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Summary. The Schur complement of a model problem is considered as
a preconditioner for the Uzawa type schemes for the generalized Stokes
problem (the Stokes problem with the additional tefim in the motion
equation). The implementation of the preconditioned method requires for
each iteration only one extra solution of the Poisson equation with Neumann
boundary conditions. For a wide class of 2D and 3D domains a theorem on
its convergence is proved. In particular, it is established that the method
converges with a rate that is bounded by some constant independent of
Some finite difference and finite element methods are discussed. Numerical
results for finite difference MAC scheme are provided.
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Introduction

The numerical solution of the generalized Stokes problem plays a funda-
mental role in the simulation of viscous incompressible flows (laminar and
turbulent). Although plenty of iterative algorithms are available for solv-
ing the classical Stokes problem, their direct application to the generalized
Stokes problem leads, as arule, to the growth of the convergence factor when
a certain parameter associated with the problem tends to zero or infinity.
Thus, we need efficient iterative methods for the generalized Stokes
problem, whose rates of convergence would be at least not worse than for the
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well-known algorithms for the classical Stokes problem. Recently, several
ways to develop efficient iterative solution techniques have been proposed.
Cahouet and Chabard (1988) and Olshanskii (1995), (1996) improved the
Uzawa scheme; Pal'tsev (1995a) and (1995b) constructed algorithms based
on complete and incomplete splittings of boundary conditions; Bakhvalov
(1995) considered the fictitious domain method. All these papers deal with
the pressure-velocity formulation of the problem.

The motivation of this work is to develop a general mathematical the-
ory that underlies the approaches cited above for the preconditioning of
Uzawa type schemes and to demonstrate advantages of these considerations.
It means, in particular, possibility to extend ideas developed in Olshanskii
(1995) to a wider class of domains and the rigorous proofs of convergence
theorems. The important result (see Theorem 2.1) relates the method pre-
sented to ideas of Cahouet and Chabard and establishes the equivalence
of these approaches in the continuous case. Two key points of the paper
should be emphasized. These are the preconditioning of the Uzawa scheme
with a Schur operator for the model problem (this operator is shown to be
equivalentto some pseudo-differential operator) and sufficient conditions for
convergence in the form of inequalities of Ladyzhenskaya-BkdnBrezzi
type. Their original proof in domains with regular boundaries is presented
in Sect. 4, and some results for Lipschitz domains can be found in the Ap-
pendix.

Basic considerations are presented for the continuous case although their
application for finite differences and some remarks on finite elements can be
found in Sect. 5. Some numerical results we present in Sect. 6. For further
discussions on the numerical performance we refer to Cahouet, Chabard
(1988) and Bramble, Pasciak (1997) for finite element calculations with
different parameters, domains, elements.

1. Generalized Stokes problem, Uzawa algorithm
and its preconditioning

Let {2 be a domain iR™, n = 2, 3, with Lipschitz-continuous boundary
012. Consider inf2 the system of partial differential equations
—Au+au+Vp=Ff,
divu =0,
(1.1)
fgp dr =20

whereu = (ui(x),...,u,(x)) is the velocity vectorp = p(x) is the
pressure functionf = (fi(x),..., fo(z)) is the field of external forces,
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anda = const > 0 is an arbitrary real parameter. df = 0, then (1.1)
becomesthe classical Stokes system. In unsteady Navier-Stokes calculations
typically o ~ (76t)~1, wherev is a kinematic viscosity anét is a time
step. Hence, as a rula,>> 1.

Later on we need the following function spaces:

H} = {uecW3(2)": uw=00n0d0R}

with the energy scalar produtti, v); = (Vu, Vo), u,v € Hy,
Ly /R = {p e La(N2) : / pdx =0}
2

with the L,-scalar product. LeH ~! be a dual, with respect tby-duality,
space taH; with the obvious norm:

<f,u>

”fH—l = Ssup 5 f € H_l'

0£ucH} [

The solution{w, p} of thegeneralized Stokes problefh.1) exists and
is unique inHy x Lo/R for any givenf € H~!. The case of Dirichlet
boundary conditions for the velocity is of fundamental interest both in theory
and applications although some other boundary conditions can be considered
as well (see, e.g., Sani, Gresho (1994)). Non-homogeneous conditions can
be also considered without loss of generality ( see Girault, Raviart (1986)).

Probably the simplest (but surprisingly effective EIman (1996), Turek
(1999)) method to solve thidassical(a = 0) Stokes problemis the iterative
Uzawa algorithm ( see Arrow, Hurwicz, Uzawa(1958)). For the generalized
Stokes problem the Uzawa algorithm is described as follows: start with an
arbitrary initial guesgy € Lo/ R and fori = 0, 1, . . . do until convergence:

Stepl. Compute w'*! from
—Aut 4 auitt = f — Vp
(1.2) with 4! = 0 on 2.
Step2. Define the new pressure p' ! as
i+1 +1

ptl = pt — rpdiv uth

The algorithm converges for sufficiently small valuesgf> 0).
Consider the Schur complement for system (1.1):

Ap(a) = div (A —al)y'V,
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where(A — al);* : H™' — H_J denotes the solution operator for the
Helmholtz problem

Au—au =g,

1.3
(13) ulpp =0

i.e., for a giveng € H~! the vector functionu = (A — aI)glg is the
solution of (1.3).

The operator(«) is self-adjoint and positive definite frof, /R onto
Ly /R. Now the Uzawa algorithm can be considered as a first order Richard-
son iteration method with a fixed iterative parameter applied to the equation

(1.4) Ap(a)p = div (A — al), ' f.

This simple observation provides us with the convergence rate of (1.2),
i.e,p~1—-0(a!), a = oo (see Remark 3.2 in Sect. 3). Therefore,

p — 1for a — oo. However, the same observation allows us to improve the
classical Uzawa scheme by using various Krylov subspace methods (e.qg.,
conjugate gradient or conjugate residual ones) for the system (1.4), and
provides us with natural and fruitful ideas for preconditioning.

Indeed, consider for simplicity the first order preconditioned iterative
method

pitl i A
(1.5) BY——— = —Ao()p"+ f, i=0,1,...

