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Incompressible unsteady Navier–Stokes equations in pressure – velocity variables are considered. By use
of the implicit and semi-implicit schemes presented the resulting system of linear equations can be solved
by a robust and efficient iterative method. This iterative solver is constructed for the system of linearized
Navier–Stokes equations. The Schur complement technique is used. We present a new approach of building
a non-symmetric preconditioner to solve a non-symmetric problem of convection–diffusion and saddle-point
type. It is shown that handling the differential equations properly results in constructing efficient solvers for the
corresponding finite linear algebra systems. The method has good performance for various ranges of viscosity
and can be used both for 2D and 3D problems. The analysis of the method is still partly heuristic, however,
the mathematically rigorous results are proved for certain cases. The proof is based on energy estimates and
basic properties of the underlying partial differential equations. Numerical results are provided. Additionally,
a multigrid method for the auxiliary convection–diffusion problem is briefly discussed. Copyright © 1999
John Wiley & Sons, Ltd.
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1. Introduction

The construction of efficient numerical solvers for laminar incompressible flow problems is
of vital importance not only for the numerical simulations of incompressible Navier–Stokes
flows for low – moderate Reynolds numbers, but also for certain algorithms for compress-
ible, turbulent, and other CFD problems, where the incompressible Navier–Stokes equations
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(non-linear or linearized) serve as auxiliary problems. Although a lot of contributions have
been made by many scientists in establishing suitable methods to solve the problem (see,
e.g., monographs [33,29,16]), there is still the crucial problem of building a robust, flexible,
optimal (in some sense) and efficient algorithm. By this we mean in particular that an ideal
method should be robust with respect to viscosity, time step and spatial mesh parameters,
it should be readily implemented for 3D, complex geometries, efficiently parallelized (vec-
torized), and finally it should provide sufficient convergence and be used as a ‘black box’
solver in appropriate applications.

The ultimate (and probably still not reached) goal of constructing such a method requires
many different tools of numerical analysis and fluid dynamics to be put together in a proper
manner. In this paper we concentrate on an iterative method for linearized incompressible
Navier–Stokes equations (Oseen problem). The problem has the form:(

A BT

B 0

)(
u
p

)
=
(
f

g

)
(1.1)

where the unknown{u, p} corresponds to discrete velocity vector function and pressure
scalar function,B andBT are due to the discrete operators−div and∇, A results after
some time-discretization and linearization of convection–diffusion terms:

∂u
∂t

− ν1u + (u·∇)u (1.2)

plus boundary conditions foru and some finite elements or finite differences in space. The
problem (1.1) is indefinite and non-symmetric, ifA is non-symmetric.

The common assumptions to ensure (1.1) to be non-singular areA > 0 andBA−1BT > 0.
The operatorS = BA−1BT is a Schur complement for system (1.1). This operator is in
general non-symmetric, ifA is non-symmetric. The obvious observation is thatp satisfies
the equation:

Sp = −g + BA−1f (1.3)

The simple method to solve (1.1) is to iterate (1.3) forp, and than to recoveru from
(1.1), if p is obtained with the desired accuracy. However, such iterations require a proper
preconditioner forS. The same requirement holds for many other methods to solve (1.1),
although some of them do not require the exact evaluation ofA−1, details can be found
in Section 4. The matrixS is not sparse and has rather complicated structure, so standard
preconditioning techniques, e.g. ILU, Gauss–Seidel, are not effective.

To build an effective preconditioner forS one has to exploit the special differential
properties of corresponding PDE systems. To be precise, ifAu corresponds to1

δt
u − ν1u,

then an effective preconditioner forS is known. If Au corresponds to

1

δt
u − ν1u + (U·∇)u

then an effective and robust (with respect toν, δt and mesh parameters) preconditioner for
S is notknown (at least to the best of our knowledge). However, the latter operator appears
in implicit and robust time-stepping schemes for unsteady Navier–Stokes equations.

The idea was to linearize (1.2) in such a way that, on the one hand, the implicit nature of
the time-stepping scheme is preserved, on the other hand,S admits an effective and robust
preconditioning, although it is still non-symmetric. It appears that the well-known equality
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for u

(u·∇)u = (curlu)× u + ∇
(

u2

2

)
helps us to linearize the convection term in such a way thatA involves a zero order term
curl U × u for u instead of a first order term(U·∇)u. Further in the paper we will benefit
from this fact. Details are presented.

Two key points of the method are the following: the distinguishing of a new pressure
variable (Bernoulli pressure) as the basic iterated unknown; construction of a non-symmetric
preconditioner for the Schur complement of the linearized Navier–Stokes problem. For the
auxiliary problem of convection–diffusion type we consider a multigrid method as an inner
iterator in our approach.

The present research is an extension of the one carried out for the symmetric case in
[27, 5, 23], where convergence theorems are provided together with numerical results for
the generalized Stokes problem. From the computational point of view the approach based
on preconditioning of Schur complement for Navier–Stokes type problems is extensively
studied in [35] with numerical evidence of its efficiency. As discussed in [35] this approach is
closely related and can be viewed as a generalization of many schemes for the incompressible
Navier–Stokes problem known as projection, pressure-correction, fractional-step, SIMPLE
(with modifications), Vanka, etc.

2. Governing equations and definitions

We consider in a bounded 2D or 3D domain� the system of equations

∂u
∂t

− ν1u + (u·∇)u + ∇p = f

div u = 0
in �× (0, T ] (2.1)

with given force fieldf and kinematic viscosityν > 0. The vector functionu(t, x) (veloc-
ity) and the scalar functionp(t, x) (kinematic pressure) are to be found, subject to some
conditions. The classical cases are the Dirichlet boundary conditions for velocity:

u = ϕ on ∂�× [0, T ] (2.2)

(further, we takeϕ ≡ 0) initial condition for velocity att = 0

u = u0(x) in �̄ (2.3)

and integral condition
∫
�
p(x, t)dx = 0∀ ∈ (0, T ] to ensure the unique choice of pressure.

