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Abstract We consider a recently introduced new finite element approach for the
discretization of elliptic partial differential equations on surfaces. The main idea of this
method is to use finite element spaces that are induced by triangulations of an “outer”
domain to discretize the partial differential equation on the surface. The method is
particularly suitable for problems in which there is a coupling with a problem in an
outer domain that contains the surface, for example, two-phase flow problems. It has
been proved that the method has optimal order of convergence both in the H1 and in
the L2-norm. In this paper, we address linear algebra aspects of this new finite element
method. In particular the conditioning of the mass and stiffness matrix is investigated.
For the two-dimensional case we present an analysis which proves that the (effective)
spectral condition number of the diagonally scaled mass matrix and the diagonally
scaled stiffness matrix behaves like h−3| ln h| and h−2| ln h|, respectively, where h is
the mesh size of the outer triangulation.
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1 Introduction

Certain mathematical models involve elliptic partial differential equations posed on
surfaces. This occurs, for example, in multiphase fluids if one takes so-called surface
active agents (surfactants) into account. These surfactants induce tangential surface
tension forces and thus cause Marangoni phenomena [6,7]. In mathematical models
surface equations are often coupled with other equations that are formulated in a (fixed)
domain which contains the surface. In such a setting a common approach is to use a
splitting scheme that allows to solve at each time step a sequence of simpler (decou-
pled) equations. Doing so one has to solve numerically at each time step an elliptic
type of equation on a surface. The surface may vary from one time step to another
and usually only some discrete approximation of the surface is (implicitly) available.
A well-known finite element method for solving elliptic equations on surfaces, initi-
ated by the paper [5], consists of approximating the surface by a piecewise polygonal
surface and using a finite element space on a triangulation of this discrete surface,
cf. [3,6]. If the surface is changing in time, then this approach leads to time-dependent
triangulations and time-dependent finite element spaces. Implementing this requires
substantial data handling and programming effort. Another approach has recently been
introduced in [2]. The method in that paper applies to cases in which the surface is
given implicitly by some level set function and the key idea is to solve the partial dif-
ferential equation on a narrow band around the surface. Unfitted finite element spaces
on this narrow band are used for discretization.

In the recent paper [9] we introduced a new technique for the numerical solution
of an elliptic equation posed on a hypersurface. The main idea is to use time-indepen-
dent finite element spaces that are induced by triangulations of an “outer” domain to
discretize the partial differential equation on the surface. This method is particularly
suitable for problems in which the surface is given implicitly by a level set or VOF
function and in which there is a coupling with a flow problem in a fixed outer domain.
If in such problems one uses finite element techniques for the discretization of the
flow equations in the outer domain, this immediately results in an easy to implement
discretization method for the surface equation. If the surface varies in time, one has
to recompute the surface mass and stiffness matrix using the same data structures
each time. Moreover, quadrature routines that are needed for these computations are
often available already, since they are needed in other surface related calculations, for
example the computation of surface tension forces. Opposite to the method in [2], in
the paper [9] we do not use an extension of the surface partial differential equation
but instead use a restriction of the outer finite element spaces.

In [9] it is shown that this new method has optimal order of convergence in H1 and
L2 norms. The analysis requires shape regularity of the outer triangulation, but does
not require any type of shape regularity for discrete surface elements.

In the present paper, we address linear algebra aspects of this new finite element
method. In particular the conditioning of the mass and stiffness matrix is investi-
gated. Numerical experiments in two- and three-dimensional examples (treated in
Sect. 2.2) indicate that in the 3D case both for the diagonally scaled mass and stiff-
ness matrix (effective) spectral condition numbers behave as O(h−2) and in the 2D
case the behaviour of these condition numbers is O(h−2) and O(h−3), respectively.
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A finite element method for surface PDEs: matrix properties 493

Here h denotes the mesh size of the outer triangulation, which is assumed to be quasi-
uniform in a small neighbourhood of the surface. For the two-dimensional case we
present an analysis which proves these conditioning properties (up to an additional
logarithmic term | ln h|) under certain assumptions on distribution of the nodes near
the surface. The plausibility of these assumptions is discussed. We believe that this
analysis can be extended to the three-dimensional case, but would require a lot of
additional technical manipulations, see Sect. 3.5.

The remainder of the paper is organized as follows. In Sect. 2.1, we describe the
finite element method that is introduced in [9]. In Sect. 2.2, we give results of some
numerical experiments. These results illustrate the optimal order of convergence of
the method and conditioning properties. In Sect. 3, we present an analysis of condi-
tioning properties for the two-dimensional case. We introduce necessary notation in
Sect. 3.1. In Sect. 3.2, we collect some preliminaries and assumptions for the analysis.
Eigenvalue bounds for the diagonally scaled mass matrix are derived in Sect. 3.3. The
stiffness matrix is treated in Sect. 3.4. The plausibility of the assumptions and further
possible extensions of the analysis are discussed in Sect. 3.5.

2 Surface finite element method

2.1 Description of the method

In this section, we describe the finite element method from [9] for the three-dimen-
sional case. The modifications needed for the two-dimensional case are obvious.

We assume that � is an open subset in R
3 and � a connected C2 compact hyper-

surface contained in �. For a sufficiently smooth function g : � → R the tangential
derivative (along �) is defined by

∇�g = ∇g − ∇g · n� n�.

The Laplace–Beltrami operator on � is defined by

��g := ∇� · ∇�g.

We consider the Laplace–Beltrami problem in weak form: For given f ∈ L2(�) with∫
�

f ds = 0, determine u ∈ H1(�) with
∫
�

u ds = 0 such that

∫

�

∇�u∇�v ds =
∫

�

f v ds for all v ∈ H1(�). (2.1)

The solution u is unique and satisfies u ∈ H2(�) with ‖u‖H2(�) ≤ c‖ f ‖L2(�) and a
constant c independent of f , cf. [5].

For the discretization of this problem one needs an approximation �h of �. We
assume that this approximate manifold is constructed as follows. Let {Th}h>0 be a
family of tetrahedral triangulations of a fixed domain � ⊂ R

3 that contains �. These
triangulations are assumed to be regular, consistent and stable [1]. Take Th ∈ {Th}h>0.
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We assume that �h is a C0,1 surface without a boundary and �h can be partitioned
in planar segments, triangles or quadrilaterals, consistent with the outer triangulation
Th . This can be formally defined as follows. For any tetrahedron ST ∈ Th such that
meas2(ST ∩ �h) > 0 define T = ST ∩ �h . We assume that each T is planar, i.e.,
either a triangle or a quadrilateral. Thus �h can be decomposed as

�h = ∪T ∈Fh T,

where Fh is the set of all triangles or quadrilaterals T such that T = ST ∩ �h for
some tetrahedron ST ∈ Th . If T coincides with a face of an element in Th than the
corresponding ST is not unique. In this case, we chose one arbitrary but fixed tetra-
hedron ST which has T as a face. We emphasize that although the family {Th}h>0 is
shape-regular the family {Fh}h>0 in general is not shape-regular. In our examples Fh

contains strongly deteriorated triangles that have very small angles and neighboring
triangles can have very different areas, cf. Fig. 1.

The main idea of the method from [9] is that for discretization of the problem (2.1)
we use a finite element space induced by the continuous linear finite elements on Th .
This is done as follows. We define a subdomain that contains �h :

ωh := ∪T ∈Fh ST . (2.2)

This subdomain in R
3 is partitioned in tetrahedra that form a subset of Th . We introduce

the finite element space

Vh := {vh ∈ C(ωh) | v|ST ∈ P1 for all T ∈ Fh}. (2.3)

This space induces the following space on �h :

V �
h := {ψh ∈ H1(�h) | ∃ vh ∈ Vh : ψh = vh |�h }. (2.4)

This space is used for a Galerkin discretization of (2.1): determine uh ∈ V �
h with∫

�h
uhdsh = 0 such that

∫

�h

∇�h uh∇�hψh dsh =
∫

�h

fhψh dsh for all ψh ∈ V �
h ,

with fh an extension of f such that
∫
�h

fhdsh = 0 (cf. [9] for details). Due to the
Lax-Milgram lemma this problem has a unique solution uh . In [9] we analyze the
discretization quality of this method. In this analysis we assume �h to be sufficiently
close to� in the following sense. Let U ⊂ R

3 be a neighborhood of� and d : U → R

the signed distance function: |d(x)| = dist(x, �). We assume that

ess supx∈�h
|d(x)| ≤ c0h2,

ess supx∈�h
‖∇d(x)− nh(x)‖ ≤ c̃0h,
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hold, with nh(x) a suitably oriented unit normal to �h at x ∈ �h . Under these
assumptions the following optimal discretization error bounds are proven:

‖∇�h (u
e − uh)‖L2(�h)

≤ C h‖ f ‖L2(�), (2.5)

‖ue − uh‖L2(�h)
≤ C h2‖ f ‖L2(�), (2.6)

with ue a suitable extension of u and with a constant C independent of f and h.

