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Abstract

In this note we consider discrete linear reaction-diffusion problems. For the discretization a standard
conforming finite element method is used. For the approximate solution of the resulting discrete
problem a multigrid method with a damped Jacobi or symmetric Gauss-Seidel smoother is applied. We
analyze the convergence of the multigrid V- and W-cycle in the framework of the approximation- and
smoothing property. The multigrid method is shown to be robust in the sense that the contraction
number can be bounded by a constant smaller than one which does not depend on the mesh size or on
the diffusion-reaction ratio.
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1. Introduction

In this paper we consider the linear reaction-diffusion boundary-value problem:
Given 0 < ¢ < | and functions /" and d, with 0 < dy < d(x) < d, in Q, find u such
that

{—eAu—i—d(x)u:f in Q, ()
u=0 on 0Q,

where Q is a convex polyhedral domain in RY, N = 2, 3. For the discretization of
the variational formulation of this problem a standard finite element method is
applied based on a quasi-uniform family of nested triangulations of Q, with mesh
size parameter denoted by 4, and conforming finite elements. In [8, 9] a conver-
gence analysis of this finite element method applied to the problem (1) is presented
in which local and global error estimates are derived and their possible depen-
dence on the parameter ¢ is studied. In general the solution of (1) has exponential
boundary layer behaviour and a discretization method with polynomial finite
elements on a quasi-uniform family of partitions will result in large discretization
errors in these boundary layers. The analyses in [8, 9], however, show that this
discretization method is stable (for ¢ | 0) and that the pollution effects are not
severe in this problem: Outside the boundary layer error estimates which are
uniform w.r.t. ¢ and of optimal order (as a function of the mesh size parameter)
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are shown to hold. Hence for the numerical solution of (1) a discretization method
based on a Galerkin technique with standard finite element spaces can be useful in
practice.

For the approximate solution of the resulting discrete problem we apply a multigrid
method with canonical intergrid transfer operators and damped Jacobi or sym-
metric Gauss-Seidel smoothing. An interesting topic related to the efficiency of this
multigrid solver is the dependence of its convergence rate on the parameter ¢. In this
paper we present a convergence analysis which shows that the multigrid method is
robust in the sense that the contraction number can be bounded by a constant
smaller than one which does not depend on the mesh size parameter /4 or on &. Both
the multigrid W-cycle and multigrid V-cycle will be considered. The analysis will
use the framework of the smoothing- and approximation property as introduced by
Hackbusch (cf. [6, 7]). For the proof of the approximation property we use regu-
larity estimates and finite element error bounds from [8, 9]. The smoothing property
will be proved using a standard technique from [6]. The smoothing property and
approximation property that will be proved in this paper can be combined with
results from [6, 7] for the convergence of the multigrid W- or V-cycle. The analysis
shows that the deterioration of the approximation property for ¢ | 0 (caused by the
boundary layer) is compensated by an improved smoothing property. The com-
bined effect is such that the multigrid method can be shown to be robust.

In the literature we did not find a theoretical analysis of the smoothing and
approximation property which shows the robustness of classical multigrid applied
to reaction-diffusion problems. In the literature on subspace decomposition
(cf. [11, 12]) we also did not find theoretical results on the robustness of classical
multigrid applied to (1). In [10] it is noted that the BPX-preconditioner [2] and the
hierarchical basis multigrid method [1] are not robust for a finite element
discretization of the problem (1). In [10] a hierarchical basis preconditioner is
introduced which is shown to be robust for the problem (1) discretized with linear
finite elements on uniform two-dimensional meshes. In [4] a multilevel method
based on subspace splitting is presented which is robust for the problem (1). This
method, however, is restricted to rectangular domains and discretization methods
of tensor product type.

2. Preliminaries

Throughout the paper we use the notation (-, -), and || - ||, for the scalar product
and norm in L,(Q). The scalar products and corresponding norms in the Sobolev
spaces H¥(Q), k = 1,2, are denoted by (-,-), and || - ||, respectively. We also use
the notation (Vu,Vv) = [, Vu-Vov for u,v € H'(Q) and |u|, = (Vu, Vu)* for
u € Hy(Q).