The common assumption is also divu0 = 0, however, the latter is not fundamental for
further considerations.

Further, we use the following notation. ByH1
0(�) we denote the usual Sobolev space

with functions vanishing on the boundary,

L0
2(�) = {q ∈ L2(�) : (q, 1) = 0}
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H−1(�) is a space dual toH1
0(�). We need also the following space of vector functions:

H0(div ) ≡ {u ∈ L2(�)
N : div u ∈ L2(�), u·n|∂� = 0}

wheren = (n1, . . . , nN) is an outward unit normal on∂�. H0(div ) is provided with the
norm

||u||2H0(div )
= ||u||20 + ||div u||20

The outline of the remainder of the paper is as follows. In Section 3 we consider two possi-
bilities of time stepping for Navier–Stokes equations (2.1)–(2.3), they lead to solution of the
linear Oseen system on every time step. The Oseen problem is studied in Section 4 together
with two iterative algorithms to solve it. These algorithms require a proper preconditioner
for the Schur complement of the Oseen problem. The Schur operator is non-symmetric.
However, first, preconditioners from symmetric theory are tried. For this case some esti-
mates for the Schur operator and convergence results are given in Section 5. Further, we
obtain theoretically and numerically that the symmetric preconditioners do not work well
for convection dominant problems. In Section 6, a new preconditioner is constructed. Since
the problem to be solved is strongly non-symmetric for convection-dominated flows, it is
natural that the appropriate preconditioner is also non-symmetric. The new precondition-
ing leads to a strongly elliptic problem of diffusive type for the pressure. This problem is
also studied. In Section 7 we give some heuristic arguments based on Fourier analysis that
predict convergence behavior of the method. In Section 8 numerical results are presented.
Additionally, a multigrid method for the auxiliary convection–diffusion problem is briefly
discussed. The Appendix collects technical details of proofs.

In Sections 3–6 the considerations in the paper are done for continuous problems. Here we
let the reader be free to choose his particular favorite discretization method, since the basic
properties of the differential problems used are still valid in some sense for ‘reasonable’
finite methods. Moreover, such ‘continuous’ treatment of the problem helps us to construct
preconditioners that provide good convergence for arbitrary fine grids.

3. Time-stepping schemes

A common way of treating the problem (2.1)–(2.3) numerically is the following. First
apply some finite difference discretization in time or some methods from ODE theory,
say, explicit or implicit Euler or Runge–Kutta method. Further discretize in space by some
finite difference, finite element or other method and solve the resulting finite system by an
appropriate iterative algorithm.

Following here the same way, we note that explicit schemes for (2.1)–(2.3) cause severe
stability problems for fine spatial grids and/or small viscosity, since for a small viscosity
system (2.1)–(2.3) becomes stiff. Hence, the effective time-stepping techniques have an
implicit nature and require a non-linear or a linearized problem to be solved on each time
step. For details corresponding to stability and error control, see, e.g., [19, 20]).

Consider the following fully implicit scheme. Givenun and f n+1 find un+1 andpn+1
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from
un+1 − un

δt
− ν1un+1 + (un+1·∇)un+1 + ∇pn+1 = f n+1

div un+1 = 0

un+1|∂� = 0

(3.1)

whereun = u(nδt), pn = p(nδt) andδt is a time step. The scheme is known to be very
robust and stable. However, one has to solve a non-linear problem on each time step. Below
we consider two possibilities of further calculations.

Considerations are heavily based on the following formal equality for arbitrary vector
functionsu andv:

(v·∇)u + (u·∇)v = (curlv)× u + (curlu)× v + ∇(v, u), (3.2)

where(v, u) = v1u1+. . .+vNuN is a scalar function,× stands for vector product, curlu =
(∇×u) is a vorticity function. For two dimensions we define curlu = −∂u1/∂x2 + ∂u2/∂x1
and

a × u = −u × a =
{ −a u2
a u1

for a scalara and vectoru.
If one takes in (3.2)u = v it results into a well-known equality:

(u·∇)u = (curlu)× u + ∇
(

u2

2

)
(3.3)

3.1. Semi-implicit scheme

The first scheme is related to a widely used linearization of convection terms. In order
to avoid the solution of non-linear equations on every time step we simply linearize the
convection by taking velocity from the previous time steps. To this end consider convection
in the form written on the right-hand side of (3.3)

Further denote byP the new pressureP = p+ u2

2 sometimes referred to as the Bernoulli
pressure. Replace(curlu)× u by (curl U)× u, wereU is given and corresponds to some
extrapolation of velocity from previous times (e.g. constantUn = u(nδt) or linearUn =
2u(nδt)− u((n− 1)δt) for equidistant time steps).

The resulting problem on every time step finally reads

1

δt
un+1 − ν1un+1 + (curl Un)× un+1 + ∇Pn+1 = f n+1 + 1

δt
un

div un+1 = 0

un+1|∂� = 0

(3.4)

Note that(curl U × u, v) = −(curl U × v, u) due to the properties of the vector prod-
uct, hence the corresponding bilinear form is skew-symmetric. Therefore, the solution of
resulting scheme (3.4) satisfies the discrete analogue of the following basic energy estimate
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for (2.1)–(2.3)

||u(t)||20 + ν

∫ t

0
||u(s)||21ds ≤ ||u0||20 + ν−1

∫ t

0
||f (s)||2−1ds.

