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Summary. The Schur complement of a model problem is considered as
a preconditioner for the Uzawa type schemes for the generalized Stokes
problem (the Stokes problem with the additional termαu in the motion
equation). The implementation of the preconditioned method requires for
each iteration only one extra solution of the Poisson equationwith Neumann
boundary conditions. For a wide class of 2D and 3D domains a theorem on
its convergence is proved. In particular, it is established that the method
converges with a rate that is bounded by some constant independent ofα.
Some finite difference and finite element methods are discussed. Numerical
results for finite difference MAC scheme are provided.

Mathematics Subject Classification (1991):65N30, 65F10

Introduction

The numerical solution of the generalized Stokes problem plays a funda-
mental role in the simulation of viscous incompressible flows (laminar and
turbulent). Although plenty of iterative algorithms are available for solv-
ing the classical Stokes problem, their direct application to the generalized
Stokes problem leads, as a rule, to the growth of the convergence factorwhen
a certain parameter associated with the problem tends to zero or infinity.

Thus, we need efficient iterative methods for the generalized Stokes
problem,whose rates of convergencewould be at least not worse than for the
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well-known algorithms for the classical Stokes problem. Recently, several
ways to develop efficient iterative solution techniques have been proposed.
Cahouet and Chabard (1988) and Olshanskii (1995), (1996) improved the
Uzawa scheme; Pal’tsev (1995a) and (1995b) constructed algorithms based
on complete and incomplete splittings of boundary conditions; Bakhvalov
(1995) considered the fictitious domain method. All these papers deal with
the pressure-velocity formulation of the problem.

The motivation of this work is to develop a general mathematical the-
ory that underlies the approaches cited above for the preconditioning of
Uzawa type schemes and to demonstrate advantages of these considerations.
It means, in particular, possibility to extend ideas developed in Olshanskii
(1995) to a wider class of domains and the rigorous proofs of convergence
theorems. The important result (see Theorem 2.1) relates the method pre-
sented to ideas of Cahouet and Chabard and establishes the equivalence
of these approaches in the continuous case. Two key points of the paper
should be emphasized. These are the preconditioning of the Uzawa scheme
with a Schur operator for the model problem (this operator is shown to be
equivalent to somepseudo-differential operator) andsufficient conditions for
convergence in the form of inequalities of Ladyzhenskaya-Babuška-Brezzi
type. Their original proof in domains with regular boundaries is presented
in Sect. 4, and some results for Lipschitz domains can be found in the Ap-
pendix.

Basic considerations are presented for the continuous case although their
application for finite differences and some remarks on finite elements can be
found in Sect. 5. Some numerical results we present in Sect. 6. For further
discussions on the numerical performance we refer to Cahouet, Chabard
(1988) and Bramble, Pasciak (1997) for finite element calculations with
different parameters, domains, elements.

1. Generalized Stokes problem, Uzawa algorithm
and its preconditioning

Let Ω be a domain inRn, n = 2, 3, with Lipschitz-continuous boundary
∂Ω. Consider inΩ the system of partial differential equations

(1.1)

−∆u + αu + ∇p = f ,

divu = 0,

u |∂Ω = 0,∫
Ω p dx = 0

whereu = (u1(x), . . . , un(x)) is the velocity vector,p = p(x) is the
pressure function,f = (f1(x), . . . , fn(x)) is the field of external forces,
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andα = const ≥ 0 is an arbitrary real parameter. Ifα = 0, then (1.1)
becomes the classical Stokes system. In unsteadyNavier-Stokes calculations
typically α ∼ (ν̄ δt)−1, whereν̄ is a kinematic viscosity andδt is a time
step. Hence, as a rule,α � 1.

Later on we need the following function spaces:

H 1
0 ≡ {u ∈ W 1

2 (Ω)n : u = 0 on ∂Ω}

with the energy scalar product(u , v)1 = (∇u ,∇v), u , v ∈ H 1
0 ,

L2/R ≡ {p ∈ L2(Ω) :
∫

Ω
p dx = 0}

with theL2-scalar product. LetH −1 be a dual, with respect toL2-duality,
space toH 1

0 with the obvious norm:

‖f ‖−1 = sup
0 �=u∈H 1

0

< f ,u >

‖u‖1
, f ∈ H −1.

The solution{u , p} of thegeneralized Stokes problem(1.1) exists and
is unique inH 1

0 × L2/R for any givenf ∈ H −1. The case of Dirichlet
boundary conditions for the velocity is of fundamental interest both in theory
andapplicationsalthoughsomeotherboundary conditionscanbeconsidered
as well (see, e.g., Sani, Gresho (1994)). Non-homogeneous conditions can
be also considered without loss of generality ( see Girault, Raviart (1986)).

Probably the simplest (but surprisingly effective Elman (1996), Turek
(1999))method to solve theclassical(α = 0) Stokes problem is the iterative
Uzawa algorithm ( see Arrow, Hurwicz, Uzawa(1958)). For the generalized
Stokes problem the Uzawa algorithm is described as follows: start with an
arbitrary initial guessp0 ∈ L2/R and fori = 0, 1, . . . do until convergence:

(1.2)

Step1. Compute u i+1 from

−∆u i+1 + αu i+1 = f − ∇pi

with u i+1 = 0 on ∂Ω.

Step2. Define the new pressure pi+1 as

pi+1 = pi − τ0divu i+1.

The algorithm converges for sufficiently small values ofτ0(> 0).
Consider the Schur complement for system (1.1):

A0(α) = div (∆ − αI)−1
0 ∇,
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where(∆ − αI)−1
0 : H −1 → H 1

0 denotes the solution operator for the
Helmholtz problem

(1.3)
∆u − αu = g ,

u |∂Ω = 0

i.e., for a giveng ∈ H −1 the vector functionu = (∆ − αI)−1
0 g is the

solution of (1.3).
The operatorA0(α) is self-adjoint and positive definite fromL2/R onto

L2/R.Now the Uzawa algorithm can be considered as a first order Richard-
son iteration method with a fixed iterative parameter applied to the equation

(1.4) A0(α)p = div (∆ − αI)−1
0 f .

This simple observation provides us with the convergence rate of (1.2),
i.e., ρ ∼ 1 − O(α−1), α → ∞ (see Remark 3.2 in Sect. 3). Therefore,
ρ → 1 for α → ∞.However, the same observation allows us to improve the
classical Uzawa scheme by using various Krylov subspace methods (e.g.,
conjugate gradient or conjugate residual ones) for the system (1.4), and
provides us with natural and fruitful ideas for preconditioning.

Indeed, consider for simplicity the first order preconditioned iterative
method

(1.5) B
pi+1 − pi

τi
= −A0(α)pi + f , i = 0, 1, . . .

whereB = B∗ > 0 is a preconditioner depending in general onα and
acting fromL2(Ω)/R onto L2(Ω)/R. The natural requirements are the
’easy’ solvability of the equationBp = q for q ∈ L2(Ω)/R and the validity
of theestimatecond(B−1A0(α)) ≤ c,wherec is someconstant independent
of α and the mesh size.

As far as we know, at least two ways of preconditioning considered in
literature can be candidates to satisfy these two requirements. To begin with,
note that in each step of method (1.5) we have to computeq = B−1p̄ for
somep̄ ∈ L2/R.