2.2 Results of numerical experiments

In this section, we present results of a few numerical experiments. We distinguish
between 3D and 2D cases. The numerical experiments suggest among other things,
that in the 2D case the conditioning of matrices is more sensitive to the distribution
of nodes of the outer triangulation near the surface than in the 3D case. The analysis
given in Sect. 3 supports this observation.

2.2.1 3D example

As a first test problem we consider the Laplace–Beltrami equation

−��u + u = f on �,

with � = {x ∈ R
3 | ‖x‖2 = 1} and � = (−2, 2)3. This example is taken from [2].

The zero order term is added to guarantee a unique solution. The source term f is
taken such that the solution is given by

u(x) = a
‖x‖2

12 + ‖x‖2

(
3x2

1 x2 − x3
2

)
, x = (x1, x2, x3) ∈ �,

with a = − 13
8

√
35
π

. A family {Tl}l≥0 of tetrahedral triangulations of � is constructed
as follows. We triangulate� by starting with a uniform subdivision into 48 tetrahedra
with mesh size h0 = √

3. Then we apply an adaptive red-green refinement-algorithm
(implemented in the software package DROPS [4]) in which in each refinement step
the tetrahedra that contain � are refined such that on level l = 1, 2, . . . we have

hT ≤ √
3 2−l =: hl for all T ∈ Tl with T ∩ � �= ∅.

The family {Tl}l≥0 is consistent and shape-regular. The interface � is the zero-level
of ϕ(x) := ‖x‖2 − 1. Let I be the standard nodal interpolation operator on Tl . The
discrete interface is given by �hl := { x ∈ � | I (ϕ)(x) = 0}. Let {φi }1≤i≤m be the
nodal basis functions corresponding to the vertices of the tetrahedra in ωh , cf. (2.2).
The entries

∫
�h

∇�hφi · ∇�hφ j + φiφ j ds of the stiffness matrix are computed within
machine accuracy. For the right-handside we use a quadrature-rule that is exact up to
order five. The discrete problem is solved using a standard CG method with symmetric
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Table 1 Discretization errors
and error reduction

Level l ‖u − uh‖L2(�h )
Factor

1 0.1124 –

2 0.03244 3.47

3 0.008843 3.67

4 0.002186 4.05

5 0.0005483 3.99

6 0.0001365 4.02

7 3.411e−05 4.00

Fig. 1 Detail of the induced triangulation of �h (left) and level lines of the discrete solution uh

Gauss-Seidel preconditioner to a relative tolerance of 10−6. The number of iterations
needed on level l = 1, 2, . . . , 7, is 14, 26, 53, 104, 201, 435, 849, respectively.

In [9] a discretization error analysis of this method is presented, which shows that
it has optimal order of convergence, both in the H1- and L2-norm. The discretization
errors in the L2(�h)-norm are given in Table 1, cf. [9].

These results clearly show the h2
l behaviour as predicted by the analysis given in

[9], cf. (2.6). To illustrate the fact that in this approach the triangulation of the approx-
imate manifold �h is strongly shape-irregular we show a part of this triangulation in
Fig. 1. The discrete solution is visualized in Fig. 1.

The mass matrix M and stiffness matrix A have entries

Mi, j =
∫

�h

φiφ j dsh, Ai, j =
∫

�h

∇�hφi · ∇�hφ j dsh, 1 ≤ i, j ≤ m.

Define DM := diag(M), DA := diag(A) and the scaled matrices

M̃ := D
− 1

2
M MD

− 1
2

M , Ã := D
− 1

2
A AD

− 1
2

A .

for different refinement levels we computed the largest and smallest eigenvalues of M̃
and Ã. The results are given in Tables 2 and 3.
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Table 2 Eigenvalues of scaled
mass matrix M̃

Level l m Factor λ1 λ2 λm λm/λ2 Factor

1 112 – 3.8 e−17 0.0261 2.86 109 –

2 472 4.2 4.0 e−17 0.0058 2.83 488 4.5

3 1922 4.1 0 0.0012 2.83 2358 4.8

4 7646 4.0 0 0.00029 2.83 9759 4.1

Table 3 Eigenvalues of scaled
stiffness matrix Ã

Level l m Factor λ1 λ2 λ3 λm λm/λ3 Factor

1 112 – 0 0 0.055 2.17 39.5 –

2 472 4.2 0 0 0.013 2.26 174 4.4

3 1922 4.1 0 0 0.0028 2.47 882 5.0

4 7646 4.0 0 0 0.00069 2.61 3783 4.3
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Fig. 2 Eigenvalue distributions for scaled mass matrix M̃ (left) and for scaled stiffness matrix S̃ (right) for
the 3D example

These results show that for the scaled mass matrix there is one eigenvalue very close
to or equal to zero and for the effective condition number we have λm

λ2
∼ m ∼ h−2

l .
For the scaled stiffness matrix we observe that there are two eigenvalues close to or
equal to zero and an effective condition number λm

λ3
∼ m ∼ h−2

l . In Fig. 2 for both
matrices the eigenvalues λ j , with j ≥ 2 (mass matrix), j ≥ 3 (stiffness matrix) are
shown.

2.2.2 Structured 2D example

We also performed a numerical experiment with a very structured two-dimensional
triangulation and a simple “surface” as illustrated in Fig. 3. The number of vertices is
denoted by nV (nV = 11 in Fig. 3).

The surface is given by � = [0, 1] = [m1,mnV −1]. The mesh size of the trian-
gulation is h = 2

nV −3 . The vertices v1, v3, . . . , vnV −2 and v0, v2, . . . , vnV −1 are on

lines parallel to � and the distances of the upper and lower lines to � are given by δ
2 h
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Fig. 3 Example with a uniform triangulation

Table 4 Eigenvalues of scaled
mass matrix M̃

δ nV λ1 λ2 λnV λnV /λ2 Factor

0.3 17 0 1.01e−2 2.42 239 –

33 0 2.20e−3 2.42 1.10e+3 4.60

65 0 5.14e−4 2.42 4.70e+3 4.27

129 0 1.24e−4 2.42 1.95e+4 4.13

257 0 3.06e−5 2.42 7.89e+4 4.06

0.5 65 0 5.14e−4 2.40 4.72e+3 –

0.1 0 5.14e−4 2.46 4.79e+3

0.01 0 5.14e−4 2.50 4.86e+3

0.001 0 5.14e−4 2.50 4.86e+3

Table 5 Eigenvalues of scaled
stiffness matrix Ã

δ nV λ1 λ2 λ3 λnV λnV /λ3 Factor

0.3 17 0 0 5.25e−2 2.0 38.1 –

33 0 0 1.54e−2 2.0 130 3.41

65 0 0 4.27e−3 2.0 468 3.60

129 0 0 1.13e−3 2.0 1.77e+3 3.77

257 0 0 2.92e−4 2.0 6.85e+3 3.88

0.5 65 0 0 4.27e−3 2.0 468 –

0.1 0 0 4.27e−3 2.0 468

0.01 0 0 4.27e−3 2.0 468

0.001 0 0 4.27e−3 2.0 468

and 1−δ
2 h, respectively, with a parameter δ ∈ (0, 1) (δ = 1

2 in Fig. 3). In this case a
dimension argument immediately yields that both the mass and stiffness matrix are
singular. For different values of nV and of δ we computed the eigenvalues of the scaled
mass and stiffness matrix. The results are given in Tables 4 and 5.