7

where B = B* > 0 is a preconditioner depending in general @rand
acting from Ly(£2) /R onto Lo(£2)/R. The natural requirements are the
‘easy’ solvability of the equatioBp = ¢ for ¢ € Lo(£2)/R and the validity
ofthe estimateond (B! 4y(a)) < ¢, wherecis some constantindependent
of « and the mesh size.

As far as we know, at least two ways of preconditioning considered in
literature can be candidates to satisfy these two requirements. To begin with,
note that in each step of method (1.5) we have to compute B~!p for
somep € Ly/R.

Let us set

B 'p=p—ar,

wherer is a solution of the following boundary value problem

or
Ar=p, —| =0, pe€ Ly/R.
r=p v |y p 2/
Denote byA]‘\,1 the solution operator for the above Poisson equation with
Neumann boundary conditions. Then set formadlly = (I — aAy')™!
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and consider it as a preconditioner. This approach of Cahouet—Chabard cer-
tainly satisfies the condition of ‘easy solvability’ (one step of the algorithm
requires only one extra solution of the Neumann problem that is standard).
Numerous finite element calculations presented in Cahouet, Chabard (1988)
show the efficiency of such preconditioning, however without estimates on
the condition number foB~! Ay («) or appropriate convergence theorem.

To outline the second approach, let us consideRis= (0,1) x (0,1)
the generalized Stokes problem wittiferent boundary conditions

—Au+au+Vp=f,

divu =0,
(1.6)
out)| 0
o |yo

U'V\an =

Hereaftenr and T are outer normal and tangential unit vectorg1o.
This problem is well-posed and the soluti¢n, p} of (1.6) can beex-
plicitly found via Fourier series:

o

ui(z,y) = E am i Sinmmz cos kmy,
m,k=0

[e.e]
ug(z,y) = E by cosmmz sin kmy,
m,k=0
o

p(z,y) = Z Cm,k COsmmx cos kmy.

m,k=0
m—+n>0

Now let us consider the Schur complement of (1.6) as a preconditioner
By = div(A —al), ' Vp,

where the boundary conditions from (1.6) are ‘built in’ irfBg in the same
way as the Dirichlet conditions idy(«). It is easy to check thaBy = I
for « = 0; hereafter! denotes the identity operator.

In Olshanskii (1995), the inequalities

(1.7) CBQ S Ao(a) S BQ

were proved withe independent ofv. Numerical experiments with finite
difference schemes demonstrate a very good convergence of (1.5) with such
preconditioning. However, the estimate (1.7) was proved only for rectan-
gular domains. Moreover, since we use Fast Fourier Transform for ‘easy
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solvability’ of the equationBp = ¢, it requires a rectangular domain and
a uniform grid at least in one direction.

Recently new boundary conditions were suggested for the opdsator
for a wider class of domains (see next section). These boundary conditions
generalize the previous one (1.6).

In the present paper we use these results to prove a uniform convergence
of the method with respect ta for this class of domains. Moreover, we
show that in the continuous case the preconditioner with these new boundary
conditions appears to be the same as the one of Cahouet — Chabart. We shall
clarify corresponding details in the next section.

2. Model boundary conditions

In this section we give some auxiliary results which will be used later. We
assume? to be a bounded Lipschitz continuous domaitRin n = 2, 3.
The traces of vector functions frofivZ(£2)" induce ond{2 a function

space denoted b&[% (0£2)™ and equipped with the norm

1

= inf vy, € H2(90)".

lally = _int ol we H(90)
v=[4on 0f?

Let H—2 (0£2)™ be the dual space tH2 (042)™ with the norm

<&p>

1
: ¢ H 2(Q)"
lwalls

lel_y = sup
0£WEH 2 (92)"

For any vector functiom € Ly (§2)" suchthatlivu € La(2), curlu €
Lo(£2)?"3 its normal and tangential componentsaf (u-v andy, u =
u-Tforn =2, v.u = u x v forn = 3) can be considered as elements of
H—%(Q)T, r = 1, 3. Thus, the definition of the following function space is
correct:

U={uc Ly(2)": divu € Ly(2),curl u € Ly(2)*"73,

uv =0ondNR};

U is a Hilbert space with respect to the scalar product ) y = (u, v) +
(div u, divv) + (curl u, curlv), u,v € U. By U~! we denote the dual
space toU with respect to thd., duality.

Remark 2.1f w € U andv,u = 0, thenu € H (see Lemma 2.5 in
Girault, Raviart (1986)).
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Remark 2.Zurther we need the following estimates (Girault, Raviart (1986)):

luvlZ1 < Jwll + [|div ul],
(2.1)

7l -1 < lufl + [leurl wl].
Here and in what follows)):|| always denotes th&s norm.

Consider now the problem: finflu,p} from U x Ly/R for given
{f,g} € U x Ly/R such that

(2.2)
(div u,div v) + (curl w, curl v) + a(u, v) — (p,dive) =< f,v >,
(divu,q) = (9,9), Vv e U, g€ Ly/R.

Problem (2.2) is well posed for all > 0.

Remark 2.3For « = 0, we should in addition requir€? to be a sim-
ply connected domain. In this case, the bilinear fofdiv w,divv) +
(curl u, curl v) is coercive onU .

It is easy to check that (2.2) isweak formulationof the following
generalized Stokes problem with thedel boundary conditions:

—Au+au+Vp=Ff,
(2.3) divu =0,

where

R — curl u, n=2;
| (curlu) x v, n =3.

We will also refer to this problem asraodelproblem.
By A, () we denote the Schur complement for system (2.3):

Ay(a) = div(A - al); 'V,

where (A — ol);! : U~! — U denotes the solution operator for the
problem
Au—au =g,

U'V\a(z = Ru’afz =0,

andV acts fromLy /R into U1, i.e.,w = (A —al),'Vpandw € U is
a solution of the problem

(divw,divv) + (curl w, curl v) + a(w, v) = (p,dive). Yve U

The operatod, («) is self-adjoint and positive definite din/R.
The following result concludes this section.
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Theorem 2.1(Olshanskii (1997)For arbitrary « € [0, 00) andp € Lo /R,
setq = A,(a)p, ¢ € Lo/R. Then the following equality holdg:= ¢ — a r,
wherer € W4 (£2)/R is a solution to the Neumann problem

or

— =0.
ov |y

Ar =g,

Note that in the case = 0 the theorem states equality of the Schur
complement of the model Stokes problem to the identity operaténgR.
In the general case, the model boundary conditions provide decoupling of
pressure and velocity in the generalized Stokes problem.