Let us set
B−1p̄ = p̄ − αr,

wherer is a solution of the following boundary value problem

∆r = p̄,
∂r

∂ν

∣∣∣∣
∂Ω

= 0, p̄ ∈ L2/R.

Denote by∆−1
N the solution operator for the above Poisson equation with

Neumann boundary conditions. Then set formallyB1 = (I − α∆−1
N )−1
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and consider it as a preconditioner. This approach of Cahouet–Chabard cer-
tainly satisfies the condition of ‘easy solvability’ (one step of the algorithm
requires only one extra solution of the Neumann problem that is standard).
Numerous finite element calculations presented in Cahouet, Chabard (1988)
show the efficiency of such preconditioning, however without estimates on
the condition number forB−1A0(α) or appropriate convergence theorem.

To outline the second approach, let us consider inΩ = (0, 1) × (0, 1)
the generalized Stokes problem withdifferent boundary conditions:

(1.6)

−∆u + αu + ∇p = f ,

divu = 0,

u·ν|∂Ω =
∂(u·τ )
∂ν

∣∣∣∣
∂Ω

= 0.

Hereafterν andτ are outer normal and tangential unit vectors to∂Ω.
This problem is well-posed and the solution{u , p} of (1.6) can beex-

plicitly found via Fourier series:

u1(x, y) =
∞∑

m,k=0

am,k sinmπx cos kπy,

u2(x, y) =
∞∑

m,k=0

bm,k cosmπx sin kπy,

p(x, y) =
∞∑

m,k=0
m+n>0

cm,k cosmπx cos kπy.

Now let us consider the Schur complement of (1.6) as a preconditioner

B2 = div (∆ − αI)−1
p ∇p,

where the boundary conditions from (1.6) are ‘built in’ intoB2 in the same
way as the Dirichlet conditions inA0(α). It is easy to check thatB2 = I
for α = 0; hereafterI denotes the identity operator.

In Olshanskii (1995), the inequalities

(1.7) cB2 ≤ A0(α) ≤ B2

were proved withc independent ofα. Numerical experiments with finite
difference schemes demonstrate a very good convergence of (1.5) with such
preconditioning. However, the estimate (1.7) was proved only for rectan-
gular domains. Moreover, since we use Fast Fourier Transform for ‘easy
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solvability’ of the equationB2p = q, it requires a rectangular domain and
a uniform grid at least in one direction.

Recently new boundary conditions were suggested for the operatorB2
for a wider class of domains (see next section). These boundary conditions
generalize the previous one (1.6).

In the present paper we use these results to prove a uniform convergence
of the method with respect toα for this class of domains. Moreover, we
show that in the continuous case the preconditionerwith these newboundary
conditions appears to be the same as the one of Cahouet – Chabart. We shall
clarify corresponding details in the next section.

2. Model boundary conditions

In this section we give some auxiliary results which will be used later. We
assumeΩ to be a bounded Lipschitz continuous domain inR

n, n = 2, 3.
The traces of vector functions fromW 2

1 (Ω)n induce on∂Ω a function

space denoted byH
1
2 (∂Ω)n and equipped with the norm

‖µ‖ 1
2
= inf

v∈W 1
2 (Ω)n

v=µ on ∂Ω

‖v‖W 1
2
, µ ∈ H

1
2 (∂Ω)n.

LetH− 1
2 (∂Ω)n be the dual space toH

1
2 (∂Ω)n with the norm

‖ξ‖− 1
2
= sup

0 �=µ∈H
1
2 (∂Ω)n

< ξ,µ >

‖µ‖ 1
2

, ξ ∈ H− 1
2 (Ω)n.

For any vector functionu ∈ L2(Ω)n such thatdivu ∈ L2(Ω), curlu ∈
L2(Ω)2n−3, its normal and tangential components on∂Ω ( u·ν andγτu =
u·τ for n = 2, γτu = u × ν for n = 3) can be considered as elements of
H− 1

2 (Ω)r, r = 1, 3. Thus, the definition of the following function space is
correct:

U ≡ {u ∈ L2(Ω)n : divu ∈ L2(Ω), curlu ∈ L2(Ω)2n−3,

u·ν = 0 on ∂Ω};
U is a Hilbert space with respect to the scalar product(u , v)U = (u , v)+
(divu ,div v) + (curlu , curl v), u , v ∈ U . By U −1 we denote the dual
space toU with respect to theL2 duality.

Remark 2.1If u ∈ U andγτu = 0, thenu ∈ H 1
0 (see Lemma 2.5 in

Girault, Raviart (1986)).
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Remark2.2Furtherweneed the followingestimates (Girault,Raviart (1986)):

(2.1)
‖u·ν‖− 1

2
≤ ‖u‖ + ‖divu‖,

‖γτu‖− 1
2

≤ ‖u‖ + ‖curlu‖.

Here and in what follows,||·|| always denotes theL2 norm.

Consider now the problem: find{u , p} from U × L2/R for given
{f , g} ∈ U −1 × L2/R such that
(2.2)
(divu ,div v) + (curlu , curl v) + α(u , v) − (p,div v) =< f , v >,

(divu , q) = (g, q), ∀v ∈ U , q ∈ L2/R.

Problem (2.2) is well posed for allα ≥ 0.
Remark 2.3For α = 0, we should in addition requireΩ to be a sim-
ply connected domain. In this case, the bilinear form(divu ,div v) +
(curlu , curl v) is coercive onU .

It is easy to check that (2.2) is aweak formulationof the following
generalized Stokes problem with themodel boundary conditions:

(2.3)

−∆u + αu + ∇p = f ,

divu = 0,

u·ν|∂Ω = Ru |∂Ω = 0,

where

Ru =
{
curlu , n = 2;
(curlu) × ν, n = 3.

We will also refer to this problem as amodelproblem.
By Aν(α) we denote the Schur complement for system (2.3):

Aν(α) ≡ div (∆ − αI)−1
ν ∇,

where(∆ − αI)−1
ν : U −1 → U denotes the solution operator for the

problem
∆u − αu = g ,

u·ν|∂Ω = Ru |∂Ω = 0,

and∇ acts fromL2/R intoU −1, i.e.,w = (∆− αI)−1
ν ∇p andw ∈ U is

a solution of the problem

(divw ,div v) + (curlw , curl v) + α(w , v) = (p,div v). ∀v ∈ U

The operatorAν(α) is self-adjoint and positive definite onL2/R.
The following result concludes this section.
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Theorem 2.1(Olshanskii (1997))For arbitrary α ∈ [0,∞) andp ∈ L2/R,
setq = Aν(α)p, q ∈ L2/R. Then the following equality holds:p = q−α r,
wherer ∈ W 1

2 (Ω)/R is a solution to the Neumann problem

∆r = q,
∂r

∂ν

∣∣∣∣
∂Ω

= 0.

Note that in the caseα = 0 the theorem states equality of the Schur
complement of the model Stokes problem to the identity operator onL2/R.
In the general case, the model boundary conditions provide decoupling of
pressure and velocity in the generalized Stokes problem.