These results clearly suggest that the condition numbers of both the diagonally
scaled mass and the diagonally scaled stiffness matrix behave like h−2 for h → 0.
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Fig. 4 Pedal curve

0 0.5 1
0

0.5

1

Moreover, one observes for this particular example that the conditioning is insensitive
to the distance of the surface � to the nodes of the outer triangulation.

2.2.3 Less structured 2D examples

We consider two 1D surfaces in � := (0, 1)2. One is the ellipse given by

(
x − 1

2

)2

a2 +
(
y − 1

2

)2

b2 = 1, a = 2

5
, b = 9

40
,

another one is the pedal curve given by

x̃(t)= ab2 cos(t)

a2 sin2 t+b2 cos2 t
, ỹ(t)=− ba2 cos(t)

a2 sin2 t+b2 cos2 t
, x = x̃+2

4
, y = ỹ+2

4
,

with a = 20
11 , b = 6

11 . In both cases we use a uniform triangulation of � as in
Fig. 4. The pedal curve and the coarsest triangulation (h = √

2 2−3) are illustrated
in Fig. 4. Finer triangulations on meshes with hl = √

2 2−l are obtained using regu-
lar refinement. We use surface finite element spaces as introduced above. Eigenvalue
distributions of the resulting scaled mass matrix M̃ = M̃l and scaled stiffness matrix
Ã = Ãl for several refinement levels l are shown in Fig. 5.

The situation appears to be more delicate now: (i) There are few very small eigen-
values (we will call them ‘outliers’ ) which do not obey any clear asymptotic; this
irregular behavior of the few smallest eigenvalues is especially well seen for the case
of the ellipse. (ii) Apart from these outliers, we observe for the ml ×ml scaled stiffness
matrix Ãl an eigenvalue distributionλk(Ãl) ∼ ( k

ml
)2, which due to ml ∼ h−1

l results in

an O(h−2
l ) effective condition number. (iii) For the scaled mass matrix M̃l we observe

a different behaviour: for the major part of the spectrum we have λk(M̃l) ∼ ( k
ml
)2

again; for eigenvalues with k � √
ml , however, the behaviour appears to be of the
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Fig. 5 Eigenvalue distributions for scaled mass matrix M̃ and for scaled stiffness matrix Ã for ellipse (left)
and pedal (right)

form λk(M̃l) ∼ ( k
ml
)3 (again few outliers may fail to obey any clear asymptotic). This

leads to an O(h−3
l ) effective condition number, which is worse compared to the 3D

and the regular 2D case discussed above.

Remark 1 In the analysis in Sect. 3, we only study effective condition numbers. It
is well-known that for many methods the rate of convergence depends not only on
the condition number but also on the eigenvalue distribution. In Fig. 5, we see that
the worse asymptotics in case of the scaled mass matrix occurs only in a relatively
small part of the spectrum. Furthermore in all cases we see relatively large distances
between eigenvalues in the lower part of the spectrum. Besides the condition number,
these properties will also affect the convergence behaviour of Krylov subspace meth-
ods applied to this type of problem. We performed an experiment where we applied
the CG method to systems with M̃l and Ãl . We take bl = M̃l(1, 1, . . . , 1)T and
starting vector equal to zero; the same for Ãl . We perform ml iterations of the CG
method. The convergence is measured by computing the energy norm of the error
ek , i.e. ‖ek‖M̃l

and ‖ek‖Ãl
, respectively. For l = 6, 7, 8 the convergence behaviour

is shown in Fig. 6 (left). As a measure for the rate of convergence we computed
r(M̃l) = 1

ml
log(‖eml ‖M̃l

‖e0‖−1
M̃l
); similar for r(Ãl). The results are given in the table

in Fig. 6. We observe that the systems with matrix M̃l are more difficult to solve than
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Fig. 6 Convergence behaviour of CG for levels l = 6, 7, 8 in the first ml iterations (left) and rate of
convergence (right)

the ones with Ãl . For increasing l, the deterioration in r(M̃l) is somewhat stronger,
but comparable with the one for r(Ãl). Thus, for M̃l the deterioration is milder as
predicted by the O(h−3

l ) effective condition number.

3 Analysis

This section gives the analysis supporting the O(h−2) and O(h−3) condition number
estimates for the scaled stiffness matrix and mass matrix, respectively. The section is
organized as follows. In Sect. 3.1, we define the surface mass and stiffness matrices
and give an introductory example. Sect. 3.2 introduces some further definitions and
notations and collects assumptions we need for our analysis. Some of these assump-
tions are introduced exclusively for the sake of analysis and are not expected to hold
for most practical problems, while other assumptions turn out to be quite realistic.
The plausibility of the assumptions is discussed in Sect. 3.5, which goes right after
Sects. 3.3 and 3.4 containing the main theoretical results of the paper. Even for a sim-
ple 2D academic case the analysis appears to be rather technical. Possible extensions
of theoretical results are discussed in Sect. 3.5.

3.1 Mass and stiffness matrices and notation

We take � = [0, 1] and consider a family of quasi-uniform triangulations {Th}h>0
as illustrated in Fig. 7, i.e., for each T ∈ Th we have meas1(� ∩ T ) > 0 and the
endpoints x = 0 and x = 1 of � lie on an edge of some T ∈ Th . The numbering of
vertices vi and intersection points mi is as indicated in Fig. 7. We distinguish between
the set of leafs L with corresponding index set � and the set of nodes N (= vertices
that are not leafs) with corresponding index set {1, 2, . . . , n}. In the example in Fig. 7
we have L = {v1,1, v6,1, v9,1, v9,2, v13,1}, � = {(1, 1), (6, 1), (9, 1), (9, 2), (13, 1)},
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Fig. 7 A 1D example

Fig. 8 Directed graph corresponding to the 1D example

N = {v1, v2, . . . , v13}. Note that for i = (i1, i2) ∈ � we have 1 ≤ i1 ≤ n. The set
of all vertices is denoted by V = L ∪ N , and |V | = nV . The corresponding index
set is denoted by I = {1, 2, . . . , n} ∪ �. This distinction between leafs and nodes is
more clear, if in the triangulation we delete all edges between vertices that are on the
same side of �. For the example in Fig. 7 this results in a directed graph shown in
Fig. 8. For each node vi ∈ N the number of leafs attached to vi is denoted by li (in
our example: l1 = l6 = l13 = 1, l9 = 2, l j = 0 for all other j). The intersection
points m j are numbered as indicated in Fig. 7. In the analysis it is convenient to use
the following notation: if vi , vi+1 ∈ N we define mi,0 := mi , mi,li +1 := mi+1, and
m1,0 := m1,1, mn,ln+1 := mn,ln . Using this, the subdivision of� into the intersections
with the triangles T ∈ Th can be written as

� = ∪1≤i≤n ∪1≤ j≤li +1 [mi, j−1,mi, j ]. (3.1)

We define h := sup{ diam(T ) | T ∈ Th}, ωh := ∪{T | T ∈ Th}, the linear finite
element space Vh = {v ∈ C(�h) | v|T ∈ P1 for all T ∈ Th} of dimension nV , and
the induced finite element space V �

h = {w ∈ C(�) | w = v|� for some v ∈ Vh} as
in (2.3) and (2.4), respectively. These spaces Vh and V �

h are called outer and surface
finite element spaces, respectively.

For the implementation it is very convenient to use the nodal basis functions of
the outer finite element space for representing functions in the surface finite element
space. Let { φi | i ∈ I} be the set of standard nodal basis functions in Vh , i.e., φi has
value one at node vi and zero values at all other v ∈ V, v �= vi . Clearly

V �
h = span{(φi )|� | i ∈ I}

holds. A dimension argument shows that these functions are not independent and thus
do not form a basis V �

h . This set of generating functions is used for the implementation
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of a finite element discretization of scalar elliptic partial differential equations on �,
using the surface space V �

h . The corresponding mass and stiffness matrices are given
by

〈Mu,u〉 =
1∫

0

uh(x)
2 dx, 〈Au,u〉 =

1∫

0

u′
h(x)

2 dx,

with uh =
∑

i∈I
ui (φi )|�, u := (ui )i∈I ∈ R

nV .