3. Iterative method and uniform estimate of the convergence rate

Forthe sake of convenience, rewrite the iterative algorithm (1.5) by taking the
Schur complement of the model problem from Sect. 2 as a preconditioner:
i1 _ i ‘

(3.1) Ay(a)¥ = —Ao(e)p' +f, i=0,1,....

By virtue of Theorem 2.1, method (3.1) is equivalent to (1.5) with
as a preconditioner, and the equatidp(a)p = ¢ is ‘easily’ solved. In
rectangular domains we havk, («) = Bg, SO we expect to prove uniform
convergence estimates in the general case.

Operatorsd, («) andAg («) differ only by the implicitly involved bound-
ary conditions for the velocity. Therefore, these operators are expected to
be rather close to each other. Indeed, the following theorem is valid.
Theorem 3.1 There exists a constant(?) > 0 independent of > 0 such
that

(A, (a) < Ap(a) < Ay(a).
Proof. For convenience, introduce the following scalar producki de-
pending onx :

(u,v)q = (Vu,Vv) + a(u,v).

For anyp € Ly /R, the following equalities are valid
(Ao(@) p,p) = (div (A — al)y ' Vp,p) = — < (A —al)y ' Vp, Vp >
=—<(A—al)y'Vp, (A —al)(A—al); ' Vp>
=[I(A —al)g ' Vpll2
o -1 2
= sup ((A aI)O 2vp7 u)a
0£ucHy [JullZ




Preconditioning for a generalized Stokes problem 451

— s < Vp,u >2
ozuemy [[ullf + aflu]?
(p, div u)?
= sup

ozucty llulf +afu]?

(p, div u)?
(3.2) = sup : .
ozucny [divull® +[leurl u|? + o ul]?

In a similar way we get

(p,divu)2
Ay(a)p,p) = sup — :
App) = U v e+ eurlwl? T alul?

Thus, to prove the theorem it is necessary and sufficient to check the
validity of the inequalities:

(p, div u)?
sup : 2 2 2
53) ozucmy 1div | + [[curlu? 4 ol u||
. (p,div u)2
=~ Ssup .
0£uer [|[divu|? + [lcurl u|[? + afju?
and
(p, div u)?
c(§2) sup -
0ue U [|[div u? + [lcurl u|? + afju?
(3.4) ) )
(p,div u)
< sup

ozucmy [divul? +[lcurlul]? + o[ u[?

with somec(£2) > 0 depending only on?.
Equality (3.3) is trivial sinceH; C U. The proof of (3.4) is a subject of
Sect. 4 (see Lemma 4.3). Checking (3.3) and (3.4), we prove the theorem.
0

From Theorem 3.1 and the general theory of iterative methods it imme-
diately follows

Corollary 3.1 For an appropriate set of; (e.g.; = 1,i = 0,1,...), the
method (3.1) converges like a geometric progression with a facturch
that0 < ¢ < ¢ < 1, wherec is independent af.

Remark 3.1et us considefi = (A — o), Vp for somep € Ly /R. Then
from (3.2) it follows that

(Ao(e) p,p) = l[allz = [ldiv @|® + [leurl @|* + o>
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At the same time we havedy(«) p,p) = (div @, p). Thus, the supremum
in the expression

(p, div u)?
sup  —
ouch; v e]? + [[curlu]? + af u]?

is attained for the functiori € Hj. The same arguments are true for
@ = (A — al);Vp with respect to the supremum oVEf.

v

Remark 3.8inceA, (0) = I and||u|? = ||div u||? + ||curl u||? for u €
Hy{, inequality (3.4) witha: = 0 becomes the well known Ladyzhenskaya-
Babwska-Brezzi (LBB) inequality.

Remark 3.3 etcy be a constant from the LBB inequalityo(|p|| < || Vp|l-1)
andc; be a constant from the Fridrichs inequality| < c1fjull:, v €
Hy), then from the above arguments it follows that the inequality

col < Ap(a) < 3l

holds withcs = c2(1 + c2a) ™!, c3 = 1.

A simple observation shows that the asymptoties= O(a~ '), a —
oo, andeg = O(1) cannot be improved. Indeed, consider in a unit square
the functionp = coswz, p € L2((0,1) x (0,1))/R. ThenA4,(a)p =
(1 + 7 2a)"1p, but Ag(a) < A, (). Thereforec(l + 7—2a)~Y|p||? =
(Ao()p, p) with somec, 0 < ¢ < 1. Similar arguments witly = cosmmzx
andm — oo show the optimality of the asymptoties = O(1).

These asymptotics fap andcs explain the deterioration of the classical
Uzawa algorithm for the generalized Stokes problem with- 1.

Remark 3.450metimes the necessity of the computation of the- a.T),*

at each step of (3.1) is considered as a drawback of the Uzawa type method.
Therefore often ainexactversion of the Uzawa algorithm is considered

in the literature (cf. EIman, Golub (1994), Elman (1996), Bramble, etc.
(1997)). The convergence estimates for preconditioned inexact algorithms
also heavily depend on the condition c@Ag ' (o) Ag(a)).

Remark 3.5There is a variety of other preconditioned iterative methods
for solving saddle point problems of type (1.1) (see, e.g., Bramble, Pasciak
(1988), Rusten, Winther (1992), Silvester, Wathen (1994), Elman(1999)).
Their application to (1.1) requires an appropriate preconditioneA§oe.)

to insure good convergence.

4. Proof of the main inequality

In this section inequality (3.4) is proved for domains with rather regular
boundary (detailed below), a more technical proof of (3.4) for Lipschitz
domains is presented in the Appendix.
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Lemma 4.1Fix an arbitrary o > 0. Let w be any function fromlJ. Then
u = V) for somey € W1 (£2)/R if and only if

(4.1) u=(A—-al),'Vp
for somep € Ly /R.