3. Iterative method and uniform estimate of the convergence rate

For thesakeof convenience, rewrite the iterativealgorithm(1.5)by taking the
Schur complement of the model problem from Sect. 2 as a preconditioner:

(3.1) Aν(α)
pi+1 − pi

τi
= −A0(α)pi + f , i = 0, 1, . . . .

By virtue of Theorem 2.1, method (3.1) is equivalent to (1.5) withB1
as a preconditioner, and the equationAν(α)p = q is ‘easily’ solved. In
rectangular domains we haveAν(α) = B2, so we expect to prove uniform
convergence estimates in the general case.

OperatorsAν(α)andA0(α)differ only by the implicitly involvedbound-
ary conditions for the velocity. Therefore, these operators are expected to
be rather close to each other. Indeed, the following theorem is valid.
Theorem 3.1 There exists a constantc(Ω) > 0 independent ofα ≥ 0 such
that

c(Ω)Aν(α) ≤ A0(α) ≤ Aν(α).

Proof.For convenience, introduce the following scalar product inH 1
0 de-

pending onα :
(u , v)α = (∇u ,∇v) + α(u , v).

For anyp ∈ L2/R, the following equalities are valid

(A0(α) p, p) = (div (∆ − αI)−1
0 ∇p, p) = − < (∆ − αI)−1

0 ∇p,∇p >

=−<(∆ − αI)−1
0 ∇p, (∆ − αI)(∆ − αI)−1

0 ∇p>

=‖(∆ − αI)−1
0 ∇p‖2

α

= sup
0 �=u∈H 1

0

((∆ − αI)−1
0 ∇p,u)2α

‖u‖2
α
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= sup
0 �=u∈H 1

0

< ∇p,u >2

‖u‖2
1 + α‖u‖2

= sup
0 �=u∈H 1

0

(p,divu)2

‖u‖2
1 + α‖u‖2

= sup
0 �=u∈H 1

0

(p,divu)2

‖divu‖2 + ‖curlu‖2 + α‖u‖2 .(3.2)

In a similar way we get

(Aν(α) p, p) = sup
0 �=u∈U

(p,divu)2

‖divu‖2 + ‖curlu‖2 + α‖u‖2 .

Thus, to prove the theorem it is necessary and sufficient to check the
validity of the inequalities:

(3.3)

sup
0 �=u∈H 1

0

(p,divu)2

‖divu‖2 + ‖curlu‖2 + α‖u‖2

≤ sup
0 �=u∈U

(p,divu)2

‖divu‖2 + ‖curlu‖2 + α‖u‖2

and

(3.4)

c(Ω) sup
0 �=u∈U

(p,divu)2

‖divu‖2 + ‖curlu‖2 + α‖u‖2

≤ sup
0 �=u∈H 1

0

(p,divu)2

‖divu‖2 + ‖curlu‖2 + α‖u‖2

with somec(Ω) > 0 depending only onΩ.
Equality (3.3) is trivial sinceH 1

0 ⊂ U . The proof of (3.4) is a subject of
Sect. 4 (see Lemma 4.3). Checking (3.3) and (3.4), we prove the theorem.

��
From Theorem 3.1 and the general theory of iterative methods it imme-

diately follows

Corollary 3.1 For an appropriate set ofτi (e.g.τi = 1, i = 0, 1, . . .), the
method (3.1) converges like a geometric progression with a factorq such
that0 < q < c < 1, wherec is independent ofα.

Remark 3.1Let us consider̂u = (∆−αI)−1
0 ∇p for somep ∈ L2/R. Then

from (3.2) it follows that

(A0(α) p, p) = ‖û‖2
α = ‖div û‖2 + ‖curl û‖2 + α‖û‖2.
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At the same time we have(A0(α) p, p) = (div û , p). Thus, the supremum
in the expression

sup
0 �=u∈H 1

0

(p,divu)2

‖divu‖2 + ‖curlu‖2 + α‖u‖2

is attained for the function̂u ∈ H 1
0 . The same arguments are true for

ũ = (∆ − αI)−1
ν ∇p with respect to the supremum overU .

Remark 3.2SinceAν(0) = I and‖u‖2
1 = ‖divu‖2 + ‖curlu‖2 for u ∈

H 1
0 , inequality (3.4) withα = 0 becomes the well known Ladyzhenskaya-

Babǔska-Brezzi (LBB) inequality.

Remark3.3Letc0 beaconstant from theLBB inequality (c0‖p‖ ≤ ‖∇p‖−1)
andc1 be a constant from the Fridrichs inequality (‖u‖ ≤ c1‖u‖1, u ∈
H 1

0 ), then from the above arguments it follows that the inequality

c2I ≤ A0(α) ≤ c3I

holds withc2 = c20(1 + c21α)
−1, c3 = 1.

A simple observation shows that the asymptoticsc2 = O(α−1), α →
∞, andc3 = O(1) cannot be improved. Indeed, consider in a unit square
the functionp̄ = cosπx, p̄ ∈ L2((0, 1) × (0, 1))/R. ThenAν(α)p̄ =
(1 + π−2α)−1p̄, butA0(α) ≤ Aν(α). Therefore,c(1 + π−2α)−1‖p̄‖2 =
(A0(α)p̄, p̄) with somec, 0 < c ≤ 1. Similar arguments with̄p = cosmπx
andm → ∞ show the optimality of the asymptoticsc3 = O(1).

These asymptotics forc2 andc3 explain the deterioration of the classical
Uzawa algorithm for the generalized Stokes problem withα � 1.

Remark 3.4Sometimes the necessity of the computation of the(∆−αI)−1
0

at each step of (3.1) is considered as a drawback of the Uzawa type method.
Therefore often aninexactversion of the Uzawa algorithm is considered
in the literature (cf. Elman, Golub (1994), Elman (1996), Bramble, etc.
(1997)). The convergence estimates for preconditioned inexact algorithms
also heavily depend on the condition cond(A−1

ν (α)A0(α)).

Remark 3.5There is a variety of other preconditioned iterative methods
for solving saddle point problems of type (1.1) (see, e.g., Bramble, Pasciak
(1988), Rusten, Winther (1992), Silvester, Wathen (1994), Elman(1999)).
Their application to (1.1) requires an appropriate preconditioner forA0(α)
to insure good convergence.

4. Proof of the main inequality

In this section inequality (3.4) is proved for domains with rather regular
boundary (detailed below), a more technical proof of (3.4) for Lipschitz
domains is presented in the Appendix.
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Lemma 4.1Fix an arbitraryα ≥ 0. Letu be any function fromU . Then
u = ∇ψ for someψ ∈ W 1

2 (Ω)/R if and only if

(4.1) u = (∆ − αI)−1
ν ∇p

for somep ∈ L2/R.

Proof.
1.Assumeu ∈ U andu = ∇ψ for someψ ∈ W 1

2 (Ω)/R. It is easy to
see that for suchu the relation

∆u − αu = ∇p

holds (in a weak sense) withp = divu − αψ, p ∈ L2/R; sinceu·ν =
Ru = 0, equality (4.1) is valid.

2.Consider an arbitraryp ∈ L2/R andu ∈ U such that relation (4.1)
holds. Then, according to Theorem 2.1, foru andp one has the following
equality:

p = divu − α∆−1
N divu .