(3.2)

Both matrices are singular. The effective condition number of M (or A) is defined as
the ratio of the largest and smallest nonzero eigenvalue of M (or A). Below we derive
bounds for the effective condition of diagonally scaled mass and stiffness matrices.

3.2 Preliminaries and assumptions

In this section, we derive some results that will be used in the analysis of the mass-
and stiffness matrix in the following sections.

The following identities hold for u ∈ Vh :

u(mi ) = φi−1(mi )u(vi−1)+ φi (mi )u(vi ) for 1 ≤ i ≤ n, (3.3)

u(mi ) = φi1(mi )u(vi1)+ φi (mi )u(vi ) for i = (i1, i2) ∈ �. (3.4)

We introduce the notation

ũi := φi (mi )u(vi ) for i ∈ I,
ψi := u(mi ) for i ∈ I,

ξi :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φi (mi+1)

φi (mi )
for 1 ≤ i ≤ n − 1,

φi1(mi )

φi1(mi1)
for i = (i1, i2) ∈ �,

(3.5)

and obtain the relations

ψi = ξi−1ũi−1 + ũi for 2 ≤ i ≤ n, (3.6)

ψi = ξi ũi1 + ũi for i = (i1, i2) ∈ �. (3.7)

For vi = (xi , yi ) ∈ V we denote the distance of vi to the x-axis by |yi | =: d(vi ). We
introduce the following assumption on the triangulations {Th}h>0.
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Assumption 1 For vi ∈ N let v j , vr ∈ V be such that viv j and vivr intersect �. We
assume:

d(v j )

d(vr )
≤ c1, with c1 independent of i, j, r and h. (3.8)

For the derivation of lower bounds for mass and stiffness matrices we will need a
further assumption on the triangulations {Th}h>0:

Assumption 2 For j = 1, . . . , n denote g j := ∑� j +1
k=1 (ξ j,k − ξ j,k−1)

2. Define, for
α ∈ [0, 1]:

N (α) := {v j ∈ N | d(v j )} ≤ hα max

{

hg j , max
i= j, j+2,...

d(vi )

}

. (3.9)

Assume that there is an h-independent constant c1 such that |N (α)| ≤ c1hα−1 for all
α ∈ [0, 1].

Assumption 2 can be interpreted as a quantitative description on how the set of nodes
having a certain (maximal) distance to � (as specified in (3.9)) becomes smaller if this
distance gets smaller. The plausibility of both assumptions is discussed in Sect. 3.5. In
particular, it will be shown that Assumption 2 can be replaced by a simple (although
stronger) assumption on the distribution of the nodes of the outer triangulation near
the surface.

In the remainder of the paper, to simplify the notation, we use f ∼ g iff there are
generic constants c1 > 0 and c2 independent of h, such that c1g ≤ f ≤ c2g.

Lemma 3.1 For ξi as in (3.5) we have

�i
k= jξk =

(
1

d(v j−1)
+ 1

d(v j )

)
1

1
d(vi )

+ 1
d(vi+1)

for 1 ≤ j ≤ i ≤ n − 1. (3.10)

Furthermore, if Assumption 1 is satisfied we have

ξi ∼ 1 for 1 ≤ i ≤ n − 1, i ∈ �. (3.11)

Proof From geometric properties we get

φi (mi ) = d(vi−1)

d(vi )+ d(vi−1)
for 1 ≤ i ≤ n, (3.12)

φi1(mi ) = d(vi )

d(vi1)+ d(vi )
for i = (i1, i2) ∈ �. (3.13)
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Using this in the definition of ξi we obtain

ξi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d(vi+1)

d(vi−1)

d(vi−1)+ d(vi )

d(vi )+ d(vi+1)
for 1 ≤ i ≤ n − 1,

d(vi )

d(vi1−1)

d(vi1−1)+ d(vi1)

d(vi1)+ d(vi )
for i = (i1, i2) ∈ �.

(3.14)

In both cases ξi is of the form

ξi = a

(
1
a + z

1 + z

)

,

namely with a = d(vi+1)
d(vi−1)

, z = d(vi )
d(vi+1)

if 1 ≤ i ≤ n − 1, and a = d(vi )
d(vi1−1)

, z = d(vi1 )

d(vi )
if

i ∈ �. Note that z > 0 and from Assumption 1 it follows that a ∼ 1. Furthermore:

1

a
≤

1
a + z

1 + z
≤ 1 for z ≥ 0, a ≥ 1,

1 ≤
1
a + z

1 + z
≤ 1

a
for z ≥ 0, 0 < a ≤ 1.

This yields min{a, 1} ≤ ξi ≤ max{1, a} and thus the result in (3.11) is proved.
For 1 ≤ i ≤ n − 1 the representation of ξi in (3.14) can be rewritten as

ξi =
(

1

d(vi−1)
+ 1

d(vi )

)
1

1
d(vi )

+ 1
d(vi+1)

.

Using this the result in (3.10) immediately follows. ��
We introduce the notation:�i := mi+1 − mi (= mi,li +1 − mi,0) for i = 1, . . . , n, and
�0 := �1, �n+1 := �n . Due to quasi-uniformity of {Th}h>0 and (3.8) the following
holds:

|supp(φi ) ∩ �| ∼ �i1 for i = (i1, i2) ∈ �,
|supp(φi ) ∩ �| ∼ �i−1 +�i +�i+1 ∼ h for 1 ≤ i ≤ n.

Lemma 3.2 Assume that Assumption 1 holds. Then we have

‖φi‖2
� :=

1∫

0

φi (x)
2 dx ∼ �i1φi (mi )

2 for all i = (i1, i2) ∈ �, (3.15)

‖φi‖2
� ∼ h φi (mi )

2 for 1 ≤ i ≤ n, (3.16)

‖(φi )x‖2
� :=

1∫

0

φ′
i (x)

2 dx ∼ 1

�i1

φi (mi )
2 for all i = (i1, i2) ∈ �, (3.17)
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‖(φi )x‖2
�∼

⎛

⎝ 1

�i−1
+ 1

�i

li +1∑

j=1

(
ξi, j −ξi, j−1

)2+ 1

�i+1

⎞

⎠φi (mi )
2 for 1≤ i ≤n. (3.18)

Proof First we consider i = (i1, i2) =: (p, q) ∈ �. Note that supp(φi ) ∩ � =
[m p,q−1,m p,q+1] and that φi (m p,q−1) = φi (m p,q+1) = 0. For a linear function g

we have
∫ b

a g(x)2 dx ∼ (b − a)(g(a)2 + g(b)2). Thus we get

1∫

0

φi (x)
2 dx =

m p,q∫

m p,q−1

φi (x)
2 dx +

m p,q+1∫

m p,q

φi (x)
2 dx

∼ φi (m p,q)
2 (

m p,q − m p,q−1
) + φi (m p,q)

2 (
m p,q+1 − m p,q

)

=φi (mi )
2 (

m p,q+1−m p,q−1
)=φi (mi )

2|supp(φi ) ∩ �| ∼ �i1φi (mi )
2.

This proves the result in (3.15). Furthermore:

1∫

0

φ′
i (x)

2 dx =
m p,q∫

m p,q−1

φ′
i (x)

2 dx +
m p,q+1∫

m p,q

φ′
i (x)

2 dx

∼ φi (m p,q)
2
(

1

m p,q − m p,q−1
+ 1

m p,q+1 − m p,q

)

∼ 1

�i1

φi (m p,q)
2,

which proves the result in (3.17). Here we used the relation �p ∼ m p,q − m p,q−1,
which holds thanks to (3.8) and the angle condition for the outer triangulation.

We now consider 1 ≤ i ≤ n. We use the notation m0, j = 0 for all j and mn+1, j = 1
for all j . The support supp(φi )∩� = [mi−1,li−1 ,mi+1,1] is split into subintervals (cf.
(3.1)) as:

[mi−1,li−1 ,mi−1,li−1+1] ∪ (∪1≤ j≤li +1[mi, j−1,mi, j ]
) ∪ [mi+1,0,mi+1,1].