We assume d € Lo, (Q) with 0 <dy <d(x) <d; a.e. in Q and f € L,(Q). Q is
assumed to be a convex polyhedral domain in RV, N =2,3. The variational
formulation of (1) reads: Find u € U := H{(Q) such that

a(u,v) = (f,v), forallvel, (2)
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with the symmetric bilinear form

a(u,v) = &(Vu, Vo) + (du,v), foru,ve U.
Note that a(-, -) is continuous and elliptic on U. Thus the problem (2) has a unique
solution. Using standard regularity theory the following a priori estimates can be

proved.

Lemma 1. Let u be the solution to (2). Then u € H*(Q) and

laly < ellf Il (3)
Jally < =17 o (4)
lully <=1 1o (5)

with constants ¢ that are independent of ¢ and f.

Proof: From (2) we obtain using Young’s inequality
2 2 2 B - 1 2 doy 2
eluly + dollully < eluly + (du,u)g = au,u) = (f,u)y < 3 1o+ llullo- (6)

Now (3) follows. The result (6) in combination with the Friedrichs inequality
llull, < clu|, yields (4). Set f:%(f—du), then u clearly solves the weak
formulation of the Poisson problem: (Vu,Vv) = (f,v), for all v € U. Since
f € L,(Q) and the domain Q is convex it follows from regularity results
for the Poisson problem (e.g. Theorem 4.3.1.4 and 8.2 in [5]) that u € H*(Q)
and

. 1
lully < €llfllg < e (L llg + lullo)- (7)

Hence (5) follows from (3) and (7). O

For the discretization of (2) we introduce a quasi-uniform family of nested tri-
angulations of Q (triangles in 2D, tetrahedra in 3D) based on global regular
refinement. We use conforming finite elements with piecewise polynomial func-
tions. This results in a hierarchy of nested finite element spaces

UcUc---cUyc---cU.
The corresponding mesh size parameter is denoted by /; and satisfies
C()27k < hi/ho < C127k

with positive constants ¢y and ¢; independent of .

The discrete problem on level £ is given by: Find u; € U, such that
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a(uk, Uk) = (f, Uk)o for all vy € Uy. (8)
The next lemma provides error bounds for the finite element solution. For N =2
the result was proved in [8]. However, the arguments used in [8] are also
applicable for the case N = 3. For completeness we present a proof here which

follows the arguments in [8, 9].

Lemma 2. Let u be the solution of (2) and uy be the corresponding finite solution of
(8). Then

. h?
=y < emin{ 1.2 171, ©)

holds with a constant c independent of f ¢, k.

Proof: In the proof we use constants ¢ which are independent of f ¢, k. Define
er = u — uy. Noting that a(e;, vy) = 0 for all v, € Uy, one obtains

dollexlly < alex,ex) = a(u,ex) = (f,ex)y < [If lolleclo
and thus
llexllo < do 1 lo- (10)
For arbitrary v; € U, we have

elec| + dollec|ly < alex, ex) = a(u — v, ex)

< sl — vl el + i — e ey
2 d2 2 % 2 2 %
< (o= o+ L= R ) (sl + el

For v, we take the (-,-),-projection of u on Uy for which the standard approxi-
mation results ||u — ]|y < ch?||ull, and |u — vi|; < chillu, hold. Using this and
the regularity results of Lemma 1 we get

N 2 d 2 < hl% 1 h/% 2 11
derl} + dollecl < <™ (1475 17 (1)

Now we use Nitsche’s duality argument. Let w € U be such that a(w, v) = (e, v),
for all v € U. From Lemma 1 we have w € H*(Q) and ||w||, < ¢||ex||o. Let wy be
the (-,-),-projection of w on Uy. Then the following holds:

leelly = a(w, ex) = a(w — wi, ex) < elw — wilylexl; + di[lw — wllollexllo

h2
< c(ehe|willexl; + dimg]|wllsllexllo) < C<hk|ek|1 +di ;" ||ek|o> llexllo-
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Thus using (10) and (11), we get for (h?/e) < 1
7.
ey < e (merl + 171, )
1
hk h2 2 h2 h2
<o (14 5) 1l + sty < LN, (12)

Combination of (10) and (12) proves the bound in (9). [

3. Multigrid Convergence Analysis

For the approximate solution of the discrete problem we apply a multigrid
method. The method and its convergence analysis will be presented in a matrix-
vector form as in Hackbusch [6]. To this end consider the standard nodal basis in
Uy denoted by {¢;},,, and the isomorphism:

1y
P : X, =R" = Uy, Px= in(]bio

i=1

On X; we use a scaled Euclidean scalar product: (x,y), =AY >, x;; and cor-
responding norm denoted by | -||. The adjoint P} : Uy — X; satisfies
(Pex,v)y = (x, Pfv), for all x € X, v € Uy. Note that the following norm equiva-
lence holds

C_1||x|| < ||Bx|ly < C|lx|| for all x € X, (13)

with a constant C independent of k. The stiffness matrix A4; on level £ is defined
by

(Apx,y), = a(Pex, By) for all x,y € X,. (14)

For the prolongation and restriction in the multigrid algorithm we use the
canonical choice:

Prs Xpm1 — Xiy i ZP{IPk—l,

_ e \V (15)
reXp — X1, m=P (P)" = <hkk1> ol

Finally, a smoother is introduced. Let ¥, : X; — X, be a nonsingular matrix. We
consider a smoother of the form

Xhew — xO]d _ VVk_l (Akxold _ b), for xo]d7 b e Xy,
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with corresponding iteration matrix denoted by

Sy =1—w 4. (16)
With the components defined above a standard multigrid algorithm with v; pre-
and v, post-smoothing iterations can be formulated (cf. [7]) with an iteration

matrix that satisfies the recursion

My(vi,v2) =0,

Mk(Vl,Vz) = SZZ ([ —pk(] —MZ,I)A/?_llrkAk)S;:', k=1,2,....

The choices y = 1 and y = 2 correspond to the V- and W-cycle, respectively.

For the analysis of this multigrid method we use the framework of [6, 7] based on
the approximation and smoothing property. Below we derive these properties for
the reaction-diffusion problem. We start with a lemma in which a few inequalities
are derived that will be used in the analysis of the approximation and smoothing

property.

Lemma 3. Let Ay, be the stiffness matrix from (14) and Dy := diag(4y). The

inequalities
& &
C1 ﬁ+1 < ||AkH <o F+1 s (17)
k k

D! 18

hold with constants c¢; > 0 independent of ¢ and k.
Proof: Let e; be the ith basis vector in R". Note that

(40, = bt
> 1ol + ) > e (5+1) (19)

with a constant ¢; independent of ¢ and k. The second inequality in (19) can be
shown using the following argument. A basis function ¢; corresponding to
vertex i can be written as a sum of local basis functions on the elements which
have i as a vertex. Let ¢1 be one such a local basis function, say on element
TLetF:T —T, F(x) = Bx + ¢ be an affine mapping from the unit simplex T to
T and qSl. := ¢! o F. We then have (cf. [3]) |<}511|1T >C, ||(2>f|\0T > C, |detB| =
vol(T)vol( n'> ChY and ||B|| < Chy. Known transformation results ([3]) now

yield [9!F > ClB | dee I ; > Chhy and 1R, > €l dee B3 ; >
Chy. From this we obtain the second inequality in (19). The left inequality in
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(17) follows from (19) and ||Ax|| > (4x);. Using an inverse inequality we obtain,
with constants ¢ and ¢, independent of ¢ and £,

(Aex, x), = a(Pex, Pix) < e|Pex|} + dy || Pex|}

& &
< c(—2+ 1) 1P < e (—2+ 1) 1P,
hk hk

and thus the right inequality in (17) holds. Using (19) and (17) it follows that

-1

— . _ _ & C _

1D = (min(Ay)) 1<c11(ﬁ+1) < el
1 * Cl

holds, which proves the result in (18). [

Theorem 1. [Approximation property.] Let Ay be the stiffness matrix from (14) and
DPi, Tie the prolongation and restriction as in (15). Then the following approximation
property holds with a constant c independent of ¢ and k:

_ — 1 h2 B
4" — ped ! || < cmln{l,gk} < cll i)™

Proof: Take y; € X;. The constants ¢ that appear in the proof do not depend on
yk,k ore Letwe U, w, € Uy, and w1 € Uy_; be such that

a(w,v) = ((P}) 'y, v), forallve U,

a(wi,v) = (PY) 'y, v), forall v € Uy,

a(wi1,0) = (FY) 'y, v), forall ve Uy
Putting f = (P7) 'y € Ly(Q) in Lemma 2, we obtain
: h% s\ —1
[lw —willp < cmin 17? N(B5) " wllg for 1 e {k—1,k}.
Due to A,y < chy this yields
2