Recall that∆−1
N was defined in Sect. 1 as a solution operator for the scalar

Poisson problem with Neumann boundary conditions.
Set nowψ = ∆−1

N divu , ψ ∈ W 1
2 (Ω)/R, andv = ∇ψ. We readily

getv·ν = ∂ψ
∂ν = 0, Rv = R∇ψ = 0 on ∂Ω anddiv v = ∆ψ = divu .

Moreover,

∆v − αv = ∇div v − α∇∆−1
N divu = ∇(divu − α∆−1

N divu) = ∇p.

Hence, the functionw = u − v ,w ∈ U satisfies the equations

∆w − αw = 0,
w·ν|∂Ω = Rw |∂Ω = 0

which implyw = 0. Thus, we haveu = v = ∇ψ. The Lemma is proved.
��

In the following two lemmas we suppose that the domainΩ is such
that the solution of the classical Stokes problem is regular. In particular, we
suppose that forf ∈ L2(Ω)n andg ∈ W 1

2 (Ω)/R, the solution{u , p} of
the problem

−∆u + ∇p = f ,

divu = g,

u |∂Ω = 0

belongs toW 2
2 (Ω)n ×W 1

2 (Ω)/R. For example, domains with∂Ω ∈ C2 or
convex ones satisfy this requirement (cf. Temam (1977), Dauge (1989)).
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Lemma 4.2Let v be any function fromU andu , p ∈ U × L2/R be a
solution to the problem

(4.2)

−∆u + ∇p = 0,

divu = 0,

u |∂Ω = v |∂Ω .

Then the following estimates hold:

(4.3a) ‖divu‖ + ‖curlu‖ ≤ c(Ω)(‖div v‖ + ‖curl v‖),

(4.3b) ‖u‖0,Ω ≤ c(Ω)‖γτu‖− 1
2 ,∂Ω.

Proof.The solutionu of (4.2) can be defined asu = v−w ,wherew ∈ H 1
0

is a solution (together withp) of the problem

(4.4)
(∇w ,∇ξ) − (p,div ξ) = (div v ,div ξ) + (curl v , curl ξ),

(divw , η) = (div v , η) ∀ξ ∈ H 1
0 , η ∈ L2/R.

From (4.4) and with standard arguments (see, e.g., Girault, Raviart (1986))
we obtain forw the estimate

‖w‖1 ≤ c(‖div v‖ + ‖curl v‖).
Now from the last inequality and the relations‖divw‖2 + ‖curlw‖2 =
‖w‖2

1, u = v − w , we get (4.3a).
To prove (4.3b), assume thatv is an arbitrary function fromW 2

2 (Ω)n.
The above regularity assumptions ensure that the smoothness ofv im-
plies thatw from (4.4) belongs toW 2

2 (Ω)n. Thus,u ∈ W 2
2 (Ω)n and

p ∈ W 1
2 (Ω)/R. Therefore, the relations (4.2) hold inL2(Ω)n. Let us mul-

tiply both parts of the first equality (4.2) by an arbitrary functionψ from
W 2

2 (Ω)n∩H 1
0 satisfyingdivψ = 0, and integrate overΩ. After integration

by parts we get

−(u , ∆ψ) =< γτv , curlψ >∂Ω .

Assumingψ �= 0, we get from the last equality

(4.5)
−(u , ∆ψ)

‖ψ‖2
=

< γτv , curlψ >∂Ω

‖ψ‖2
.

To obtain the estimate for the right-hand side of (4.5), note that

‖curlψ‖ 1
2 ,∂Ω ≤ ‖curlψ‖W 1

2 (Ω) ≤ c1‖ψ‖2
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and, thus,

| < γτv , curlψ >∂Ω |
‖ψ‖2

≤ c
| < γτv , curlψ >∂Ω |

‖curlψ‖ 1
2 ,∂Ω

≤ c sup
ξ∈H

1
2 (∂Ω)2n−3

< γτv , ξ >∂Ω

‖ξ‖ 1
2 ,∂Ω

≡ c‖γτv‖− 1
2
.

Now from (4.5) we get

(4.6)
|(u , ∆ψ)|

‖ψ‖2
≤ c‖γτv‖− 1

2
.

As far as (4.6) holds for any0 �= ψ ∈ W 2
2 (Ω)n ∩ H 1

0 with divψ = 0,
chooseψ as a solution (together withq) to the problem

(4.7)

−∆ψ + ∇q = u ,

divψ = 0,

ψ|∂Ω = 0

Sinceu ∈ L2(Ω)n andΩ is assumed to be rather regular, it follows from
standard regularity results for the Stokes problem that{ψ, q} ∈ W 2

2 (Ω)n ×
W 1

2 (Ω)/R and

(4.8) ‖q‖W 1
2
+ ‖ψ‖2 ≤ c‖u‖.

To obtain an estimate on‖u‖, multiply the first equality (4.7) byu and
integrate overΩ. We get

‖u‖2 = (∇q,u) − (∆ψ,u).

From this relation, using estimates (4.6), (4.8), and equality

(∇q,u) =< q,u·ν >∂Ω,

we deduce

‖u‖2 ≤ | < q,u·ν >∂Ω | + c‖ψ‖2 ‖γτv‖− 1
2 ,∂Ω

≤ ‖q‖ 1
2 ,∂Ω‖u·ν‖− 1

2 ,∂Ω + c‖u‖ ‖γτv‖− 1
2 ,∂Ω

≤ ‖q‖W 1
2
‖u·ν‖− 1

2 ,∂Ω + c‖u‖ ‖γτv‖− 1
2 ,∂Ω

≤ c1‖u‖ (‖u·ν‖− 1
2 ,∂Ω + ‖γτv‖− 1

2 ,∂Ω).

From the last estimate it follows that

(4.9) ‖u‖0,Ω ≤ c(‖v·ν‖− 1
2 ,∂Ω + ‖γτv‖− 1

2 ,∂Ω).
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Assume now thatv is an arbitrary function fromU . Thenv can be
approximated in theU -norm by functions fromW 2

2 (Ω)n. Hence, using
inequalities (2.1), (4.3a), and passing to the limit inU , we deduce from
(4.9) the estimate (4.3b). The Lemma is proved.��
Lemma 4.3For arbitrary α ∈ [0,∞) andp ∈ L2/R, the inequality

c(Ω) sup
0 �=u∈U

(p,divu)2

‖divu‖2 + ‖curlu‖2 + α‖u‖2

≤ sup
0 �=u∈H 1

0

(p,divu)2

‖divu‖2 + ‖curlu‖2 + α‖u‖2(4.10)

holds withc(Ω) > 0 independent ofα andp.
Proof.Let p be an arbitrary function fromL2/R. Then from Remark 3.1 it
follows that the supremum on the left-hand side of (4.10) is attained on the
function

(4.11) u = (∆ − αI)−1
ν ∇p, u ∈ U .

From Lemma 4.1 and relation (4.11) it follows thatcurlu = 0. So from
(2.1) we get

(4.12) ‖γτu‖− 1
2 ,∂Ω ≤ ‖u‖.