3.2. Fully implicit scheme

The second possibility is to apply several non-linear iterations for the direct solution of
nonlinear problem (3.1). This will result in a fully implicit scheme for (2.1)–(2.3). Non-
linear iterations can be performed as: given{u0, p0} (e.g. u0 = un, p0 = pn) iterate
k = 1, 2, . . . (

uk
pk

)
=
(

uk−1
pk−1

)
− κk−1F(uk−1)

−1
(

res(uk−1)

div uk−1

)
(3.5)

whereF(uk−1) is the Frechet derivative inuk−1 and res(uk−1) is the non-linear residual
for uk−1; κk−1 is a relaxation parameter that can be chosen, for example, as in the adaptive
fixed point defect correction method. If the desired convergence in (3.5) is achieved for
somek setun+1 = uk, pn+1 = pk.

The crucial point in method (3.5) is applyingF(uk−1)
−1. The common way is to replace

F(uk−1) by an approximatẽF(uk−1), which is easily inverted. To be precise, consider the
contribution of convection terms inF(uk−1)u, that is,

(uk−1·∇)u + (u·∇)uk−1 (3.6)

The first term in (3.6) is skew-symmetric and is preserved inF̃ (uk−1)u, the second one is
reactive and usually is not included iñF(uk−1)u to ensure good numerical properties of
F̃ (uk−1).

However, as was explained in Section 1 we want to avoid the first-order term(uk−1·∇)u
for velocityu. To do this let us act as follows. Due to (3.2) observe the relations

(uk−1·∇)u + (u·∇)uk−1 = (curluk−1)× u + (curlu)× uk−1 + ∇(uk−1, u) (3.7)

Now, the first term in the right-hand side of (3.7) is skew-symmetric and is retained, the
second one is dropped and the third one is also retained and added to a new pressure. Finally,
the problem to be solved on each step of scheme (3.5) is of the same type as (3.4). Similar
to (3.4) we have the ‘convection’ term of the zero order for velocity.

Remark 3.1.
In [34] it is stated that (3.4) may not be so advantageous in a specific case where the spatial
meshes have high aspect ratio and if a certain adaptive time-step control is used. However,
a fully implicit scheme works satisfactorily in various situations.

4. The Oseen problem and iterative methods

The problem to be solved on each time step of the semi-implicit scheme and on each inner
iteration of the fully implicit scheme from Section 3 reads: givenf ∈ H−1(�), g ∈ L0

2(�),
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andw ∈ L2(�)
2N−3 find u ∈ H1

0(�) andp ∈ L0
2(�) from

αu − ν1u + w × u + ∇p = f in �

div u = g in �

u = 0 on∂�

(4.1)

with α > 0, ν > 0. We recall that� ∈ RN, N = 2, 3, and boundary∂� is assumed to be
sufficiently smooth. Problem (4.1) is linear, non-symmetric and of saddle point type. The
weak formulation of (4.1) is straightforward. It can be readily checked that the problem is
well posed (see, e.g., [15] Chapter I for a general framework).

We intend to solve problem (4.1) iteratively. A variety of iterative techniques to solve
saddle point problems are known (see, e.g., [1, 4, 7, 3, 11, 13, 30–32, 37]), however most
of them were established and analyzed only for symmetric problems. Although there are
important and quite recent results in papers ([17, 12, 14, 21, 22]) which deal with non-
symmetric saddle-point problems, there is still a lack of theory and robust implementations
in this case. At least, the robustness with respect to small parameterν was not obtained in
these papers.

To treat problem (4.1) we use the classic Uzawa approach, which includes variants of
exact and inexact Uzawa algorithms. To this end, consider the Schur operator

S = −div (αI − ν1+ w×)−1
0 ∇ (4.2)

where(αI − ν1 + w×)−1
0 is the solution operator for the convection–diffusion problem

with the Dirichlet homogeneous boundary conditions1:

αu − ν1u + w × u = g in �

u|∂� = 0 on∂�

S is a linear operator onL0
2(�) (the space of pressure functions), it is positive (Theorem

5.1 below) and non-symmetric forw 6= 0. Pressurep satisfies equation

Sp = F

with given F = g − div (αI − ν1+ w×)−1
0 f

(4.3)

We note that equation (4.3) readily follows from (4.1) after the elimination of velocity and
does not require any boundary conditions or extra regularity for pressure. Equation (4.3)
can be effectively solved by iterations if some ‘good’ preconditioner forS is available.

As a simple possibility, consider the following preconditioned iterations to solve (4.3):
givenp0 find pk+1, k = 0, 1, . . . , from

pk+1 = pk − τQ−1(Spk − F) (4.4)

This algorithm is often referred to as the (exact) Uzawa algorithm and it is very popular for
symmetric problems (in combination with conjugate gradient methods). In the next section
some convergence results for (4.4) are given.