Note that φi (mi−1,li−1) = φi (mi+1,1) = 0 and mi−1,li−1+1 = mi , mi+1,0 = mi+1.
We obtain

1∫

0

φi (x)
2 dx =

mi−1,li−1+1∫

mi−1,li−1

φi (x)
2 dx +

li +1∑

j=1

mi, j∫

mi, j−1

φi (x)
2 dx +

mi+1,1∫

mi+1,0

φi (x)
2 dx

∼ (
mi−1,li−1+1 − mi−1,li−1

)
φi (mi )

2

+
li +1∑

j=1

(
mi, j − mi, j−1

) (
φi (mi, j )

2 + φi (mi, j−1)
2
)

+ (
mi+1,1 − mi+1,0

)
φi (mi+1)

2
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= φi (mi )
2

⎡

⎣mi−1,li−1+1−mi−1,li−1+
li +1∑

j=1

(
mi, j − mi, j−1

) (
ξ2

i, j +ξ2
i, j−1

)

+ (mi+1,1 − mi+1,0)ξ
2
i

⎤

⎦ ,

with ξi, j , ξi as in (3.5), ξi,0 = φi (mi,0)

φi (mi )
= 1, and for i < n, ξi,li +1 = φi (mi,li +1)

φi (mi )
=

φi (mi+1)
φi (mi )

= ξi . Using (3.11) we get

1∫

0

φi (x)
2 dx ∼ φi (mi )

2

⎡

⎣mi−1,li−1+1 − mi−1,li−1

+
li +1∑

j=1

(
mi, j − mi, j−1

) + (mi+1,1 − mi+1,0)

⎤

⎦

= φi (mi )
2|supp(φi ) ∩ �| ∼ hφi (mi )

2.

Hence the result in (3.16) holds. We also have:

1∫

0

φ′
i (x)

2 dx =
mi−1,li−1+1∫

mi−1,li−1

φ′
i (x)

2 dx +
li +1∑

j=1

mi, j∫

mi, j−1

φ′
i (x)

2 dx +
mi+1,1∫

mi+1,0

φ′
i (x)

2 dx

∼ φi (mi )
2

�i−1
+

li +1∑

j=1

(
φi (mi, j )− φi (mi, j−1)

)2

�i
+ φi (mi+1)

2

�i+1

= φi (mi )
2

⎛

⎝ 1

�i−1
+ 1

�i

li +1∑

j=1

(
ξi, j − ξi, j−1

)2 + ξ2
i

�i+1

⎞

⎠ .

Using ξi ∼ 1 this proves the result in (3.18). ��

3.3 Analysis for the mass matrix

In this section, we derive bounds for the (effective) condition number of the mass
matrix M defined in (3.2). We define DM := diag(M) = diag(‖φi‖2

�)i∈I . By 〈·, ·〉 we
denote the Euclidean inner product.
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Lemma 3.3 Assume that Assumption 1 is satisfied. For all u = (ui )i∈I ∈ R
nV , u �= 0,

we have

〈Mu,u〉
〈DM u,u〉 ∼ h

∑n
i=2 ψ

2
i + ∑

i=(i1,i2)∈� �i1ψ
2
i

h
∑n

i=1 ũ2
i + ∑

i=(i1,i2)∈� �i1 ũ2
i

(3.19)

with ψi = u(mi ), u := ∑
i∈I uiφi , ũi = φi (mi )ui .

Proof The identity 〈DM u,u〉 = ∑
i∈I ‖φi‖2

�u2
i follows directly from the definition

of DM . Furthermore, using Lemma 3.2, we obtain:

∑

i∈I
‖φi‖2

�u2
i =

n∑

i=1

‖φi‖2
�u2

i +
∑

i∈�
‖φi‖2

�u2
i ∼ h

n∑

i=1

φi (mi )
2u2

i +
∑

i∈�
�i1φi (mi )

2u2
i

= h
n∑

i=1

ũ2
i +

∑

i∈�
�i1 ũ2

i .

We now consider the nominator. For two neighboring point m p and mq we introduce
the mesh sizes h−

p := m p − mq if mq < m p, h+
p := mq − m p if mq > m p and

h p := h−
p + h+

p . Furthermore, h1 := h+
1 , hn,1 := h−

n,1. Using this we get

〈Mu,u〉 =
1∫

0

u(x)2 dx =
n∑

i=1

li +1∑

j=1

mi, j∫

mi, j−1

u(x)2 dx

∼
n∑

i=1

li +1∑

j=1

(
mi, j − mi, j−1

) (
u(mi, j )

2 + u(mi, j−1)
2
)

=
n∑

i=1

li +1∑

j=1

h−
i, j

(
ψ2

i, j + ψ2
i, j−1

)
∼

n∑

i=1

li∑

j=0

hi, jψ
2
i, j

=
n∑

i=2

hiψ
2
i +

∑

i∈�
hiψ

2
i ∼ h

n∑

i=2

ψ2
i +

∑

i∈�
hiψ

2
i .

From this and hi ∼ �i1 for i = (i1, i2) ∈ � the result in (3.19) follows. ��
Theorem 3.4 Assume that Assumption 1 is satisfied. There exists a constant C inde-
pendent of h such that

〈Mu,u〉
〈DM u,u〉 ≤ C for all u ∈ R

nV , u �= 0.

Proof Using (3.6) and (3.11) we obtain, for 2 ≤ i ≤ n,

ψ2
i ≤ c(ũ2

i−1 + ũ2
i ).
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Hence,

h
n∑

i=2

ψ2
i ≤ c h

n∑

i=1

ũ2
i . (3.20)

For i = (i1, i2) ∈ � we have, using (3.7) and (3.11),

�i1ψ
2
i ≤ c�i1(ũ

2
i1

+ ũ2
i ) ≤ c(hũ2

i1
+�i1 ũ2

i ).

This yields

∑

i∈�
�i1ψ

2
i ≤ c

(

h
n∑

i=1

ũ2
i +

∑

i∈�
�i1 ũ2

i

)

. (3.21)

Combination of (3.20), (3.21) and the result in Lemma 3.3 proves the result. ��
Theorem 3.5 Assume that Assumptions 1 and 2 are satisfied. There exists a constant
C > 0 independent of h such that

〈Mu,u〉
〈DM u,u〉 ≥ Ch3| ln h|−1

for all u = (ui )i∈I ∈ R
nV , u �= 0, with u1 = 0 and uk+1 = 0 if vk ∈ N (1) (k < n).

Proof First consider the case N (1) = ∅. For 2 ≤ i ≤ n we have, using (3.6) and
u1 = 0:

|ũi | ≤ |ψi | + ξi−1|ũi−1| ≤
i∑

j=2

(
�i−1

k= jξk

)
|ψ j |.

From this we get

n∑

i=2

ũ2
i ≤

⎛

⎝
n∑

i=2

i∑

j=2

(
�i−1

k= jξk

)2

⎞

⎠
n∑

j=2

ψ2
j . (3.22)

Using Assumption 2 the factor
∑n

i=2
∑i

j=2(�
i−1
k= jξk)

2 can be estimated as follows.
To shorten notation we write di := d(vi ). Using the result in (3.10) we obtain

(
�i−1

k= jξk

)2 ≤ min{di−1, di }2
(

1

d j−1
+ 1

d j

)2

,

hence,

i∑

j=2

(
�i−1

k= jξk

)2 ≤ 4
i∑

j=1

min{di−1, di }2

d2
j

,
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and

n∑

i=2

i∑

j=2

(
�i−1

k= jξk

)2 ≤ 4
n∑

i=2

i∑

j=1

min{di−1, di }2

d2
j

≤ 4
n∑

j=1

n∑

i= j

min{di−1, di }2

d2
j

≤ 8
n∑

j=1

n∑

i= j, j+2, j+4,...

d2
i

d2
j

≤ 8n
n∑

j=1

(
maxi= j, j+2,... di

d j

)2

=: 8n
n∑

j=1

β2
j .