To prove the Lemma it is sufficient to find for givenu from (4.11) such
a functionũ ∈ H 1

0 that
(4.13)
(p,div ũ) = (p,divu),

‖div ũ‖2 + ‖curl ũ‖2 + α‖ũ‖2 ≤ c
(‖divu‖2 + ‖curlu‖2 + α‖u‖2

)
with c independent ofu , ũ , andα.

Let ũ = u − w , wherew ∈ U is a solution to the problem

(4.14)

−∆w + ∇q = 0,

divw = 0,

w |∂Ω = u |∂Ω.

It is easy to see that(p,div ũ) = (p,divu) and, in virtue of Remark 2.1,
ũ ∈ H 1

0 .
Now we check the second condition in (4.13). Using a priori estimates

from Lemma 4.2 and relation (4.12), we obtain for the solution of (4.14)

(4.15)
‖divw‖2 + ‖curlw‖2 ≤ c(‖divu‖2 + ‖curlu‖2),

‖w‖2 ≤ c‖γτu‖− 1
2 ,∂Ω ≤ c‖u‖2.
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Inequalities (4.15) immediately give

‖divw‖2 + ‖curlw‖2 + α‖w‖2

≤ c
(‖divu‖2 + ‖curlu‖2 + α‖u‖2)(4.16)

with c independent ofα andu .
In virtue ofũ = u −w and (4.16), the second condition in (4.13) is also

valid. So the Lemma is proved.��

5. Some remarks on finite differences and finite elements

The above considerations for differential problems encourage us to expect
a success of the method for discrete problems as well. Indeed, extension
of the ‘main’ inequality (4.10) to a discrete case is similar to checking
the LBB (infsup) condition that is satisfied, as a rule, for pressure-velocity
finite difference (FD) and finite element (FE) approximations. Moreover,
most of theapproximationsadmitwell-posedpressurePoissonproblemwith
Neumann boundary conditions. However, while FD or FE formulations of
the model problem are rather obvious, validity of Theorem 2.1 in a discrete
case is vague in general. To clarify the situation we prove below the FD
analogue of Theorem 2.1.

Let us consider MAC scheme with a staggered grids and central FD
approximation of∆, div , andgrad operators (see, e.g., Kobelkov (1994)).
Further we shall use the following notations:U h andLh are FD velocity
and pressure spaces of functions defined in interior nodes of a grid domain.
Let U h

0 , U
h
ν , andL

h
0 be their extensions such that discrete analogues of

boundary conditionsu = 0, u·ν = Ru = 0, and ∂p
∂ν = 0 are satisfied

for functions fromU h
0 , U

h
ν , andL

h
0 , respectively. By∆

h
0 , ∆

h
ν , ∇h, div h,

and∆h
N we denote grid approximations of the corresponding differential

operators.
Assume that the following compatibility conditions are satisfied:

a)div h∇h = ∆h
N onLh

0 ,

b)∆h
ν∇h = (∇hdiv h)∇h onLh

0 .

(This assumption is valid, for example, for a domain, which is a union of
rectangulars.)

Then for this approximation the following theorem holds.

Theorem 5.1For any α ∈ [0,∞) and p ∈ Lh, the equalityp = q −
α (∆h

N )−1q holds withq ∈ Lh such that

(5.1) q = div h(∆h
ν − αI)−1∇hp.
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Proof.Fix somep ∈ Lh andα ∈ [0,∞). We can rewrite relation (5.1) as
follows

(5.2)
−∆h

νu + αu + ∇hp = 0 in U h,

div hu = q in Lh

with u ∈ U h
ν .

Assumeα > 0 and consider the functionsp1 = −α(∆h
N )−1q andũ =

α−1∇hp1, ũ ∈ U h
ν . From our definitions and compatibility conditions we

havediv hũ = q and−∆h
ν ũ = −∇hdiv hũ = ∇hq.

Setp̃ = q + p1. Then forũ ∈ U h
ν andp̃ ∈ Lh the following equalities

hold,

(5.3)
−∆h

ν ũ + αũ + ∇p̃ = 0,

div hũ = q.

From the well-posedness of the Stokes problem and relations (5.2), (5.3) we
getp = p̃ = q −α(∆h

N )−1q. The caseα = 0 is treated in a similar manner.
The Theorem is proved.��

There is one more reason for considering the model Schur complement
as a preconditioner in (1.5). The theorem below shows a specific discrete
reflection of the fact thatA0(α) andAν(α) in (4.1) differ only up to the
boundary conditions involved implicitly.

Theorem5.2Under theassumptionsofTheorem5.1, theeigenvalueproblem

Ah
0(α)p = λAh

ν(α)p

withAh
0(α) = div h(∆h

0 − αI)−1∇h, Ah
ν(α) = div h(∆h

ν − αI)−1∇h has
λ = 1 as an eigenvalue ofO(h−n) multiplicity, and the number of all the
other eigenvalues isO(h−(n−1)), whereh is the mesh size-parameter.

Proof.The proof of this theorem is similar to the proof of Theorem 1.4 from
Kobelkov (1994). ��

From Theorem 5.2 it follows that in the first step of the method (3.1)
we can takeτ0 = 1. Then in the following steps with arbitraryτi the er-
ror functionri = pi − p belongs to a subspace of dimensionO(h−(n−1)).
This property ensures an extra convergence of method (1.5) for the finite
difference approximations considered above. In this case the discrete pre-
conditioner is equal to the Schur complement of the discretemodel problem.

The lack of appropriate compatibility conditions for FE approximations,
as well as troubles with smoothness requirements on the trial functions in
the proof of Theorem 5.1 make the above analysis more complicated for
finite elements. However, let us make the following remarks.
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Consider the matrix form of the FE discretization of the model problem
(2.2): [−Lν(α) D∗

D 0

] [
u
p

]
=
[
f
0

]
.

Let Ihν and Ihp be the mass matrices of the FE velocity and pressure
spaces. Then the above analysis suggests the choice ofB−1 = (Ih

p )
−1 −

α(D(Ih
ν )

−1D∗)−1 in (1.4), which, we expect, will be better thanB−1 =
I −α(∆h

N )−1 (numerical results from Cahouet, Chabard (1988) and Turek
(1999) confirm this hypothesis). Also in Bramble, Pasciak (1997) the con-
vergence theorem was proved for the FE case with certain coarse-mesh
approximation of the pressure Poisson problem.

6. Numerical experiments

In this section we present results of numerical experiments for the equation

Ah
0(α)p = F,

whereAh
0(α) is the Schur complement for a FD approximation of the gen-

eralized Stokes problem (1.1). We use the MAC scheme defined in Sect. 5
and takeΩ = (0, 1) × (0, 1).

Preconditioned and non preconditioned versions of conjugate gradient
(CG) and minimal residual (MINRES) methods were tested.

LetB denote a preconditioner,p0 an initial guess (p0 ≡ 0 in all experi-
ments), letsi = Ah

0(α)pi−F denote the residual forpi defined via iterations
for i = 1, 2, . . . , andri = B−1si. The preconditioned version of CG was
then standard.

The preconditioned MINRES method, which we used, coincides with
(1.4) forτi=(B−1Ah

0(α)ri, ri)/(B−1Ah
0(α)ri, B

−1Ah
0(α)ri), i = 0, 1, . . . .