Proof.
1.Assumeu € U andu = V1 for somey € W4 (2)/R. Itis easy to
see that for suchy the relation

Au —au =Vp

holds (in a weak sense) with = divu — at, p € Ly/R; sinceuv =
Ru = 0, equality (4.1) is valid.

2. Consider an arbitrary € Ly/R andu € U such that relation (4.1)
holds. Then, according to Theorem 2.1, foandp one has the following
equality:

p=divu — OCA]_VldiV Uu.

Recall thatA ! was defined in Sect. 1 as a solution operator for the scalar
Poisson problem with Neumann boundary conditions.

Set nowy) = Aytdivu, ¥ € Wi(2)/R, andv = V. We readily
getvr = 99 = 0, Rv = RVy = 0 ondN anddive = Ay = div u.
Moreover,

Av — av = Vdive — aVAG divu = V(divu — aAy divu) = Vp.
Hence, the functioww = v — v, w € U satisfies the equations

Aw — aw =0,
wv|y, = Rwly, =0

which imply w = 0. Thus, we havas = v = V. The Lemma is proved.
0
In the following two lemmas we suppose that the dom&iris such
that the solution of the classical Stokes problem is regular. In particular, we
suppose that fof € Lo(£2)" andg € W3 (£2)/R, the solution{u, p} of
the problem

divu =g,
ulyg, =0

belongs taVZ(2)" x W4 (£2)/R. For example, domains with? € C? or
convex ones satisfy this requirement (cf. Temam (1977), Dauge (1989)).
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Lemma 4.2 Let v be any function fromUU andu,p € U x Lo/R be a
solution to the problem

—Au + Vp =0,
(4.2) divu =0,
ulyo = vlgg -
Then the following estimates hold:

(4.3a) ||div u|| + |[curl w|| < ¢(£2)(||div v|| + [Jcurl v]]),

(4.30) lulloe < c(Q)lrvrull_1 oo

Proof. The solutionu of (4.2) can be defined as = v —w, wherew € Hj
is a solution (together witp) of the problem

(Vw, V&) — (p,divE) = (div v, divE) + (curl v, curl ),

(4.4)
(divw,n) = (divv,n) V¢€ € HY, n € La/R.

From (4.4) and with standard arguments (see, e.g., Girault, Raviart (1986))
we obtain forw the estimate

lwlly < e(fldiv o] + [lcurl v]]).

Now from the last inequality and the relatiofidiv w||? + ||curl w|?* =
w2, u = v — w, we get (4.3a).

To prove (4.3b), assume thatis an arbitrary function fronW3(£2)".
The above regularity assumptions ensure that the smoothnessnof
plies thatw from (4.4) belongs taV3(£2)". Thus,u € W3(£2)" and
p € W}(£2)/R. Therefore, the relations (4.2) hold i (£2)™. Let us mul-
tiply both parts of the first equality (4.2) by an arbitrary functigrfrom
W2 (2)"n Hy satisfyingdiv ¢ = 0, and integrate ove®. After integration
by parts we get

—(u, Ah) =< v, curlep >o0 .
Assumingy # 0, we get from the last equality

—(u, AY) < yrv,curleh >0
1912 1412

To obtain the estimate for the right-hand side of (4.5), note that

(4.5)

leurl9p[|1 oo < lleurl®pllyy o) < ]2
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and, thus,
| <yev,curlyh >o0 | _ | < 7rv,curlep >o |
1]]2 - leurleb]l1 50
< >
<ec sup <7, €>00 _ cllvavl 1.
EEH%(39)2”’3 H£| %,39 2

Now from (4.5) we get
|(u, Ay)|
1|2

As far as (4.6) holds for ang # v € WZ(£2)" N Hy with div = 0,
choosey as a solution (together with) to the problem

(4.6) < elroll_s-

(4.7) divep) =0,
Plon =0

Sinceu € Lo(£2)™ and {2 is assumed to be rather regular, it follows from
standard regularity results for the Stokes problem{kat;} € W2(£2)" x
W} ($2)/R and

(4.8) lallwg + 1¥ll2 < cfjul.

To obtain an estimate offwu||, multiply the first equality (4.7) by and
integrate over?. We get

lull? = (Va, u) — (A, w).
From this relation, using estimates (4.6), (4.8), and equality
(Vg,u) =< q,uv >y,
we deduce
lul® < | < g uv >a0 | +clgl2 lrvl_1 o0
< Hq”%,ag”u"/”_%,ag + cflu] H’YTUH_%,aQ
< llallwy lwvll_s oo + cllull =oll_1 o0

< allul (luvl_1 go + ol 1 o0)-

From the last estimate it follows that

(4.9) lullo.e < cllvvll_1 oo + 7ol -1 50)-



456 G.M. Kobelkov, M.A. Olshanskii

Assume now thaw is an arbitrary function fromlU. Thenv can be
approximated in thel7-norm by functions fromi¥3(£2)". Hence, using
inequalities (2.1), (4.3a), and passing to the limitGth we deduce from
(4.9) the estimate (4.3b). The Lemma is provedl

Lemma 4.3For arbitrary « € [0, 00) andp € Lo/R, the inequality

(p,divu)2
c(§2) sup -
(2) 5P v ul + ewl ul? + alul?
di 2
(4.10) < sup (p, div u)

ozucmy [divul? +[lcurl ul? + o ul]?

holds withe(£2) > 0 independent ofc andp.

Proof. Let p be an arbitrary function fromis /R. Then from Remark 3.1 it
follows that the supremum on the left-hand side of (4.10) is attained on the
function

(4.11) u=(A-al),'Vp, ucU.

From Lemma 4.1 and relation (4.11) it follows thairl v = 0. So from
(2.1) we get

(4.12) el s o < 1]l

To prove the Lemma it is sufficient to find for givenfrom (4.11) such
a functionu € Hy that
(4.13)
(p, div@) = (p,divu),

[div a|? + |lcurl ||? + af|a|® < ¢ (||divul/? + [[curl u|]* + o|u|?)

with ¢ independent of:, @, anda.