Method (4.4) requires the solution of the convection–diffusion equation on every iterative

1 It is not a convection in a physical sense, however, we will refer to this problem as ‘convection–diffusion’.
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step whenS is applied topk. To avoid this generally expensive operation, one can use the
so-called inexact Uzawa algorithm (closely related to the Arrow–Hurwitz algorithm [33])
that iterates both pressure and velocity (see more details in [7, 13]). Let us assume that
D is some preconditioner to the convection–diffusion operator(αI − ν1 + w×)0 (for the
particular choices ofD refer, e.g., to [14, 21], and Section 8 of this paper). Then the inexact
Uzawa algorithm can be written as follows: givenu0, p0 find uk+1, pk+1, k = 0, 1, . . . ,
from

uk+1 = uk − βD−1(αuk − ν1uk + w × uk + ∇pk − f )
pk+1 = pk − τQ−1(div uk+1 − g)

(4.5)

In the particular case ofD−1 = (αI − ν1 + w×)−1
0 andβ = 1, method, (4.5) coincides

with (4.4), otherwise the first relation in (4.5) can be interpreted as one iteration for solving
convection–diffusion problem. Generally more than one iteration could be done, and there-
fore (4.5) is often called theinexactUzawa algorithm. The optimal choice of parameters in
(4.5) and convergence results will be considered elsewhere. More results can be found in
[22, 6] for non-symmetric problems and additionally [10, 30] for symmetric ones. In par-
ticular, we emphasize that method (4.5), as well as (4.4), requires a proper preconditioner
for S to ensure a ‘good’ convergence.

5. Convergence estimates for Oseen problem with symmetric preconditioning

Let us consider the operatorS in more detail. First, denote byS0 the Schur operator for
the symmetric problem, i.e.,S0 = S for w = 0. Note thatS0 is not a symmetric part ofS,
S0 6= 1

2(S+ S∗) in general.

5.1. Analysis of differential problems

The following theorem holds.

Theorem 5.1. For anyα > 0, ν > 0 andw ∈ L2(�)
2N−3 the estimates

γ1||p||20 ≤ (Sp, p) ≤ γ2||p||20 (5.1)

(Sp, q) ≤ γ3(Sp, p)
1
2 (Sq, q)

1
2 (5.2)

γ4||p||20 ≤ (S−1p, p) (5.3)

γ5(S0p, p) ≤ (Sp, p) ≤ (S0p, p) (5.4)

γ5(S
−1
0 p, p) ≤ (S−1p, p) (5.5)

hold for all p, q ∈ L0
2(�) with

γ1 = 1

4κ

(
ρα + ν +K(ν, α,w)

)−1

γ2 = ν−1

γ3 = (
1 + C(ν, α,w)

)
γ4 = ν

γ5 = (
1 + C(ν, α,w)2

)−1
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ConstantsK(ν, α,w) andC(ν, α,w) can be taken as follows, depending on the actual
smoothness of functionw:

K(ν, α,w) = c
||w||20√
αν

or K(ν, α,w) = c
||w||2L3

α

and

C(ν, α,w) = c
||w||0√
ν (αν)

1
4

or C(ν, α,w) = c
||w||L∞
α

ρ = ρ(�) andκ = κ(�) are positive constants from the Poincare–Fridrichs and Nečas
inequalities:

||u||0 ≤ √
ρ||u||1 ∀u ∈ H1

0(�)

||p||0 ≤ √
κ||∇p||−1 ∀p ∈ L0

2(�)

Proof
The proof follows from estimates of the skew-symmetric form(w × u, v), embedding
theorems and the Nečas inequality. The details can be found in the Appendix.

Inequality (5.1) ensures the positiveness, and inequality (5.2) together with (5.1) the
continuity ofS.

In fact, in viscous flow||w|| may also depend onν in some implicit way, e.g., in a 2D

parabolic boundary layer it is typical to have (cf. [26])∂u
∂y

= O(ν− 1
2 ), ∂u

∂x
, ∂v
∂x
, ∂v
∂y

= O(1),

and hence, assuming the width of boundary layer to be equalO(ν
1
2 ), we have

||w||0 ≈ ||u||1 = O(ν− 1
4 )

Another remark is that the estimates from Theorem 5.1 are valid in the general 3D case.
For 2D problems the dependence of the constantsK andC onν is weaker, since embedding
theorems are less restrictive in this case. The interested reader can easily obtain appropriate
results, following the proof in Appendix.

Below, the theorem states some convergence results for method (4.4) with symmetric
preconditioning. These results are based on the estimates from Theorem 5.1. To be precise,
we consider two possibilities of choosing a preconditioner in (4.4):

Q−1 = I (5.6)

Q−1 = νI − α1−1
N (5.7)

Here and further on1−1
N is a solution operator for the scalar Poisson problem with Neu-

mann’s boundary conditions. The choice (5.7) is known to be optimal for the symmetric
problem. In [23] it is proved that cond(Q−1S0) < c, with somec independent ofν, α. How-
ever for convection dominant problems this may not be a good choice. This is indicated in
Theorem 5.2 and confirmed by numerical results in Section 8.

Theorem 5.2. For Q−1 from (5.6) and (5.7), method (4.4) converges for sufficiently small
τ > 0. If ek = p− pk is the error of the iterations (4.4) and||ek||Q = (Q ek, ek), then the
convergence factorψ defined from

||ek+1||Q ≤ ψ ||ek||Q ∀k ≥ 0

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 6, 353–378 (1999)
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can be estimated as follows:

• For the case (5.6) andτ = ν

ψ ≤
√

1 − ν

4κ

(
ρα + ν +K(ν, α,w)

)−1

• For the case (5.7) andτ = c
(
1 + C(ν, α,w)2

)−1

ψ ≤
√

1 − c
(
1 + C(ν, α,w)2

)−2

Proof
The proof is quite standard and outlined in the Appendix.

The same convergence estimates hold for the more sophisticated GCG-LS method (see
[2]). However, the convergence estimates are very disadvantageous forν → 0 andα → ∞
if no preconditioning is applied (case (5.6)). If some preconditioner from symmetric theory
is used (Q ∼ S0), thenα → ∞ is not a poor case any more. Now, forα → ∞ even some
improvement of convergence can be predicted (especially in two dimensions and smooth
w). However the caseν → 0 and/or||w|| → ∞ is still disadvantageous. The preconditioner
Q that takes into account convection effects is deduced in the next section.