. h .
o= w1l < emin 1.5yl

From (14) and (15) it follows that wy = PyA4; 'y and wy_y = Pr_14; ' 7ayx. Thus,
using (13), we get

(A" = Ay rvell < ellPedi 'y — Peoidi i rollo = ellwe — wie [l
. h; -1 . i
< cmin 1,? (7)) wellg < cmin 1,? ll,
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which proves the first inequality. The second inequality follows from Lemma 3
and min{1,a} <2(1+1)7" fora>0. O

For the smoother we consider two cases, namely a damped Jacobi method and the
symmetric Gauss-Seidel method. If we decompose A4y as Ay = D, — Ly — LkT with
Dy diagonal and Lj strictly lower triangular then these two smoothing iterations
have corresponding iteration matrices as in (16) with

Wi = 'Dy, @€ (0,1), and W, = (D — Ly)D; (D — LT).

From Lemma 3 we obtain ||D'4.| < |[|D'||||4k]| < ¢3. In the damped Jacobi
method we take a fixed w < 1 with0 < w < c;l, independent of ¢ and &, such that
p(wD;'4;) < 1 holds. Note that for the symmetric Gauss-Seidel method we have

Wi = (Dy — Ly)D; " (Dy — LT) = A + LD 'LT > 4.

Hence, both for the damped Jacobi method and the symmetric Gauss-Seidel
method we have

a(W'4;) C (0,1]. (20)

Lemma 4. Both for the damped Jacobi method and the symmetric Gauss-Seidel
method the inequality

[Will < cll ]|

holds with a constant c independent of ¢ and k.

Proof: For the damped Jacobi method this result is a direct consequence of
IIDell < ||4k]]- For the symmetric Gauss-Seidel method we note that, due to the
fact that in every row of the stiffness matrix the number of nonzero entries can be
bounded by a constant independent of &,

n i—1
2
el < el il Zelloe = <m'4x > (Ak)ij|> (maxz |(Ak),~j|>
= LA
< emax(4y)} < el

Hence, using Lemma 3, we obtain

_ 201 e
Il = 114k + LDy LN < 114kl + ILelP 1D < elldill. O

Corollary 1. Theorem 1 and Lemma 4 imply
1 1
I (4t = pedi i) Wl < C (21

with a constant C4 independent of ¢ and k. []
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Theorem 2. [Smoothing property.] Both for the damped Jacobi and the symmetric
Gauss-Seidel method the following smoothing property holds with a constant ¢
independent of k, ¢ and v:

1

41 < 0

4ell, v=1,2,.... (22)

N
Proof: Denote B := W AW, *. Note that B is symmetric and o(B) =
oW AW, ?) = (W, ' 4x) C (0,1] (cf. (20)). Furthermore

) -
eyl = W B( — B)'W;

< [WlllB( — B)'Yl.

Note that ||B(I — B)'|| < maxo<;<; A(1—2)" < (v+1)"" (Lemma 10.6.1 in [7])
and, due to Lemma 4, ||| < c||4«|| with a constant ¢ independent of & and &.
Hence (22) holds. []

Corollary 2. For the two-grid iteration matrix with vi = v and v, = 0 the smoothing
and approximation property imply

_ y C
10 = pedi )} < == (23)

+1
with Cr independent of ¢ and k. [

For the multigrid W-cycle Theorem 10.6.25 from [7] can be applied and yields the
following result.

Theorem 3. Take y € (0,1). Then there exists vo > 0 independent of k and ¢ such
that for the contraction number of the multigrid W-cycle with damped Jacobi or
symmetric Gauss-Seidel smoothing we have

IMi(v,0)]| <y forallv>v. [O
For the analysis of the multigrid V-cycle the energy norm is used: ||x|[, =
(Agx,x);, x € Xi. Due to Corollary 1, (20) and Theorem 10.7.15 from [7] we have

the following convergence result:

Theorem 4. For the contraction number of the symmetric multigrid V-cycle with
damped Jacobi or symmetric Gauss-Seidel smoothing the estimate

[ (3-2)

holds with C4 as in (21).

Cy

< , v=24
4 Cy+v

g Ty enn

The results in Theorem 3 and Theorem 4 prove the robustness of the multigrid
method both with respect to variation in the mesh size parameter 4; and with
respect to variation in the parameter e.
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