Letu = u — w, wherew € U is a solution to the problem

—Aw+Vqg=0,
(4.14) divw =0,
wlan = ulan.

It is easy to see thdp,diva) = (p,divw) and, in virtue of Remark 2.1,
u € Hj.

Now we check the second condition in (4.13). Using a priori estimates
from Lemma 4.2 and relation (4.12), we obtain for the solution of (4.14)

|div w]|? + ||curl w]|? < ¢(||div u||? + ||curl u||?),

(4.15)

lwl? < ellvrull_1 oo < cful®.
2
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Inequalities (4.15) immediately give

Idiv w|? + [leurl wl|* + o w]|?
(4.16) < c(||div u|* + [leurl w|? + af|u|?)

with ¢ independent ofr and .
Invirtue ofu = u — w and (4.16), the second condition in (4.13) is also
valid. So the Lemma is proved.O

5. Some remarks on finite differences and finite elements

The above considerations for differential problems encourage us to expect
a success of the method for discrete problems as well. Indeed, extension
of the ‘main’ inequality (4.10) to a discrete case is similar to checking
the LBB (infsup) condition that is satisfied, as a rule, for pressure-velocity
finite difference (FD) and finite element (FE) approximations. Moreover,
most of the approximations admit well-posed pressure Poisson problem with
Neumann boundary conditions. However, while FD or FE formulations of
the model problem are rather obvious, validity of Theorem 2.1 in a discrete
case is vague in general. To clarify the situation we prove below the FD
analogue of Theorem 2.1.

Let us consider MAC scheme with a staggered grids and central FD
approximation ofA, div , andgrad operators (see, e.g., Kobelkov (1994)).
Further we shall use the following notation&** and L" are FD velocity
and pressure spaces of functions defined in interior nodes of a grid domain.
Let U, U}, and L? be their extensions such that discrete analogues of
boundary conditiona: = 0, u-v = Ru = 0, andg—,’j = 0 are satisfied
for functions fromU, U/, and L}, respectively. ByAh, AL V" div ",
and A’Ji, we denote grid approximations of the corresponding differential
operators.

Assume that the following compatibility conditions are satisfied:

a)div"Vh = Ak on L},
b) ARV = (Vhdiv ™)V on L]
(This assumption is valid, for example, for a domain, which is a union of

rectangulars.)
Then for this approximation the following theorem holds.

Theorem 5.1For anya € [0,00) andp € L", the equalityp = ¢ —
a (A%)~1q holds withg € L" such that

(5.1) q = div(Al — aI)"1V"p.
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Proof. Fix somep € L" anda € [0, 00). We can rewrite relation (5.1) as
follows

~Alu 4 au+V'p=0in U",

(5.2)
diviu = gin L"
with uw € Ul
Assumen > 0 and consider the functiong = —a(A%) g anda =

a~'Vhpy, @ € U, From our definitions and compatibility conditions we
havediv "& = ¢ and— A4 = —Vidiv"a = V.

Setp = q + p1. Then fora € U andp € L" the following equalities
hold,

—Al@ + au + Vp =0,

(5.3)
divha = q.
From the well-posedness of the Stokes problem and relations (5.2), (5.3) we
getp=p=q— a(A’}\,)—lq. The caser = O is treated in a similar manner.
The Theorem is proved.O

There is one more reason for considering the model Schur complement
as a preconditioner in (1.5). The theorem below shows a specific discrete
reflection of the fact thatly(«) and A, («) in (4.1) differ only up to the
boundary conditions involved implicitly.

Theorem 5.2Under the assumptions of Theorem 5.1, the eigenvalue problem
Af(e)p = AL (a)p

with A% (o) = divP (Al — al)7'V", AR(a) = div" (Al — al)~'V" has
A = 1 as an eigenvalue aP(h~") multiplicity, and the number of all the
other eigenvalues i®(h~("~1)), whereh is the mesh size-parameter.

Proof. The proof of this theorem is similar to the proof of Theorem 1.4 from
Kobelkov (1994). O

From Theorem 5.2 it follows that in the first step of the method (3.1)
we can takery = 1. Then in the following steps with arbitrary the er-
ror functionr* = p’ — p belongs to a subspace of dimensi@th~("~1)).
This property ensures an extra convergence of method (1.5) for the finite
difference approximations considered above. In this case the discrete pre-
conditioner is equal to the Schur complement of the discrete model problem.

The lack of appropriate compatibility conditions for FE approximations,
as well as troubles with smoothness requirements on the trial functions in
the proof of Theorem 5.1 make the above analysis more complicated for
finite elements. However, let us make the following remarks.
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Consider the matrix form of the FE discretization of the model problem

e R -1

Let I* and IZ be the mass matrices of the FE velocity and pressure
spaces. Then the above analysis suggests the choiBe 'of= (I[})‘l —
a(D(IM~1D*)~1in (1.4), which, we expect, will be better thas! =
I — a(A%)~! (numerical results from Cahouet, Chabard (1988) and Turek
(1999) confirm this hypothesis). Also in Bramble, Pasciak (1997) the con-
vergence theorem was proved for the FE case with certain coarse-mesh
approximation of the pressure Poisson problem.

6. Numerical experiments

In this section we present results of numerical experiments for the equation
Af(a)p = F,

where Al («) is the Schur complement for a FD approximation of the gen-
eralized Stokes problem (1.1). We use the MAC scheme defined in Sect. 5
and take2 = (0,1) x (0,1).

Preconditioned and non preconditioned versions of conjugate gradient
(CG) and minimal residual (MINRES) methods were tested.

Let B denote a preconditionesy an initial guessiy = 0 in all experi-
ments), lek; = Ag(a)pi — F denote the residual fgr; defined via iterations
fori =1,2,...,andr; = B~'s;. The preconditioned version of CG was
then standard.

The preconditioned MINRES method, which we used, coincides with
(1.4) forr; = (Bt Af(a)rs, i) (B~ L AR (a)ri, B~ AR (a)r;),i = 0,1,....

We refer to these algorithms as preconditioned in the &ase A"(«)
and as nonpreconditioned in the cd3e= I". The stopping criterion was

Irill2/loll2 < 107°.