Remark 5.1.
The estimates of theorems 5.1 and 5.2 are not optimal forα → 0. Since, for unsteady flow
α ∼ (δt)−1 > 1, the case ofα � 1 is not of particular interest here. However quite similar
results for steady problemα = 0 can be readily obtained (see Remark 9.1 in the Appendix).
We only comment that this analysis for the steady Oseen problem readily gives the estimate

of convergence factor asψ ≤
√√√√1 − ν

2κ

(
ν + c

||w||20
ν

)−1

or ψ ∼ 1 − O

(
ν2

||w||20

)
for

small ν and/or large||w||20. This estimate agrees with the theory and numerical results
from [14, 12, 21]. At the same time the estimates of Theorems 5.1 and 5.2 are optimal for
||w|| → 0, when the problem becomes more ‘symmetric’.

5.2. Remarks for discrete problems

The results of Theorems 5.1 and 5.2 obtained for the differential operators can be transferred
to the discrete case with some minor changes only. As an example consider any LBB-stable
[8] finite element (FE) pairUh ×Ph for velocity and pressure. The arguments for the weak
formulations of differential problems from the proof of Theorem 5.1 (see Appendix) can
be applied in a straightforward way to the FE formulation, since the embedding theorems
are possessed by FE, additionally the Nečas inequality is replaced by the LBB condition.

Hence, for the discrete operators all the estimates from Theorem 5.1 are still valid with
the constants independent of mesh sizeh, but dependent onν, α and ||wh|| in the same
manner.

Due to these arguments for a discrete preconditionerQh from (5.6) we haveQh = Mp,

whereMp is the mass matrix of the pressure FE space. Then the discrete counterpart of
(5.1) implies

γ1Mp ≤ Sh ≤ γ2Mp
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Therefore the estimates of Theorem 5.2 forQh = Mp (the case (5.6)) still hold.
The discrete case (5.7) is more delicate. The equivalenceSh0 ∼ νMp+α1−1

h was proved
in [5] for a special approximation of1−1

h on a course pressure grid. However, the numerical

experiments show that the best choice is to use
(
div hM̃−1

U ∇h
)−1

rather than1−1
h in (5.7),

whereM̃U is a velocity mass matrix with a proper treatment of boundary conditions.
One more implementation issue is that the exact solvers for the elliptic subproblems (e.g.,

Poisson or convective diffusion) implemented in (4.4) can make these iterations rather
costly for ‘real-life’ problems. However, we refer to [35] for examples of very effective
implementations of such iterations in a multigrid context.

A common possibility is to replace the exact solution of a subproblem with an approximate
one. This can be obtained by utilizing a limited number of iterations to solve the subproblem
or one can explicitly construct an operator (with nice algebraic properties) that is close to
the operator of the discrete subproblem.

Thus, to make the implementation more effective, one can try to replaceMp with a
diagonal matrix constructed by a diagonal lumping forMp and spectrally equivalent toMp

[36]. The exact evaluation ofr = 1−1
h q for someq can be replaced by one or few multigrid

cycles to solve1hr = q as often recommended in literature (e.g., [12]). The convergence
estimates from Theorem 5.2 will only alter in a standard way due to the constants of
equivalence between ‘exact’ preconditioners and ‘inexact’ ones.

The situation is less clear if one tries to implement an inexact convection–diffusion
solver. The process in form (4.4) is not applicable now and one necessarily should deal with
methods like (4.5) where velocity and pressure are iterated together. However, the theory
of such methods for non-symmetric problems is far from being developed. Some relevant
results can be found in recent papers [21, 6].

6. Non-symmetric preconditioning and diffusive pressure problem

In this section we concentrate on pressure equation (4.3). A robust and optimal precon-
ditioner for S should take care of diffusive, reactive and convection effects in (4.1). To
construct a preconditioner that works well for all types of flows, let us consider separately
two extreme cases: the case of strongly viscous flow (ν � 1) and the case of slightly viscous
flow (ν � 1).

It is well known that a strongly viscous flow is nearly symmetric and the effect of
convection terms can be neglected. In this caseS = S0 and one can rewrite pressure
problem (4.3) as

−ν1u + αu + ∇p = 0

div u = F

u = 0 on ∂�

(6.1)

Remark 6.1.
In (6.1) and further in this section if no misunderstanding occurs, we may use notationsu
andp for some auxiliary functions that appear in the building of a preconditioner. However,
we call them ‘velocity’ and ‘pressure’.
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For problem (6.1) the operatorQ−1
0 = νI − α1−1

N provides the estimate

cond(Q−1
0 S0) ≤ c

with c independent ofν and α. Furthermore, we recall [28] that the operatorQ0 (=
(νI − α1−1

N )−1) can be realized as a Schur complement of the generalized Stokes problem
(6.1) after relaxing tangential boundary conditions on velocity and posing natural boundary
conditions on vorticity:u·n = 0, (curlu)× n = 0 instead ofu = 0 in (6.1).

Below we utilize the similar ideas in another extreme case ofν � 1.
Slightly viscous flows can be considered inviscid almost everywhere in the domain except

for small regions of high velocity gradients, typically, boundary layers. Bearing this in mind,
let us rewrite equation (4.3) and drop the viscous terms. We arrive at the following problem:

αu + w × u + ∇p = 0

div u = F

u·n = 0 on ∂�

(6.2)

Note that due to a lack of high order derivatives for the velocity in (6.2) we preserve only
normal boundary conditions.