We refer to these algorithms as preconditioned in the caseB = Ah
ν(α)

and as nonpreconditioned in the caseB = Ih. The stopping criterion was

‖ri‖2/‖r0‖2 < 10−9.

We refer to the value of(‖ri‖2/‖r0‖2)1/i as tothe average convergence
factor.

Remark 6.1If ui is a velocity vector field corresponding to the pressurepi

via the Helmholtz equation−∆hui + αui = f − ∇pi, thensi = divui.

Remark 6.2Along with the CG and MINRES methods, we will consider
these methods on a subspace (see Theorem 5.2), i.e., we make one step of
(3.1) with τ0 = 1 and then continue calculations according to the above
algorithms.
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Table Ia. Smooth test. Average convergence factor for conjugate gradients

α \h 1/16 1/32 1/64 1/128 1/256 1/512

0 0.099 0.139 0.169 0.189 0.204 0.223
16 0.134 0.175 0.207 0.225 0.245 0.244
32 0.098 0.151 0.190 0.208 0.224 0.238
64 0.083 0.121 0.166 0.188 0.200 0.217
128 0.066 0.109 0.143 0.185 0.212 0.234
256 0.049 0.096 0.131 0.171 0.215 0.244
512 0.033 0.072 0.111 0.146 0.190 0.222
1024 0.023 0.048 0.083 0.119 0.148 0.176
2048 0.012 0.035 0.063 0.095 0.133 0.163

Table Ib. Smooth test. Average convergence factor for conjugate gradients on subspace

α \h 1/16 1/32 1/64 1/128 1/256 1/512

0 0.106 0.146 0.176 0.196 0.217 0.229
16 0.114 0.166 0.197 0.225 0.244 0.257
32 0.107 0.149 0.176 0.204 0.226 0.245
64 0.097 0.125 0.154 0.191 0.222 0.239
128 0.084 0.112 0.159 0.198 0.235 0.262
256 0.050 0.103 0.143 0.189 0.222 0.260
512 0.039 0.080 0.121 0.160 0.194 0.234
1024 0.026 0.058 0.092 0.130 0.162 0.192
2048 0.015 0.041 0.073 0.104 0.134 0.161

1.Smooth test
For the first test we choose the smooth pressure functionps = x − y as
an ‘exact’ solution of (6.1). The functionF = Ah

0(α)p
s was computed

and considered as the right-hand side of (6.1). Settingp0 = 0, we examine
the convergence of the conjugate gradient method to this smooth solution.
The results are presented in Table Ia–c. For example, forh = (512)−1 and
α = 512, the convergence factor is equal to0.222; i.e. the residual becomes
approximately100 times less during every 3 steps.
2.Random test
The exact solutionpr was chosen as follows. In every grid point a random
number generated with the uniform distribution over[−1, 1] was taken as a
value ofpr. Furtherpr was normalized to ensure

∫
Ω prdx = 0. The values

of convergence factors in Tables II, III were averaged over three random
runs of the program with different initializations of the random generator.
There were no pronounced differences in convergence rates observed for
these substantially nonsmooth solutions in comparison with the results of
the smooth test. While the averaged convergence factors for the CGmethod
on the subspace were very close to those withoutτ0 = 1, the MINRES
method on the subspacewas evidently superior to the usual one. At any time,
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Table Ic. Smooth test. Average convergence factor for conjugate gradients without precon-
ditioning

α \h 1/16 1/32 1/64 1/128 1/256 1/512

0 0.099 0.139 0.169 0.189 0.204 0.223
16 0.150 0.201 0.226 0.243 0.263 0.271
32 0.176 0.220 0.244 0.269 0.280 0.289
64 0.199 0.250 0.271 0.290 0.309 0.318
128 0.250 0.290 0.319 0.329 0.347 0.354
256 0.313 0.353 0.380 0.397 0.406 0.417
512 0.389 0.429 0.462 0.475 0.473 0.481
1024 0.457 0.524 0.552 0.551 0.569 0.564
2048 0.512 0.605 0.631 0.649 0.651 0.649
4096 0.545 0.682 0.755 0.776 0.783 0.780

settingτ0 = 1 saves some computations; this can be especially appreciable
in unsteady simulations when only few iterations on each time step are
needed to achieve a good approximation.

In all tests, the convergence of the preconditioned methods improved
when the parameterα increased and the mesh sizeh was fixed. The case
α = 0 corresponds to the Uzawa algorithm for the classical Stokes problem
(Ah

ν(0) = Ih). The preconditioned algorithm for the generalized Stokes
problem for anyα ≥ 0 demonstrated convergence at least not worse than
the Uzawa algorithm for the classical Stokes problem.

If we consider a typical situation in nonstationary high Reynolds simu-
lations when(hRe)(h/δt) ≤ c < ∞ with some absolute constantc > 0,
then we have the following relation forα : α = O(h−2). In this particular
case, the preconditioned method demonstrates even an improvement of the
convergence rate withh → 0.

Tables Ic and IIc show the growth of convergence factor for the nonpre-
conditioned CG method forα → ∞, due to the growth of the condition
number ofAh

0(α).

7. Appendix

As was demonstrated above, the inequality (3.4) plays an important role
in the proof of the convergence of the method. This inequality was proved
(Sect. 4 of the paper) for domains with sufficiently smooth boundary ore
convex ones. Below we show that this inequality with a constantc(Ω) > 0
independent of parameterα, is valid for thewider class of domains. Namely,
we prove its validity for a curvilinear trapezoid with Lipschitz boundary
y = g(x), when|g′| is not too large. Unfortunatly, we could not prove it for
all Lipschitz domains, but we believe this hypothesis to be true.
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Table IIa. Random test. Average convergence factor for conjugate gradients

α \h 1/16 1/32 1/64 1/128 1/256 1/512

0 0.165 0.201 0.225 0.242 0.240 0.242
16 0.150 0.188 0.202 0.234 0.221 0.222
32 0.125 0.177 0.197 0.220 0.204 0.212
64 0.106 0.153 0.176 0.205 0.197 0.204
128 0.086 0.119 0.173 0.183 0.188 0.203
256 0.065 0.100 0.147 0.164 0.186 0.189
512 0.053 0.084 0.122 0.155 0.178 0.180
1024 0.034 0.062 0.096 0.136 0.161 0.187
2048 0.019 0.043 0.083 0.115 0.145 0.178

Table IIb. Random test. Average convergence factor for conjugate gradients on subspace

α \h 1/16 1/32 1/64 1/128 1/256 1/512

0 0.166 0.200 0.225 0.236 0.237 0.242
16 0.140 0.170 0.191 0.223 0.213 0.215
32 0.114 0.155 0.177 0.209 0.203 0.204
64 0.096 0.136 0.160 0.188 0.187 0.196
128 0.079 0.114 0.157 0.170 0.182 0.194
256 0.063 0.095 0.139 0.159 0.180 0.190
512 0.049 0.083 0.119 0.149 0.174 0.184
1024 0.032 0.063 0.099 0.137 0.159 0.189
2048 0.019 0.044 0.084 0.117 0.146 0.179

Table IIc. Random test. Average convergence factor for conjugate gradients without pre-
conditioning