We refer to the value of||r;||2/||70||2)*/* as tothe average convergence
factor.

Remark 6.1f u; is a velocity vector field corresponding to the presgyre

via the Helmholtz equation A" u; + au; = f — Vp;, thens; = div ;.

Remark 6.2Along with the CG and MINRES methods, we will consider
these methods on a subspace (see Theorem 5.2), i.e., we make one step of
(3.1) withy = 1 and then continue calculations according to the above
algorithms.
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Table la. Smooth test. Average convergence factor for conjugate gradients

a\h 1/16 1/32 1/64 1/128 1/256 1/512

0 0.099 0.139 0.169 0.189 0.204 0.223
16 0.134 0.175 0.207 0.225 0.245 0.244
32 0.098 0.151 0.190 0.208 0.224 0.238
64 0.083 0.121 0.166 0.188 0.200 0.217
128 0.066 0.109 0.143 0.185 0.212 0.234
256 0.049 0.096 0.131 0.171 0.215 0.244
512 0.033 0.072 0.111 0.146 0.190 0.222
1024 0.023 0.048 0.083 0.119 0.148 0.176
2048 0.012 0.035 0.063 0.095 0.133 0.163

Table Ib. Smooth test. Average convergence factor for conjugate gradients on subspace

a\h 1/16 1/32 1/64 1/128 1/256 1/512

0 0.106 0.146 0.176 0.196 0.217 0.229
16 0.114 0.166 0.197 0.225 0.244 0.257
32 0.107 0.149 0.176 0.204 0.226 0.245
64 0.097 0.125 0.154 0.191 0.222 0.239
128 0.084 0.112 0.159 0.198 0.235 0.262
256 0.050 0.103 0.143 0.189 0.222 0.260
512 0.039 0.080 0.121 0.160 0.194 0.234
1024 0.026 0.058 0.092 0.130 0.162 0.192
2048 0.015 0.041 0.073 0.104 0.134 0.161

1. Smooth test

For the first test we choose the smooth pressure fungtioa © — y as

an ‘exact’ solution of (6.1). The functiod = Al(a)p® was computed

and considered as the right-hand side of (6.1). Setting 0, we examine

the convergence of the conjugate gradient method to this smooth solution.
The results are presented in Table la—c. For examplé; fer(512)~! and

a = 512, the convergence factor is equaht@22; i.e. the residual becomes
approximatelyl 00 times less during every 3 steps.

2.Random test

The exact solutiop™ was chosen as follows. In every grid point a random
number generated with the uniform distribution olet, 1] was taken as a
value ofp”. Furtherp” was normalized to ensug@2 p"dx = 0. The values

of convergence factors in Tables II, Ill were averaged over three random
runs of the program with different initializations of the random generator.
There were no pronounced differences in convergence rates observed for
these substantially nonsmooth solutions in comparison with the results of
the smooth test. While the averaged convergence factors for the CG method
on the subspace were very close to those withgut 1, the MINRES
method on the subspace was evidently superior to the usual one. Atany time,
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Table Ic. Smooth test. Average convergence factor for conjugate gradients without precon-
ditioning

a\h 1/16  1/32 1/64 1/128  1/256  1/512

0 0.099 0.139 0.169 0.189 0.204 0.223
16 0.150 0.201 0.226  0.243 0.263 0.271
32 0.176 0.220 0.244  0.269 0.280 0.289
64 0.199 0.250 0.271  0.290 0.309 0.318
128 0.250 0.290 0.319 0.329 0.347 0.354
256 0.313 0.353 0.380 0.397 0.406 0.417
512 0.389 0.429 0.462  0.475 0.473 0.481
1024  0.457 0.524 0.552 0.551 0.569 0.564
2048 0.512 0.605 0.631  0.649 0.651 0.649
4096  0.545 0.682 0.755 0.776 0.783 0.780

settingry = 1 saves some computations; this can be especially appreciable
in unsteady simulations when only few iterations on each time step are
needed to achieve a good approximation.

In all tests, the convergence of the preconditioned methods improved
when the parameter increased and the mesh sizavas fixed. The case
« = 0 corresponds to the Uzawa algorithm for the classical Stokes problem
(A2(0) = IM). The preconditioned algorithm for the generalized Stokes
problem for anyn. > 0 demonstrated convergence at least not worse than
the Uzawa algorithm for the classical Stokes problem.

If we consider a typical situation in nonstationary high Reynolds simu-
lations when(h Re)(h/ot) < ¢ < oo with some absolute constant> 0,
then we have the following relation fer : « = O(h~2). In this particular
case, the preconditioned method demonstrates even an improvement of the
convergence rate with — 0.

Tables Ic and llc show the growth of convergence factor for the nonpre-
conditioned CG method far — oo, due to the growth of the condition
number ofA% ().

7. Appendix

As was demonstrated above, the inequality (3.4) plays an important role
in the proof of the convergence of the method. This inequality was proved
(Sect. 4 of the paper) for domains with sufficiently smooth boundary ore
convex ones. Below we show that this inequality with a constafl) > 0
independent of parameteris valid for the wider class of domains. Namely,
we prove its validity for a curvilinear trapezoid with Lipschitz boundary

y = g(x), when|¢| is not too large. Unfortunatly, we could not prove it for

all Lipschitz domains, but we believe this hypothesis to be true.
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Table lla. Random test. Average convergence factor for conjugate gradients

a\h 1/16  1/32  1/64  1/128  1/256  1/512

0 0.165 0.201 0.225 0.242 0.240 0.242
16 0.150 0.188 0.202 0.234 0.221 0.222
32 0.125 0.177 0.197 0.220 0.204 0.212

64 0.106 0.153 0.176  0.205 0.197 0.204
128 0.086 0.119 0.173 0.183 0.188 0.203
256 0.065 0.100 0.147 0.164 0.186 0.189
512 0.053 0.084 0.122 0.155 0.178 0.180
1024 0.034 0.062 0.096 0.136 0.161 0.187
2048 0.019 0.043 0.083 0.115 0.145 0.178