The appropriate weak saddle-point formulation of (6.2) is the following. For givenF ∈
L0

2(�) find {u, p} ∈ H0(div )× L0
2(�) such that for any{v, g} ∈ H0(div )× L0

2(�)

α(u, v)+ (w × u, v)− (p, div v) = 0

(div u, q) = (F, q)
(6.3)

It is easy to see that the bilinear forma(u, v) = α(u, v) + (w × u, v) is coercive on
Ker(div ) in H0(div ), and the infsup condition

inf
p∈L0

2(�)

sup
u∈H0(div )

(p, div u)
||u||H(div ) ||p||0 ≥ c(�) > 0

is valid. However, since the velocity spaceH0(div ) is more general thanH1
0(�), the form

a(u, v) is no longer continuous. The additional assumption on smoothness ofw (w ∈
L∞(�)2N−3) improves this situation. Fortunately, in most applications the velocity field
is smooth or almost smooth except in the neighborhoods of some singular points of the
boundary.

Now, Corollary 5.1 from [15] implies that problem (6.3) is well posed.

It is clear that (6.2) can be considered as a mixed formulation of some elliptic problem for
the pressure (this is the point where we benefit from the zero order of the new convection
term). Indeed, we can formally eliminate velocity from the first equality in (6.2). Further
using the second equality and the boundary conditions, we get the following diffusive
problem with the Neumann conditions forp,

− 1

α
div (&(x)∇p) = F

∂p

∂ñ
= 0, on ∂�

(6.4)
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where&(x) = {gij (x)}, i, j = 1, . . . , N is the ‘diffusive’ matrix detailed below and∂p
∂ñ =

&(x)∇p · n.
The matrix&(x) is expressed in terms ofα andw as follows.

• 2D case

&(x) = α2

α2 + w2
I − α

α2 + w2
(w×) (6.5)

• 3D case

&(x) = α2

α2 + w2
(I + α−2(w ⊗ w))− α

α2 + w2
(w×) (6.6)

Here I stands for the identity matrix,(w ⊗ w) for the one withij -element equals
wi(x)wj (x), and (w×) stands for the matrix corresponding to the vector product with
w:

• 2D case

(w×) =
(

0 −w
w 0

)
• 3D case

(w×) =

 0 −w3 w2

w3 0 −w1
−w2 w1 0




The first term in (6.5) or (6.6) is the symmetric part of&(x) and the second is skew-
symmetric.

Let us consider problem (6.4). Note that|gij (x)| ≤ c < ∞, i, j = 1, . . . , N, with
some constantc independent ofx,w, α, and thusgij (x) ∈ L∞(�). Consider the function
v = &(x)∇p and assume thatp ∈ H 1(�). Now gij (x) ∈ L∞(�) impliesv ∈ L2(�)

N .
Therefore, the following weak formulation of (6.4) makes sense. For givenF ∈ L0

2(�)

find p ∈ H 1(�) ∩ L0
2(�) such that

1

α
(&(x)∇p,∇q) = (F, q), ∀q ∈ H 1(�) ∩ L0

2(�) (6.7)

Equality (6.7) can be a starting point for a finite element discretization of (6.4).
In almost every pointx in the domain� the matrix&(x) is positive, i.e.,

(&(x)ζ, ζ ) > 0

for any non-zeroζ ∈ RN . Thus the problem is strongly elliptic and has a weak solution
satisfying (6.7) (see, e.g., [25]). Similar to (6.3) the additional assumptionw ∈ L∞(�)2N−3

ensures problem (6.7) to be uniformly elliptic and the weak solution to be unique.
The following lemma is valid.

Lemma 6.1. Assumew ∈ L∞(�)2N−3. Then problems (6.2) and (6.4) have unique weak
solutions in the sense of (6.3) and (6.7), respectively. Moreover, the pressure componentp

of the solution of (6.2) belongs toH 1(�) ∩ L0
2(�) and solves problem (6.4).

Proof
See Appendix
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Remark 6.2.
The minimal regularity of the velocity function in (3.1)u ∈ H1

0(�) provides thatw belongs
to L2(�)

2N−3. The extra regularity of given data and hence of the solution ensuresw ∈
L∞(�)2N−3, and, as was noted above, the form(&(x)∇p,∇q) is coercive (uniformly
elliptic) onH 1(�) ∩ L0

2(�), i.e.,

||∇p||2 ≤ C (&(x)∇p,∇p) ∀p ∈ H 1(�) ∩ L0
2(�) (6.8)

If some spatial discretization is considered, then (6.8) holds in any case, withC generally
depending on mesh sizeh. The dependence onh is weaker for a smoothw.

Now, denote by L(w)−1 (L(w)−1 : L0
2(�) → H 1(�) ∩ L0

2(�)) the solution operator
for problem (6.4), in brackets we emphasize the dependence of the operator on givenw.
Consider the operator

Q(w)−1 = νI + L(w)−1 (6.9)

as a preconditioner forS. On the one hand, for strongly viscous flows (when we can ignore
the convection effects) the new preconditioner coincides withνI − α1−1

N =Q(0)−1, which is
known to be optimal in this case. On the other hand, for convection-dominant flows, omitting
the diffusion terms in (4.1) does not alter much the global properties of the problem and
L(w) is again close toS. Hopefully, the choice ofQ(w) covers all intermediate cases as
well. Heuristic analysis of the next section and numerical results from Section 8, support
this conclusion.

7. Fourier analysis

In this section we give some arguments in a framework of the Fourier analysis to justify the
effectiveness of the preconditioning proposed. We consider only the 2D case and constant
w(x) = w. This choice considerably simplifies further calculations.

