇p(tn+1), ε̃n+1 − ε̃n) + χ(Fεn − ε̃n, ε̃n+1 − ε̃n) + χ(u(tn) − Fu(tn), ε̃n+1 − ε̃n)

= �t(Rn, ε̃n+1 − ε̃n) + (1 − χ)�t
[
(qn, div(ε̃n+1 − ε̃n)) + (p(tn+1) − p(tn), div(ε̃n+1 − ε̃n))

]
− χ

[
�t(∇p(tn+1), ε̃n+1 − ε̃n) − (Fεn − ε̃n, ε̃n+1 − ε̃n) − (u(tn) − Fu(tn), ε̃n+1 − ε̃n)

]
+ �t((wn · ∇)w̃n+1 − (u(tn+1) · ∇)u(tn+1), ε̃n+1 − ε̃n)

= I1 + I2 + I3 + I4 + I5 + I6 + I7. (53)

The last term I7 is estimated in Ref. [26]:

�t |((wn · ∇)w̃n+1 − (u(tn+1) · ∇)u(tn+1), ε̃n+1 − ε̃n)|
≤ σ ‖̃εn+1 − ε̃n‖2 + C

(
(�t)2‖̃εn+1‖2 + (�t)2‖εn+1‖2 + �t

3
2 ‖∇εn‖2‖∇ ε̃n+1‖2

+ ν�t

2
‖∇(ε̃n+1 − ε̃n)‖2 + (�t)3

)
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for some σ > 0, which can be taken sufficiently small. Applying (31) and ‖∇εn‖ ≤ C‖∇̃εn‖
leads to

I7 ≤ σ ‖̃εn+1 − ε̃n‖2 + C((�t)3 + (�t)2δ2
max) + (�t)

3
2 ‖∇ ε̃n‖2‖∇ ε̃n+1‖2 + ν�t

2
‖∇(ε̃n+1 − ε̃n)‖2.

(54)

For I4, I5, and I6 one has

I4 = −χ�t(∇p(tn+1), ε̃n+1 − ε̃n) ≤ Cχ 2(�t)2‖∇p(tn+1)‖2 + σ‖ε̃n+1 − ε̃n‖2, (55)

I5 = χ(Fεn − ε̃n, ε̃n+1 − ε̃n) ≤ Cχ 2(‖Fεn‖2 + ‖ε̃n‖2) + σ‖ε̃n+1 − ε̃n‖2

≤ C((�t)3 + (�t)2δ2
max) + σ‖ε̃n+1 − ε̃n‖2, (56)

I6 = χ(u(tn) − Fu(tn), ε̃n+1 − ε̃n) ≤ C(�t)2δ4
max + σ‖ε̃n+1 − ε̃n‖2. (57)

The terms I1, I2 and I3 are estimated in Ref. [22]. Using those estimates and (54)–(57) in (53)
yields for sufficiently small σ > 0:

‖ε̃n+1 − ε̃n‖2 + ν�t

2
(‖∇ ε̃n+1‖2 − ‖∇ ε̃n‖2) + (1 − χ)(�t)2(‖∇qn+1‖2 − ‖∇qn‖2)

≤ C

{
(�t)2

∫ tn+1

tn

‖utt‖2dt + (�t)2

∫ tn+1

tn

‖∇pt‖2dt + (�t)4‖∇p(tn+1)‖2

+(�t)3 + (�t)2δ2
max + �t

3
2 ‖∇ ε̃n‖2‖∇ ε̃n+1‖2

}
. (58)

We sum up the estimate for n = 0, . . . , l − 1 and apply our assumptions for the solution to
Navier–Stokes solution. This leads to the bound

l−1∑
n=0

‖ε̃n+1 − ε̃n‖2 + ν�t

2
‖∇ ε̃l‖2 ≤ C

(
(�t)2 + �tδ4

max + (�t)
3
2

l−1∑
n=0

‖∇ ε̃n‖2‖∇ ε̃n+1‖2

)
.

The application of the discrete Gronwall inequality, (31) and the assumption δ4
max ≤ C�t yields

l−1∑
n=0

‖ε̃n+1 − ε̃n‖2 + ν�t

2
‖∇ ε̃l‖2 ≤ C ((�t)2 + �tδ2

max) exp

{
(�t)

1
2

l−1∑
n=0

‖∇ ε̃n+1‖2

}

≤ C ((�t)2 + �tδ2
max) exp

{
C((�t)

1
2 + (�t)− 1

2 δ4
max)

}
≤ C((�t)2 + �tδ4

max).

Therefore, (48)–(50) yield the desired bound:

�t

l−1∑
n=0

‖qn+1‖2 ≤ C(�t + δ2
max).
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