Table llb. Random test. Average convergence factor for conjugate gradients on subspace

a\h 1/16 1/32 1/64 1/128 1/256  1/512

0 0.166 0.200 0.225 0.236 0.237 0.242
16 0.140 0.170 0.191 0.223 0.213 0.215
32 0.114 0.155 0.177  0.209 0.203 0.204
64 0.096 0.136 0.160 0.188 0.187 0.196
128 0.079 0.114 0.157 0.170 0.182 0.194
256 0.063 0.095 0.139 0.159 0.180 0.190
512 0.049 0.083 0.119 0.149 0.174 0.184
1024 0.032 0.063 0.099 0.137 0.159 0.189
2048 0.019 0.044 0.084 0.117 0.146 0.179

Table llc. Random test. Average convergence factor for conjugate gradients without pre-
conditioning

o\h 1/16 1/32 1/64 1/128 1/256  1/512

0 0.168 0.201 0.225 0.241 0.245 0.242
16 0.250 0.274 0.298 0.309 0.310 0.308
32 0.288 0308 0.320 0.335 0.333 0.334
64 0.330 0.356 0.362 0.364 0.364 0.371
128 0.398 0415 0425 0.418 0.418 0.413
256 0.474 0491 0500 0.488 0.497 0.479
512 0.551 0584 0581 0.570 0.587 0.562
1024 0.613 0.663 0.678 0.649 0.665 0.648
2048 0.667 0.731 0.744 0.733 0.739 0.741
4096 0.709 0.795 0.790 0.763 0.787 0.769

Further we use the notations from Sect. 2. We shall also use the notations

(v, w)o = (div v, div w)+ (curl v,curl w) + a(v, w), [|[v|? = (v, v)a,

2

lwill? = IVwill* + afwil?, - [lwill3 ., = + arf|wi %

, T

Later on, we shall denote independent variables eithéxbyrs) or (x, y).
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Table llla. Random test. Average convergence factor for minimal residuales

a\h 1/16  1/32  1/64  1/128  1/256  1/512

0 0.426 0455 0.483 0.504 0.521 0.522
16 0.312 0368 0.404 0.449 0.470 0.487
32 0.271 0339 0.386 0431 0.454 0.474

64 0.227 0301 0.362 0.410 0.433 0.459
128 0.182 0.259 0.329 0.383 0.413 0.442
256 0.136 0.214 0.292 0.351 0.388 0.420
512 0.095 0.168 0.250 0.320 0.365 0.400
1024 0.061 0.122 0.208 0.281 0.334 0.378
2048 0.037 0.085 0.162 0.239 0.303 0.348

Table lllb. Random test. Average convergence factor for minimal residuales on subspace

a\h 116  1/32  1/64 1/128 1/256  1/512

0 0.363 0.396 0.428 0.448 0.471 0.474
16 0.245 0307 0.347 0.397 0.416 0.435
32 0.200 0.273 0.328 0.377 0.399 0.420
64 0.173 0.244 0.306 0.348 0.381 0.399
128 0.143 0.215 0.284 0.324 0.364 0.372
256 0.106 0.183 0.258 0.303 0.348 0.362
512 0.074 0.143 0.222 0.283 0.331 0.358
1024 0.048 0.084 0.184 0.255 0.311 0.347
2048 0.027 0.070 0.140 0.217 0.282 0.326

Let

(p, div v)?

(1) ¢(p7,v) = ||’U||2

The aim of this Appendix is to prove for any functipre L, /R the validity
of the following inequality:

(2) sup @(p, v) < co sup D(p, w)
velU 'weHO1

with some constant, that does not depend @an> 0.
Further, we assume > 1.

Atfirst, let 2 = [0, 1] x [0, 7]. We recall that in this cas® defined in
Sect. 2 can be represented as

U={u=u"v): veH(2), u n=0}

and
(v,w)y = (Vv,Vw) + a(v, w).
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Lemma 1. Let

n
(3) p(z,y) = Z pij cosix cos jy, poo = 0.
i,j=0
Then
(4) arg sup (p,v) = u,
velU

whered = (A — al); 'V p.

The proof directly follows from Remark 3.1.

Lemma 2. For every vector functiom that provides a maximum éf(p, v)
over U, wherep is a trigonometric polynomial of the form (3), there exists
a vector functionu € Hy satisfying the following inequality

(p(pv ’&) S CO@(pa ’LL),

wherecy does not depend am, p, anda > 0.

This result follows from Lemma 4.3 of this papée® Gatisfies here the
requirements from Sect. 4).

Corollary 1. For anyp € L9/R, estimatg2) is valid with the constant,
that does not depend an

Proof. The set of trigonometric polynomials of the form (3) is dense in
Lo/ R. Take the sequence of trigonometric polynomijalsthat converges
top. Invirtue of Lemma 2, estimate (2) is valid for everywith the constant
independent ofv andn. Passing to the limit witm — oo, we obtain the
statement required.O

Let us now proceed to the case wh@ns a curvilinear trapezoid, i.e.,
R={r=(r1,22): 0< 21 <7, 0< 22 <g(z1)},
where
(5) T<g< M, |g| <M.
After changing variables
T =z, T2 = yg(x),

our domain{? is mapped onto the square = (0,7) x (0, 7). Since the
change of variables does not dependwthen for any function (x1, z2) =
v(x,y) we have

(6) Nl?llan < |vlla.e <22l?lla.n,

where~; do not depend on.
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The expressiouiv v after this change is transformed in the following

way:
. 8171 1 ({9172 yg’(x) 8’171 -
=4 - = =DV
div v (1, 22) D + 7y o) By v(x,y)
which implies
(divw,p)o = (DIV 2,q9)p,

whereq = gp and(q,1)p = 0, sincep € Ly(£2)/R.

Along with the functionat?(p, w), introduce the functiona¥ (p, w):

(p,DIV u)?
lullZ

¥(p, u)

Then the following statement holds.