Let us consider the periodic flow inR2 and evaluate the operatorSon a given harmonic.
To this end, assumep(x) = exp(i(a, x)), wherea, x ∈ R2. Then

∇p(x) = {i a1 exp(i(a, x)), i a2 exp(i(a, x))}

Looking foru of the formu1 = i k1 exp(i(a, x)), u2 = i k2 exp(i(a, x)), we find from

−ν1u1 + αu1 − w u2 = −∂p(x)
∂x1

−ν1u2 + αu2 + w u1 = −∂p(x)
∂x2

the coefficients

k1 = −(α + ν|a|2)a1 + w a2

(α + ν|a|2)2 + w2
, k2 = −(α + ν|a|2)a2 − w a1

(α + ν|a|2)2 + w2

Therefore, we get

Sp exp(i(a, x)) = div u = (α + ν|a|2)|a|2
(α + ν|a|2)2 + w2

exp(i(a, x))
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Note thatSp is not exactlyS from (4.2), but an operator with periodic conditions for the
convection–diffusion solver involved inSp instead of the Dirichlet boundary conditions
involved inS.

In a similar manner we get

Q(w)−1 exp(i(a, x)) =
(
ν + α

|a|2 + w2

α|a|2
)

exp(i(a, x))

Hence, by a straightforward superposition we obtain

Q(w)−1Sp exp(i(a, x)) =
(

1 + w2να−1|a|2
(α + ν|a|2)2 + w2

)
exp(i(a, x))

Let us denote

ρ(|a|2) = w2να−1|a|2
(α + ν|a|2)2 + w2

We readily get

|a|2m = arg max
|a|≥0

ρ(|a|2) =
√
α2 + w2

ν

and

ρmax = max
|a|≥0

ρ(|a|2) = w2

2α(
√
α2 + w2 + α)

(7.1)

Sinceρ(|a|2) → 0 for |a|2 → ∞, one gets

cond(Q(w)−1Sp) ∼ 1 + ρmax

Therefore, the smaller the coefficientρmax is, the closer to identity the operatorQ(w)−1Sp
is.

Remark 7.1.
In this model example we see that the preconditioning gives the estimate independent of
viscosityν. It is no contradiction to the fact that forν = 0 the preconditioner is ‘exact’.
The explanation is that we have a non-uniform convergence with respect to mesh size for
ν → 0 of the problem to the limit case ofν = 0. Moreover, the above analysis predicts
that the worst case occurs for mesh sizehw ∼ |a|−1

m <
√
α−1ν, hencehw → 0 for ν → 0.

Recall thatα−1 ∼ δt (see (3.1)).

Remark 7.2.
If other parameters, including the mesh size, are fixed, the condition number improves with
ν → 0.

Remark 7.3.
Convergence improves withα → ∞ (the time step goes to zero).

Remark 7.4.
Let us denoteξ = w/α and rewrite (7.1) as

ρmax = ξ2

2(
√

1 + ξ2 + 1)
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The latter indicates some deterioration of convergence forξ → ∞.

The same analysis can be done for the preconditioner provided by the theory for symmetric
problem. Indeed, one can check

Q(0)−1Sp exp(i(a, x)) =
(

1 − w2

(α + ν|a|2)2 + w2

)
exp(i(a, x))

Now, the worst convergence case is observed for low harmonics. By the same arguments
we get

cond(Q(0)−1Sp) ∼ 1 + w2

(α + ν)2
= 1 + ξ2

(1 + ν/α)2

If we consider the worst cases with respect toν and the mesh size, it follows forξ → ∞

cond(Q(w)−1Sp) ∼ 1 +O(ξ)

cond(Q(0)−1Sp) ∼ 1 +O(ξ2)

In this paper these asymptotics are not checked numerically. What we observe numerically
is that for increasingξ the convergence of an iterative method withQ−1(w) does not
deteriorate much, while the convergence of the same method withQ−1(0) can deteriorate
dramatically ifν is sufficiently small (see Section 8).

Finally, although the present Fourier analysis does notprovethe appropriate convergence
results for operatorS, it is widely recognized to be a good predictor of a ‘real’ solvers’ be-
havior, at least for symmetric problems (see [9]). For the problem withw 6= const numerical
results from the next section support the conclusions from Remarks 7.1–7.4. However, the
actual convergence rates appear not to be predicted by the above formulas. Probably, some
effects induced byw 6= const are not recovered by Fourier analysis.

8. Numerical results and convection–diffusion solver

We consider� = (0, 1) × (0, 1) and a finite difference scheme on staggered grids for
velocity and pressure. This scheme is sometimes referred to as MAC and is known to be
LBB stable (for details see, e.g., [22]). We setw = ∇ × v, wherev = (v1, v2),

v1 = κ(2y − 1)x(1 − x)

v2 = κ(2x − 1)y(1 − y)
(8.1)

The convection functionv can be considered as the velocity field of a rotating vortex in a
cavity. On a discrete level, the conditionv = 0 on∂� is satisfied, so, near the boundaryv
is not smooth. The magnitude of the convection is ruled by the parameterκ.

As an iterative method to solve (4.3) we consider the MINRES algorithm with one search
direction on each iteration. As an exact solutionp(x) we take a function with a random
value from [0,1] in every grid point, finally normalized to satisfy(p, 1) = 0. Hence the
solution is substantially non-smooth. The initial guess isp0 = 0.

The convergence criteria is||resn||/||res0|| < 10−6, where resi is the residualSpi − F .
By the average convergence factor we callq = (||resn||/||res0||)1/n.