Define N̂ (α) := { v j ∈ N | d(v j ) ≤ hα maxi= j, j+2,... d(vi )} = {v j ∈ N | β j ≥
h−α} ⊂ N (α). Note that N̂ (0) = N , N̂ (1) = ∅ and |N̂ (α)| ≤ c1hα−1. Furthermore,
for 0 ≤ α1 ≤ α2 ≤ 1 we have #{β j | β j ∈ [h−α1 , h−α2)} = |N̂ (α1)|− |N̂ (α2)|. Using
this and Assumption 2 we obtain:

8n
n∑

j=1

β2
j ≤ −ch−1

1∫

0

h−2α d|N̂ (α)| ≤ −c h−2

1∫

0

h−2α dhα

≤ ch−2| ln h|
1∫

0

h−αdα ≤ ch−3| ln h|.

Using this bound in (3.22), in combination with ũ1 = 0, |ũ0| = |ψ1| we obtain

n∑

i=0

ũ2
i ≤ ch−3| ln h|

n∑

i=1

ψ2
i . (3.23)

We now consider the case N (1) �= ∅. We take |N (1)| = 1, say N (1) = {vk}, hence
uk+1 = 0. Using the above arguments both on the triangulation starting with v0 and
ending at vk and on the one starting at vk and ending at vn we obtain results as in (3.23)
with

∑n
i=0,1 replaced by

∑k−1
i=0,1 and with

∑n
i=0,1 replaced by

∑n
i=k,k+1, respectively.

Adding these two results we see that (3.23) holds in this case, too. The case |N (1)| ≥ 2
can be treated by repetition of this splitting argument.

We now treat the second term in the denominator in (3.19) for the general case
|N (1)| ≥ 0. For i = (i1, i2) ∈ � we get, using (3.7) and (3.11):

|ũi | ≤ c|ũi1 | + |ψi |,

hence,

�i1 ũ2
i ≤ c

(
hũ2

i1
+�i1ψ

2
i

)
,
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which yields, using (3.23),

∑

i∈�
�i1 ũ2

i ≤c

(

h
n∑

i=2

ũ2
i +

∑

i∈�
�i1ψ

2
i

)

≤ch−3| ln h|
(

h
n∑

i=2

ψ2
i +

∑

i∈�
�i1ψ

2
i

)

.

(3.24)

Combination of (3.23) and (3.24) with the result in Lemma 3.3 completes the proof.
��

We now present a main result of this paper on the conditioning of the scaled mass
matrix.

Theorem 3.6 Let 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λnV be the eigenvalues of D−1
M M. Assume

that Assumptions 1 and 2 are satisfied. Then

λ1 = 0, λ2 > 0, and
λnV

λm
≤ Ch−3| ln h| (3.25)

holds with a constant C independent of h, and m = |N (1)| + 2.

Proof The matrix M has dimension nV × nV . The number of intersection points
m j is nV − 1 and thus dim(V �

h ) ≤ nV − 1 holds. This implies dim(range(M)) =
dim(V �

h ) ≤ nV −1, and thus dim(ker(M)) ≥ 1, which implies λ1 = 0. For any u �= 0
with u1 = 0 we have 〈Mu,u〉 > 0 and thus from the Courant-Fischer representation
of eigenvalues it follows that λ2 > 0 holds. From the Courant-Fischer representation
and Theorem 3.5 we obtain, with Wm the family of m − 1-dimensional subspaces of
R

nV ,

λm = sup
S∈Wm

inf
u∈S⊥

〈Mu,u〉
〈DM u,u〉 ≥ inf

u ∈ R
nV , u1 = 0

ui+1 = 0 i f vi ∈ N (1)

〈Mu,u〉
〈DM u,u〉 ≥ Ch3| ln h|−1.

In combination with the result in Theorem 3.4 this yields
λnV
λm

≤ Ch−3| ln h|. ��

Note that due to Assumption 2 we have |N (1)| ≤ c1 with some h-independent con-
stant c1 = O(1). Thus in (3.25) we have a bound on an “effective” condition number
in the sense that a fixed (independent of h) number of m − 1 smallest eigenvalues are
not taken into account.

3.4 Analysis for the stiffness matrix

In this section, we derive bounds for the (effective) condition number of the stiffness
matrix A defined in (3.2).

Let DA = diag(A) be the diagonal of the stiffness matrix.
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Lemma 3.7 Assume that Assumption 1 holds. For all u = (ui )i∈I ∈ R
nV , u �= 0, we

have

〈Au,u〉
〈DAu,u〉 ∼

∑n
i=1

1
�i

∑li +1
j=1 (ψi, j − ψi, j−1)

2

∑n
i=1

(
1

�i−1
+ 1

�i

∑li +1
j=1

(
ξi, j − ξi, j−1

)2 + 1
�i+1

)
ũ2

i + ∑
i∈� 1

�i1
ũ2

i

,

with ψi = u(mi ), u := ∑
i∈I uiφi , ũi = φi (mi )ui .

Proof The identity 〈DAu,u〉 = ∑
i∈I ‖(φi )x‖2

�u2
i follows directly from the definition

of DA. Furthermore, using Lemma 3.2 we obtain, with gi := ∑li +1
j=1 (ξi, j − ξi, j−1

)2:

∑

i∈I
‖(φi )x‖2

�u2
i =

n∑

i=1

‖(φi )x‖2
�u2

i +
∑

i∈�
‖(φi )x‖2

�u2
i

∼
n∑

i=1

(
1

�i−1
+ gi

�i
+ 1

�i+1

)

φi (mi )
2u2

i +
∑

i∈�

1

�i1

φi (mi )
2u2

i

=
n∑

i=1

(
1

�i−1
+ gi

�i
+ 1

�i+1

)

ũ2
i +

∑

i∈�

1

�i1

ũ2
i .

For the nominator we have:

〈Au,u〉 =
1∫

0

u′(x)2 dx =
n∑

i=1

li +1∑

j=1

mi, j∫

mi, j−1

u′(x)2 dx

=
n∑

i=1

li +1∑

j=1

(
u(mi, j )− u(mi, j−1)

)2

mi, j − mi, j−1
∼

n∑

i=1

1

�i

li +1∑

j=1

(ψi, j − ψi, j−1)
2.

This completes the proof. ��
Theorem 3.8 Assume that Assumption 1 holds. There exists a constant C independent
of h such that

〈Au,u〉
〈DAu,u〉 ≤ C for all u ∈ R

nV , u �= 0.

Proof We use Lemma 3.7. Using (3.6) and (3.7) we obtain

ψi,1 − ψi,0 = ψi,1 − ψi = ũi,1 − ξi−1ũi−1 + (ξi,1 − 1)ũi

= ũi,1 − ξi−1ũi−1 + (ξi,1 − ξi,0)ũi

and for 2 ≤ j ≤ li + 1

ψi, j − ψi, j−1 = ũi, j − ũi, j−1 + (ξi, j − ξi, j−1)ũi .
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Using ξi ∼ 1 this yields, with ũi,0 := ũi−1,

(ψi, j − ψi, j−1)
2 ≤ c

(
ũ2

i, j + ũ2
i, j−1 + (ξi, j − ξi, j−1)

2ũ2
i

)
for 1 ≤ j ≤ li + 1.

Hence, with gi := ∑li +1
j=1 (ξi, j − ξi, j−1)

2 we obtain

li +1∑

j=1

(ψi, j − ψi, j−1)
2 ≤ c

⎛

⎝ũ2
i−1 + ũ2

i+1 + gi ũ
2
i +

li∑

j=1

ũ2
i, j

⎞

⎠

and thus

n∑

i=1

1

�i

li +1∑

j=1

(ψi, j − ψi, j−1)
2 ≤ c

n∑

i=1

1

�i

(
ũ2

i−1 + ũ2
i+1 + gi ũ

2
i

)
+ c

∑

i=(i1,i2)∈�

1

�i1

ũ2
i

≤ c
n∑

i=1

(
1

�i−1
+ gi

�i
+ 1

�i+1

)

ũ2
i + c

∑

i=(i1,i2)∈�

1

�i1

ũ2
i ,

which completes the proof. ��
We now derive a lower bound for the smallest nonzero eigenvalue of D−1

A A. For
this it turns out to be more convenient to consider ui := u(vi ) = φi (mi )

−1ũi instead
of ũi .

Lemma 3.9 For ui = u(vi ) we have the recursion

ui = (1 − αi )ui−1 + αi ui−2 + 1

φi (mi )
(ψi − ψi−1), i = 2, . . . , n,

with

αi := d(vi−1)+ d(vi )

d(vi−2)+ d(vi−1)
.