α \h 1/16 1/32 1/64 1/128 1/256 1/512

0 0.168 0.201 0.225 0.241 0.245 0.242
16 0.250 0.274 0.298 0.309 0.310 0.308
32 0.288 0.308 0.320 0.335 0.333 0.334
64 0.330 0.356 0.362 0.364 0.364 0.371
128 0.398 0.415 0.425 0.418 0.418 0.413
256 0.474 0.491 0.500 0.488 0.497 0.479
512 0.551 0.584 0.581 0.570 0.587 0.562
1024 0.613 0.663 0.678 0.649 0.665 0.648
2048 0.667 0.731 0.744 0.733 0.739 0.741
4096 0.709 0.795 0.790 0.763 0.787 0.769

Further we use the notations fromSect. 2.We shall also use the notations

(v ,w)α ≡(div v ,divw)+(curl v ,curlw) + α(v ,w), ‖v‖2
α ≡ (v , v)α,

‖wi‖2
α ≡ ‖∇wi‖2 + α‖wi‖2, ‖wi‖2

α,xj
≡
∥∥∥∥∂wi

∂xj

∥∥∥∥
2

+ α‖wi‖2.

Later on, we shall denote independent variables either by(x1, x2) or (x, y).
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Table IIIa. Random test. Average convergence factor for minimal residuales

α \h 1/16 1/32 1/64 1/128 1/256 1/512

0 0.426 0.455 0.483 0.504 0.521 0.522
16 0.312 0.368 0.404 0.449 0.470 0.487
32 0.271 0.339 0.386 0.431 0.454 0.474
64 0.227 0.301 0.362 0.410 0.433 0.459
128 0.182 0.259 0.329 0.383 0.413 0.442
256 0.136 0.214 0.292 0.351 0.388 0.420
512 0.095 0.168 0.250 0.320 0.365 0.400
1024 0.061 0.122 0.208 0.281 0.334 0.378
2048 0.037 0.085 0.162 0.239 0.303 0.348

Table IIIb. Random test. Average convergence factor for minimal residuales on subspace

α \h 1/16 1/32 1/64 1/128 1/256 1/512

0 0.363 0.396 0.428 0.448 0.471 0.474
16 0.245 0.307 0.347 0.397 0.416 0.435
32 0.200 0.273 0.328 0.377 0.399 0.420
64 0.173 0.244 0.306 0.348 0.381 0.399
128 0.143 0.215 0.284 0.324 0.364 0.372
256 0.106 0.183 0.258 0.303 0.348 0.362
512 0.074 0.143 0.222 0.283 0.331 0.358
1024 0.048 0.084 0.184 0.255 0.311 0.347
2048 0.027 0.070 0.140 0.217 0.282 0.326

Let

(1) Φ(p, v) ≡ (p,div v)2

‖v‖2
α

The aim of this Appendix is to prove for any functionp ∈ L2/R the validity
of the following inequality:

(2) sup
v∈U

Φ(p, v) ≤ c0 sup
w∈H 1

0

Φ(p,w)

with some constantc0 that does not depend onα ≥ 0.
Further, we assumeα ≥ 1.
At first, let Ω̄ = [0, π]× [0, π]. We recall that in this caseU defined in

Sect. 2 can be represented as

U =
{
u = (u1, u2) : ui ∈ H1(Ω), u · n = 0

}
and

(v ,w)α = (∇v ,∇w) + α(v ,w).
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Lemma 1. Let

(3) p(x, y) =
n∑

i,j=0

pij cos ix cos jy, p00 = 0.

Then

(4) arg sup
v∈U

Φ(p, v) = û ,

whereû = (∆ − αI)−1
ν ∇ p.

The proof directly follows from Remark 3.1.

Lemma 2. For every vector function̂u that provides a maximum ofΦ(p, v)
overU , wherep is a trigonometric polynomial of the form (3), there exists
a vector functionu ∈ H 1

0 satisfying the following inequality

Φ(p, û) ≤ c0Φ(p,u),

wherec0 does not depend onn, p, andα ≥ 0.
This result follows from Lemma 4.3 of this paper (Ω satisfies here the

requirements from Sect. 4).

Corollary 1 . For anyp ∈ L2/R, estimate(2) is valid with the constantc0
that does not depend onα.

Proof. The set of trigonometric polynomials of the form (3) is dense in
L2/R. Take the sequence of trigonometric polynomialspn that converges
top. In virtue of Lemma2, estimate (2) is valid for everypn with the constant
independent ofα andn. Passing to the limit withn → ∞, we obtain the
statement required.��

Let us now proceed to the case whenΩ is a curvilinear trapezoid, i.e.,

Ω̄ = {x = (x1, x2) : 0 ≤ x1 ≤ π, 0 ≤ x2 ≤ g(x1)} ,
where

(5) π ≤ g ≤ M1, |g′| ≤ M2.

After changing variables

x1 = x, x2 = yg(x),

our domainΩ is mapped onto the squareD = (0, π) × (0, π). Since the
change of variables does not depend onα, then for any functionv(x1, x2) =
ṽ(x, y) we have

(6) γ1‖ṽ‖α,D ≤ ‖v‖α,Ω ≤ γ2‖ṽ‖α,D,

whereγi do not depend onα.
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The expressiondiv v after this change is transformed in the following
way:

div v(x1, x2) =
∂ṽ1

∂x
+

1
g

∂ṽ2

∂y
− yg′(x)

g(x)
∂ṽ1

∂y
≡ DIV ṽ(x, y)

which implies
(div v , p)Ω = (DIV ṽ , q)D,

whereq = gp̃ and(q, 1)D = 0, sincep ∈ L2(Ω)/R.
Along with the functionalΦ(p,u), introduce the functionalΨ(p,u):

Ψ(p,u) ≡ (p,DIV u)2

‖u‖2
α

Then the following statement holds.

Lemma 3. Let

p(x, y) =
n∑

|k|=1

pk cos k1x cos k2y

and û ∈ U be the function that gives the supremum ofΦ(p,u) overU .
Then there exists a constantc that does not depend onα andn such that the
following inequality is valid:

(7) sup
u∈U

Ψ(p,u) ≤ cΦ(p, û).

Proof.From the definition of DIVu we have the trivial estimate

sup
u∈U

Ψ(p,u) ≤ 3

(
sup
u∈U

(p, ∂u1

∂x )2

‖u‖2
α

+ sup
u∈U

(p
g ,

∂u2

∂y )2

‖u‖2
α

+ sup
u∈U

(p, h∂u1

∂y )2

‖u‖2
α

)
,

(8)

whereh =
yg′(x)
g(x)

≡ yḡ(x) and|h| ≤ M = πM2. Note that the functions

g, ḡ are functions of the variablex only. We shall use this property later.
Let us estimate every term in the right-hand side of (8) separately:

sup
u∈U

(
p,

∂u1

∂x

)2

‖u‖2
α

≤ sup
u∈U

(
p,

∂u1

∂x

)2

‖u1‖2
α

≤ sup
u∈U

(p,divu)2

‖u‖2
α

≤ Φ(p, û),

sup
u∈U

(p
g
,
∂u2

∂y

)2

‖u‖2
α

= sup
u2:u∈U

(
p,

∂(u2/g)
∂y

)2

‖u2‖2
α

≤ sup
w:(0,w)∈U

(
p,

∂w

∂y

)2

‖gw‖2
α,y
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≤ c sup
w:(0,w)∈U

(
p,

∂w

∂y

)2

‖w‖2
α,y

= c

n∑
|k|=1

k2
2

k2
2 + α

p2
k ≤ c

n∑
|k|=1

γkp
2
k = cΦ(p, û),

(9)

whereγk = |k|2(|k|2 + α)−1.
As for the third term, let us transform it before estimating. Integrating

by parts, we obtain(
p, h

∂u1

∂y

)
=
(
p,

∂(hu1)
∂y

)
−
(
p, u1∂h

∂y

)
=
(
p,

∂(hu1)
∂y

)
− (ḡp, u1).