Lemma 3. Let

n
p(z,y) = Z pr cos k1x cos koy
|k|=1

andu € U be the function that gives the supremumbgp, u) over U.
Then there exists a constatthat does not depend @nandn such that the
following inequality is valid:

(7) sup ¥(p,u) < c®@(p, w).
ueU

Proof. From the definition of DIVu we have the trivial estimate

( w92 () <p,h%u;>2>

sup ¥(p,u) < 3 | sup ——55— + sup 5— + sup 5
uelU wet |ull3 wet w3 wev  |ull3
8
yy'(x) -
whereh = = yg(z) and|h| < M = wM>. Note that the functions

g, g are functions of the variable only. We shall use this property later.
Let us estimate every term in the right-hand side of (8) separately:

(p 8u1>2 (p 8u1)2 o
well ”’3';’% = I’!u?ﬁji = (p7|!dtlt]§ - <0,
2,2 2 2 2
(g’ %1;/ ) (p, 8(1:33//”) (p, ?;;)

sup -~ 9 7 < S~ oyl
ucU H’U’ng u2ueU HU2H(21 w:(0,w)e U ngng,y
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(5,)
’87 n k2 n )
s = Cz ﬁpi < CZWP% = cP(p, u),

Y k|=1"2 k|=1

<c¢ sup 5
w:(0,w)eU Hw|o¢

(9)

wherey, = [k|2(|k]? + o) !
As for the third term, let us transform it before estimating. Integrating
by parts, we obtain

ul ul ul
(155) = (0. 250) — (5 ) = (5. 2502 ),
Then

= 1\2 Zary)2 Zn1y)2 = 2
sup TP (p,gwg) < sup (p,gw)2 — sup P w)2
wet vlla T wwoer WG 7 wel, allwl®  wer, afwl]

1. M2 M2
(10) = —|lgp|* < —Z|pl* < =2 Z —wpk < 2&(p, )
(0% (0% |k| lvk

Introduce the function spadé = {w :w € Lo, v € Lg}. Since

y
d(hw) ||°
otz = [ 252+ appaot?
ow||? _
<[n 52| + gl + ol
Yy
ow 2 M2
< g [ 50|+ 4 + arpol” < 2030012,
then
O(hu')\2 A(hu')\2 A(hu')\2
p? 8y p? ay p7 ay
SUp ———5—— = SUp ——F—5 S  Sup
ucU HUH%Y ul:uelU ”u1||(21 ul:(ul,0)eU ||U1H3,y
(p 0(hu1))2 <p 6(wl))2
<2M2Z  sup # = 2MZ  sup 18%
ul:(ul,0)eU Hhu ||a,y wh:(w!,0)eU ||U) ||a,y
ow
(p’ dy )
< 62M22 sup < 2M22 Z

weH H ”ay Ik|= 1
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Li |2 P2 2 (1
(11) < coM? Z T ta = coM5PD(p, u).
k|=1
From (8)—(11) we get (7). Thus, the Lemma is proved.

Since the set of trigonometric polynomials is denskdfiR, the estimate
(7) holds for every function fronis /R.

Lemma 4. For any trigonometric polynomial

n
p(z,y) = Z pr cos k12 cos koy
k=1

and sufficiently smallM, from (5), there exists a constamtthat does not
depend oy andn such that the following inequality is valid:

(12) P(p, ) < ¢ sup ¥(p,v).
vGHO1

Proof. In virtue of Lemma 2, there exists a functience U such that

@(p’ i”) < Co‘p(Pa U)

Consider two casegp?,¢%) > 0.5¢(p,a) and (p',q') > 0.50(p, ),
whereq = div «. We use the following technical result (see Olshanskii
(1995), p.85): In the first case there exists a functiore H : u' =

0, u?> = v — r such that
2
o 2
e (n.%2)

D(p, ) < cP(p,u) =c
|u?]|2

Now we setv = (v!,v?), wherev! = 0 andv? = gu?. Then due to the
constructionv € Hy . Since

lou?ll, = ¥ Gut) + algul? < | 262"+ aag | 2

+aMi||u?|® < cu?||Z,  wheree = 2(MF + M3),

we have

(n22)"  (n22)
U(p,v) = Y >c id =cP(p,u) > cP(p,u)
| gu?(2 Ju?||2

So for the first case Lemma 4 is proved.
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Consider the second case, (@', ¢') > 0.5®(p, @). Similarly there
2 p—

exists the functionu € Hy : u! = v —r, u?> = 0 such that
2
1
) (p, S
P(p,a) < c3P(p,u) =c3 BT T
K1
Setv = u. We have to prove that
2
vl _ ol
(5 15) | o
W(p,v) = > cd(p, i),

ERE

From the proof of Lemma 3 we have
- a(hut) \ 2

(pa%"‘gul - (aZ ))

V(p,v) = ;
[ul]|2

which implies

2 2 2
oul . a(hu)
o) > 0.25 (p, o > —4 (p,gu > —4 (p, —ay >
T [[ut 12

Estimating all terms on the right-hand side of the last inequality as was done
in the proof of Lemma 3, we have

2
1
(p, o >

~ (pagul)Q 2 ~
> cyd 7 7 < cM5P
||U1H(2X = C4 (p,’ll,), ||U1Hg( > ClVig (pvu)a
a(hut) \ 2
(p’ (‘9Z )) 2 .
HU1H2 g CM2¢(p> ’U,),
«

yielding
U (p,u) > cs5(1 — cgM3)D(p, @).

Thus, in the caseé — cg M3 > 0 the assertion of Lemma 4 is provedd
Corollary 2. Let {2 be a curvilinear trapezoid

Q={z=(21,22): 0< 21 <1, 0< w9 < g(a1)},
whereg is a Lipschitz function. Then for sufficiently smalthe estimate
(12) is valid for anyp € La(2)/R.
Proof. From Lemma 4 it follows that (12) is true for apye Lo(£2)/R if
| = m andmax |¢'| is sufficiently small. Making the change of variables

™ ™
r = 7.%1, Yy = 7.%'2,
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we obtain the domair satisfying the conditions of Lemma 4, afd,, =
g, . Hence, for sufficiently smallthe derivativey,, satisfies the condition
of Lemma 4, whence the assertion of Corollary 2 followsl

AcknowledgementsThe authors thank the referee for the careful reading of the paper and
many suggestions which improve the style.
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