For u0 = u1 := 0 the solution of this recursion is given by

ui =
i−1∑

j=1

(
d(v j )+ (−1)i− j−1d(vi )

) 1

d(v j )
(ψ j+1 − ψ j ), i = 2, . . . , n. (3.26)

Proof From (3.3) we get

ψi = φi−1(mi )ui−1 + φi (mi )ui

ψi−1 = φi−2(mi−1)ui−2 + φi−1(mi−1)ui−1.
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and thus, using φ j−1(m j ) = 1 − φ j (m j ), we have

ui =
(

1 + φi−1(mi−1)− 1

φi (mi )

)

ui−1 + 1 − φi−1(mi−1)

φi (mi )
ui−2 + 1

φi (mi )
(ψi − ψi−1)

= (1 − αi )ui−1 + αi ui−2 + 1

φi (mi )
(ψi − ψi−1)

with αi := 1−φi−1(mi−1)
φi (mi )

. Using the formula in (3.12) we get

αi = d(vi−1)+ d(vi )

d(vi−2)+ d(vi−1)
.

The representation

ui =
i∑

k=2

k−1∑

j=1

(−1)k+1− j (d(vk−1)+ d(vk))
1

d(v j )
(ψ j+1 − ψ j ) (3.27)

can be shown by induction as follows. For i = 2 we get (using (3.12)),

u2 = (d(v1)+ d(v2))
1

d(v1)
(ψ2 − ψ1) = 1

φ2(m2)
(ψ2 − ψ1),

which also follows from the recursion formula if we take u0 = u1 = 0. Assume that
the representation formula (3.27) is correct for indices less than or equal to i − 1. We
then obtain

(1 − αi )ui−1 + αi ui−2 + 1

φi (mi )
(ψi − ψi−1)

= −αi (ui−1 − ui−2)+ ui−1 + 1

φi (mi )
(ψi − ψi−1)

= −αi

i−2∑

j=1

(−1)i− j (d(vi−2)+ d(vi−1))
1

d(v j )
(ψ j+1 − ψ j )

+
i−1∑

k=2

k−1∑

j=1

(−1)k+1− j (d(vk−1)+ d(vk))
1

d(v j )
(ψ j+1 − ψ j )

+d(vi−1)+ d(vi )

d(vi−1)
(ψi − ψi−1)

=
i−1∑

j=1

(−1)i+1− j (d(vi−1)+ d(vi ))
1

d(v j )
(ψ j+1 − ψ j )

+
i−1∑

k=2

k−1∑

j=1

(−1)k+1− j (d(vk−1)+ d(vk))
1

d(v j )
(ψ j+1 − ψ j )
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=
i∑

k=2

k−1∑

j=1

(−1)k+1− j (d(vk−1)+ d(vk))
1

d(v j )
(ψ j+1 − ψ j ),

and thus the representation for ui in (3.27). From this we obtain, by changing the order
of summation:

ui =
i−1∑

j=1

⎛

⎝
i∑

k= j+1

(−1)k+1− j (d(vk−1)+ d(vk))

⎞

⎠ 1

d(v j )
(ψ j+1 − ψ j ).

The representation in (3.26) immediately follows from this one. ��
Theorem 3.10 Assume the Assumptions 1 and 2 hold. There exists a constant C > 0
independent of h such that

〈Au,u〉
〈DAu,u〉 ≥ Ch2| ln h|−1

for all u = (ui )i∈I ∈ R
nV , u �= 0, with u0 = u1 = 0 and uk = uk+1 = 0 if vk ∈ N (1)

(k < n).

Proof We continue to use the notation di := d(vi ), ui := u(vi ). First assume N (1) =
∅. We use the representation in Lemma 3.7 and first consider the term

∑n
i=1(

1
�i−1

+
gi
�i

+ 1
�i+1

)ũ2
i in the denominator. The Assumption 1 and the regularity of the outer tri-

angulation imply that the angles between � and all sides of the triangles intersecting �
are uniformly (w.r.t. h) bounded away from zero. Hence we have di ∼ �i (1 ≤ i ≤ n),
and ũi = φi (mi )ui ∼ di−1

h ui (1 ≤ i ≤ n). Using this and the result in (3.26) we get

ũ2
i ≤ c

d2
i−1

h2 u2
i ≤ c

d2
i−1

h2

⎛

⎝
i−1∑

j=1

(d2
j + d2

i )
1

d j

⎞

⎠
n∑

j=1

1

d j
(ψ j+1 − ψ j )

2.

For the last term we have

n∑

i=1

1

di
(ψi+1 − ψi )

2 ≤ c
n∑

i=1

1

�i

li +1∑

j=1

(ψi, j − ψi, j−1)
2,

Condition (3.8) and d j ∼ � j yield di−1 ∼ �i−1 ∼ �i+1. Using this and u1 = 0, we
get

n∑

i=1

(
1

�i−1
+ gi

�i
+ 1

�i+1

)

ũ2
i ≤ c

n∑

i=1

(
1

di−1
+ gi

di

)

ũ2
i

≤
⎡

⎣ c

h2

n∑

i=2

(

di−1 + gi d2
i−1

di

)
i−1∑

j=1

(

d j + d2
i

d j

)⎤

⎦
n∑

i=1

1

�i

li +1∑

j=1

(ψi, j − ψi, j−1)
2.

123



516 M. A. Olshanskii, A. Reusken

We estimate the factor in the square brackets as follows. Using di−1di ≤ c min
{di−1, di }h we get:

c

h2

n∑

i=2

(

di−1 + gi d2
i−1

di

)
i−1∑

j=1

(

d j + d2
i

d j

)

≤ c

h2

n∑

i=2

i−1∑

j=1

di−1d2
i + d2

i−1di

d j
+ c

h2

n∑

i=2

i−1∑

j=1

di−1d j + c

h2

n∑

i=2

gi d2
i−1

di

i−1∑

j=1

d j

≤ c
n∑

i=2

i−1∑

j=1

min{di−1, di }
d j

+ ch−2 + c

h

n∑

i=2

hgi

di
.

The first term on the righthand side can be bounded by ch−2| ln h| using the same
arguments as in the proof of Theorem 3.5. The third term can be treated in a similar
way as follows. Define β j := hg j

d j
, Ñ (α) := {v j ∈ N | d(v j ) ≤ hα+1g j } = {v j ∈

N | β j ≥ h−α} ⊂ N (α). Note that Ñ (0) = N , Ñ (1) = ∅ and |Ñ (α)| ≤ c1hα−1. For
0 ≤ α1 ≤ α2 ≤ 1 we have #{β j | β j ∈ (h−α1, h−α2 ]} = |Ñ (α1)| − |Ñ (α2)|. Using
this and Assumption 2 we obtain:

c

h

n∑

i=2

βi ≤ −ch−1

1∫

0

h−αd|Ñ (α)| ≤ −ch−2

1∫

0

h−αdhα ≤ ch−2| ln h|.

Collecting these results (and using ũ0 = ũ1 = 0) we get

n∑

i=0

(
1

�i−1
+ gi

�i
+ 1

�i+1

)

ũ2
i ≤ch−2| ln h|

n∑

i=1

1

�i

li +1∑

j=1

(ψi, j −ψi, j−1)
2. (3.28)

We now consider the case N (1) �= ∅. We take |N (1)| = 1, say N (1) = {vk}, hence
uk = uk+1 = 0. Using the above arguments both on the triangulation starting with v0
and ending at vk and on the one starting at vk and ending at vn we obtain results as
in (3.28) with

∑n
i=0,1 replaced by

∑k−1
i=0,1 and with

∑n
i=0,1 replaced by

∑n
i=k,k+1,

respectively. Adding these two results we see that (3.28) holds in this case, too. The
case |N (1)| ≥ 2 can be treated by repetition of this splitting argument.