Then

sup
u∈U

(ḡp, u1)2

‖u‖2
α

≤ sup
w:(w,0)∈U

(p, ḡw)2

‖w‖2
α

≤ sup
w∈L2

(p, ḡw)2

α‖w‖2 = sup
w∈L2

(ḡp, w)2

α‖w‖2

=
1
α

‖ḡp‖2 ≤ M2
2

α
‖p‖2 ≤ M2

2
α

n∑
|k|=1

1
γk

γkp
2
k ≤ 2Φ(p, û)(10)

Introduce the function spaceH =
{
w : w ∈ L2,

∂w

∂y
∈ L2

}
. Since

‖hw‖2
α,y =

∥∥∥∥∂(hw)∂y

∥∥∥∥
2

+ α‖hw‖2

≤
∥∥∥∥h∂w∂y

∥∥∥∥
2

+ ‖ḡw‖2 + α‖hw‖2

≤ M2
2

∥∥∥∥h∂w∂y
∥∥∥∥

2

+ (M2
2

π2 + αM2
2 )‖w‖2 ≤ 2M2

2 ‖w‖2
α,y,

then

sup
u∈U

(
p,

∂(hu1)
∂y

)2

‖u‖2
α

≤ sup
u1:u∈U

(
p,

∂(hu1)
∂y

)2

‖u1‖2
α

≤ sup
u1:(u1,0)∈U

(
p,

∂(hu1)
∂y

)2

‖u1‖2
α,y

≤ 2M2
2 sup

u1:(u1,0)∈U

(
p,

∂(hu1)
∂y

)2

‖hu1‖2
α,y

= 2M2
2 sup

w1:(w1,0)∈U

(
p,

∂(w1)
∂y

)2

‖w1‖2
α,y

≤ c2M
2
2 sup

w∈H

(
p,

∂w

∂y

)2

‖w‖2
α,y

≤ c2M
2
2

n∑
|k|=1

k2
2

k2
2 + α

p2
k
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≤ c2M
2
2

n∑
|k|=1

|k|2
|k|2 + α

p2
k = c2M

2
2Φ(p, û).(11)

From (8)–(11) we get (7). Thus, the Lemma is proved.��
Since the set of trigonometric polynomials is dense inL2/R, the estimate

(7) holds for every function fromL2/R.

Lemma 4. For any trigonometric polynomial

p(x, y) =
n∑

|k|=1

pk cos k1x cos k2y

and sufficiently smallM2 from (5), there exists a constantc that does not
depend onα andn such that the following inequality is valid:

(12) Φ(p, û) ≤ c sup
v∈H 1

0

Ψ(p, v).

Proof. In virtue of Lemma 2, there exists a functionu ∈ U such that

Φ(p, û) ≤ c0Φ(p,u).

Consider two cases:(p2, q2) ≥ 0.5Φ(p, û) and (p1, q1) ≥ 0.5Φ(p, û),
whereq = div û . We use the following technical result (see Olshanskii
(1995), p.85): In the first case there exists a functionu ∈ H 1

0 : u1 =
0, u2 = v − r such that

Φ(p, û) ≤ cΦ(p,u) = c

(
p, ∂u2

∂y

)2

‖u2‖2
α

.

Now we setv = (v1, v2), wherev1 = 0 andv2 = gu2. Then due to the
constructionv ∈ H 1

0 . Since

‖gu2‖2
α = ‖∇(gu2)‖2 + α‖gu2‖2 ≤

∥∥∥∂(gu2)
∂x

∥∥∥2
+M2

1

∥∥∥∂u2

∂y

∥∥∥2

+αM2
1 ‖u2‖2 ≤ c‖u2‖2

α, wherec = 2(M2
1 +M2

2 ),

we have

Ψ(p, v) =

(
p, ∂u2

∂y

)2

‖gu2‖2
α

≥ c

(
p, ∂u2

∂y

)2

‖u2‖2
α

= c Φ(p,u) ≥ cΦ(p, û)

So for the first case Lemma 4 is proved.
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Consider the second case, i.e.(p1, q1) ≥ 0.5Φ(p, û). Similarly there
exists the functionu ∈ H 1

0 : u1 = v − r, u2 = 0 such that

Φ(p, û) ≤ c3Φ(p,u) = c3

(
p, ∂u1

∂x

)2

‖u1‖2
α

.

Setv = u . We have to prove that

Ψ(p, v) =

(
p, ∂v1

∂x − h∂v1

∂y

)2

‖v1‖2
α

≥ cΦ(p, û).

From the proof of Lemma 3 we have

Ψ(p, v) =

(
p, ∂u1

∂x + ḡu1 − ∂(hu1)
∂y

)2

‖u1‖2
α

,

which implies

Ψ(p,u) ≥
0.25

(
p, ∂u1

∂x

)2 − 4
(
p, ḡu1

)2 − 4
(
p, ∂(hu1)

∂y

)2

‖u1‖2
α

.

Estimating all terms on the right-hand side of the last inequality as was done
in the proof of Lemma 3, we have(

p, ∂u1

∂x

)2

‖u1‖2
α

≥ c4Φ(p, û),
(p, ḡu1)2

‖u1‖2
α

≤ cM2
2Φ(p, û),

(
p, ∂(hu1)

∂y

)2

‖u1‖2
α

≤ cM2
2Φ(p, û),

yielding
Ψ(p,u) ≥ c5(1 − c6M

2
2 )Φ(p, û).

Thus, in the case1 − c6M
2
2 > 0 the assertion of Lemma 4 is proved.��

Corollary 2 . LetΩ be a curvilinear trapezoid

Ω̄ = {x = (x1, x2) : 0 ≤ x1 ≤ l, 0 ≤ x2 ≤ g(x1)} ,
whereg is a Lipschitz function. Then for sufficiently smalll, the estimate
(12) is valid for anyp ∈ L2(Ω)/R.

Proof. From Lemma 4 it follows that (12) is true for anyp ∈ L2(Ω)/R if
l = π andmax |g′| is sufficiently small. Making the change of variables

x =
π

l
x1, y =

π

l
x2,
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we obtain the domainΩ satisfying the conditions of Lemma 4, andπ
l g

′
x =

g′
x1
. Hence, for sufficiently smalll the derivativeg′

x satisfies the condition
of Lemma 4, whence the assertion of Corollary 2 follows.��
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