We now treat the term
∑

i∈� 1
�i1

ũ2
i in the denominator in Lemma 3.7 for the general

case |N (1)| ≥ 0. Note that

∑

i∈�

1

�i1

ũ2
i =

∑

1≤i≤n, li>0

li∑

j=1

1

�i
ũ2

i, j .
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Using (3.7) we get, for an i with li ≥ 2:

ũi, j − ũi, j−1 = ψi, j − ψi, j−1 − (ξi, j − ξi, j−1)ũi ,

and with (3.6) and ψi,0 := ψi , ξi,0 := 1:

ũi,1 − ξi−1ũi−1 = ψi,1 − ψi,0 − (ξi,1 − ξi,0)ũi .

This yields, for 1 ≤ j ≤ li :

ũ2
i, j ≤ c

⎛

⎝ũ2
i−1 +

li∑

j=1

(ψi, j − ψi, j−1)
2 +

li∑

j=1

(ξi, j − ξi, j−1)
2ũ2

i

⎞

⎠

≤ c

⎛

⎝ũ2
i−1 +

li +1∑

j=1

(ψi, j − ψi, j−1)
2 + gi ũ

2
i

⎞

⎠ .

Thus we get

∑

1≤i≤n, li>0

li∑

j=1

1

�i
ũ2

i, j ≤c
n∑

i=1

1

�i
ũ2

i−1+c
n∑

i=1

1

�i

li +1∑

j=1

(ψi, j −ψi, j−1)
2+c

n∑

i=1

gi

�i
ũ2

i

≤ c
n∑

i=1

(
gi

�i
+ 1

�i+1

)

ũ2
i + c

n∑

i=1

1

�i

li +1∑

j=1

(ψi, j − ψi, j−1)
2

Using the bound in (3.28) we obtain

∑

1≤i≤n, li>0

li∑

j=1

1

�i
ũ2

i, j ≤ ch−2| ln h|
n∑

i=1

1

�i

li +1∑

j=1

(ψi, j − ψi, j−1)
2,

and combination of this with the result in (3.28) completes the proof. ��
Theorem 3.11 Let 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λnV be the eigenvalues of D−1

A A. Assume
that Assumptions 1 and 2 are satisfied. Then

λ1 = 0, λ3 > 0, and
λnV

λm
≤ Ch−2| ln h|

holds, with a constant C independent of h and m = 2|N (1)| + 3.

Proof A dimension argument as in the proof of Theorem 3.6 yields λ1 = 0. From the
Courant-Fischer representation and Theorem 3.10 we obtain, with Wm the family of
(m − 1)-dimensional subspaces of R

nV ,
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λm = sup
S∈Wm

inf
u∈S⊥

〈Au,u〉
〈DAu,u〉 ≥ inf

u ∈ R
nV , u0 = u1 = 0

ui+1 = ui = 0 i f vi ∈ N (1)

〈Au,u〉
〈DAu,u〉 ≥ Ch2| ln h|−1.

In combination with the result in Theorem 3.8 this yields
λnV
λm

≤ Ch−2| ln h|. ��

3.5 Further discussions and extensions

3.5.1 Discussion of Assumptions 1 and 2

Assumption 1 poses a restriction on how the surface � divides any triangle T ∈ Th .
Since Th satisfies a minimal angle condition one easily finds that Assumption 1 implies
that the angles between � and all sides of the triangles that intersect � are uniformly
(w.r.t. h) bounded away from zero. This condition may be satisfied in certain structured
cases, as in Sect. 2.2.2, in a general, however, there appears to be no reason why it
should hold. We introduced Assumption 1 to make our analysis work and currently
we do not see how to avoid it. Assumption 1, however is weak enough to allow a
subdivision of � which is not quasi-uniform, cf. the experiment with varying δ in
Sect. 2.2.2. In our applications (where � is an approximation of the zero level of a
level set function, cf. Sect. 2.2) it is not very realistic to assume quasi-uniformity of
the induced triangulation of �, cf. Fig. 1.

Assumption 2 gives a condition on the distribution of nodes near the surface � in
terms of their distances to�. In general, the condition |N (α)| ≤ c1hα−1 means that the
set of nodes having a certain (maximal) distance to � (as specified in (3.9)) becomes
smaller if this distance gets smaller. However, in the structured 2D experiment in
Sect. 2.2.2, we can have many nodes (namely ∼ 1

2 n) with arbitrarily small distances
to �. In that experiment, however, we have d(v j ) = maxi= j, j+2,... d(vi ) and g j = 0
for all j (the triangulation is “parallel” to �). Thus we have N (0) = N , N (α) = ∅
for all α ∈ (0, 1] and Assumption 2 is fulfilled. In more practical unstructured cases
it looks natural to use instead of Assumption 2 the following stronger, but simpler
assumption:

Define, for α ∈ [0, 1]:

N (α) := {v j ∈ N | d(v j ) ≤ h1+α}, (3.29)

and assume that there is an h-independent constant c1 such that |N (α)| ≤ c1hα−1 for
all α ∈ [0, 1]. To validate the plausibility of this assumption we computed N (α) as
in (3.29) for the ellipse and pedal curves, see Sect. 2.2.3. Figure 9 shows |N (α)| vs.
α for different refinement levels l. The plot in the logarithmic scale for |N (α)| shows
that the assumption on hα−1 asymptotic seems very plausible. Furthermore, Table 6
shows the value of |N (1)| for different refinement levels (all values are multiples of 4
due to the symmetries of both curves). We recall that |N (1)| appears in the statement
of eigenvalues low bounds in Theorems 3.6 and 3.11 and it is related to the presence
of few outliers in the spectrum of mass and stiffness matrices. Finally, we note that for
the structured 2D example from Sect. 2.2.2 a O(h−2| ln h|) condition number bound
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Fig. 9 Distribution of node distances to the curve � for ellipse and pedal curve

Table 6 |N (1)| for different
refinement levels; hl = √

2 2−l l 4 5 6 7 8 4 5 6 7 8

Ellipse Pedal curve

ml 70 138 278 554 1110 82 170 350 690 1378

|N (1)| 0 8 16 12 4 0 12 8 4 16

for the mass matrix can be proved using a stronger condition than the one formulated
in Assumption 2, cf. [8].

3.5.2 On analysis for the 3D case

The numerical results from Sect. 2.2.1, Fig. 2, Tables 2 and 3, strongly suggest that in
the (unstructured) 3D case for both the mass and stiffness matrices we have effective
condition number that behave like O(h−2) and furthermore that no outliers occur in
the spectrum. This in contrast to the 2D case where for the effective condition number
of the mass matrix in general only an O(h−3) (up to a possible log-term) estimate
holds and outliers do occur in the spectrum. A generalization of our analysis to the
3D case requires a lot of further technical manipulations and will be presented else-
where. Here we give a brief explanation, why the 3D case may be more advantageous
regarding the above-mentioned spectral properties.

The proof of the lower bound for both mass and stiffness matrices is based on
bounds for the scaled value of a finite element function in the i th outer node (|ũi |) in
terms of the values of the same function (or differences of values) in a sequence of
surface nodes, cf. (3.3) and (3.4). All sequences start from one basis outer node v1 (two
nodes v0, v1 for (3.4)), where the function vanishes. We were able to prove bounds
for the coefficients of these sequences, using Assumption 1 and 2 on the outer nodes
distances to the surface. In the 2D case all nodes v j , 1 ≤ j ≤ i , cf. fig. 8, between
the basis node v1 and the node vi , where the function is estimated, are involved in
the sequences. In the 3D case, however, thanks to the additional space dimension one
can consider many different sequences of outer nodes ‘connecting’ a basis node with
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520 M. A. Olshanskii, A. Reusken

a given node vi , where the function is estimated. Therefore it may be possible that a
sequence is found that contains no “bad” nodes, e.g. nodes having very small distance
to �. This would lead to better estimates for the small eigenvalues of the mass and
stiffness matrices.

3.5.3 On extension to smooth surfaces

As discussed above the key points of our analysis are the estimates (3.3) and (3.4)
together with suitable bounds for the coefficients occurring in these bounds. Similar
bounds hold if � is a smooth curve. Estimating the coefficients, however, is then even
more technical (although do-able), and uses smoothness assumptions on the surface,
i.e. that � is locally an O(h2) perturbation of a line. To avoid these further technical
complications we decided to restrict the analysis in this paper to the case � = [0, 1].
Acknowledgments We thank the referees for their valuable comments which led to substantial improve-
ments of the original version of this paper.
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