In Tables 1 and 2 the convergence results for the slightly non-symmetric problem (κ = 1)
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Table 1. MINRES method with new non-symmetric preconditioning,α = 20, κ = 1

Mesh size

Viscosity 1/32 1/64 1/128 1/256 1/512

1 17(0.43) 18(0.45) 18(0.45) 17(0.44) 17(0.44)
1e-1 12(0.30) 14(0.37) 15(0.39) 16(0.41) 15(0.39)
1e-2 7 (0.13) 10(0.23) 11(0.28) 13(0.37) 13(0.36)
1e-4 3 (3e-3) 3(9e-3) 4(0.03) 6(0.08) 7(0.13)
1e-6 2(2e-5) 2(9e-5) 2(3e-4) 3(1e-3) 3(5e-3)

Number of iterations and average convergence factor.

Table 2. MINRES method with symmetric preconditioning,α = 20, κ = 1

Mesh size

Viscosity 1/32 1/64 1/128 1/256 1/512

1 17(0.43) 18(0.46) 18(0.45) 17(0.44) 17(0.43)
1e-1 12(0.31) 14(0.37) 15(0.39) 16(0.41) 15(0.40)
1e-2 8 (0.15) 10(0.23) 11(0.28) 13(0.34) 13(0.34)
1e-4 7 (0.13) 7(0.13) 6(0.10) 6(0.10) 8(0.16)
1e-6 7(0.13) 7(0.14) 7(0.13) 7(0.13) 7(0.13)

Number of iterations and average convergence factor.

are presented. The convergence rates are quite good for both preconditioners: the symmetric
one from (5.7) and the new non-symmetric one from (6.9). The difference is seen forν → 0.
In this case the convergence rates for the method with the new preconditioning significantly
improve.

Remark 8.1.
As we expect from the construction of the preconditioner and Fourier analysis the value
of cond(Q−1(w)S(w)) is bounded independently of mesh size. However, ifν is small a
bound for convergence factors is achieved for very fine mesh (see Section 7), hence it was
expected that for sufficiently smallν the results should be mesh-dependent until the mesh
is not very fine. This is observed in Tables 1 and 3.

In Tables 3 and 4 we present the convergence results for the problem with stronger
convection (κ = 10). Now the convergence rates are quite good only for the algorithm with
the new non-symmetric preconditioner from (6.9). The symmetric preconditioning gives
poor results forν → 0. In this case the convergence rates for the method with the new
preconditioning significantly improve contrary to the symmetric case.

Note that the convergence rates with the new preconditioner do not differ much in the
casesκ = 1 andκ = 10. The latter case is slightly worse. This is in agreement with the
analysis of Section 7: the value ofξ = ||w||/α is higher forκ = 10.

We complete the section with the brief description of the solver used for the ‘convection-
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Table 3. MINRES method with new non-symmetric preconditioning,α = 20, κ = 10

Mesh size

Viscosity 1/32 1/64 1/128 1/256 1/512

1 17(0.42) 17(0.42) 18(0.43) 18(0.45) 19(0.47)
1e-1 18(0.45) 21(0.52) 23(0.54) 23(0.55) 23(0.55)
1e-2 12 (0.30) 15(0.39) 17(0.44) 20(0.50) 21(0.51)
1e-4 4 (0.01) 5(0.05) 8(0.15) 11(0.26) 12(0.30)
1e-6 2(1e-4) 2(1e-4) 3(1e-3) 3(3e-3) 4(0.02)

Number of iterations and average convergence factor.

Table 4. MINRES method with symmetric preconditioning,α = 20, κ = 10

Mesh size

Viscosity 1/32 1/64 1/128 1/256 1/512

1 18(0.46) 18(0.46) 18(0.45) 17(0.44) 17(0.44)
1e-1 29(0.62) 20(0.50) 22(0.53) 21(0.51) 19(0.48)
1e-2 29 (0.62) 22(0.53) 20(0.50) 18(0.45) 18(0.46)
1e-4 78 (0.84) 79(0.84) 57(0.78) 31(0.63) 21(0.52)
1e-6 90(0.86) 90(0.85) 90(0.85) 89(0.85) 83(0.84)

Number of iterations and average convergence factor.
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Table 5. Multigrid V-cycle for convection–diffusion problem,α = 20, κ = 1

Mesh size

Viscosity 1/32 1/64 1/128 1/256 1/512

∞ 9(0.10) 9(0.10) 9(0.10) 9(0.10) 9(0.10)
1 9(0.10) 9(0.10) 9(0.10) 9(0.10) 9(0.10)
1e-1 9(0.08) 9(0.09) 9(0.10) 9(0.10) 9(0.10)
1e-2 5(0.02) 8(0.06) 9(0.09) 9(0.09) 9(0.10)
1e-3 3(6e-5) 4(3e-3) 6(0.03) 8(0.07) 9(0.09)
1e-4 2(1e-8) 2(2e-6) 3(3e-4) 5(8e-3) 7(0.05)

Number of iterations and average convergence factor.

diffusion’ problem: givenw, f , find u from

αu − ν1u + w × u = f
u|∂� = 0

(8.2)

As an iterative method to solve (8.2) we consider a V-cycle multigrid, as a smoother
MINRES algorithm with one search direction is used with the following preconditioning.
The diagonal lumping for the symmetric part of the convection–diffusion operator is done
and a first-order approximation for the termw × u is made. Thus, on every cell we solve
the problem (2D case) for the local values ofu andw:{

β1 u1 − w u2 = g1
β2 u2 + w u1 = g2

The smoother is nearly an exact solver for (8.2) in the caseν = 0 (this is another point
where we benefit from the zero order of the convection term). In the literature this property
is often required from robust multigrid solvers for singularly-perturbed problems (see, e.g.,
[18]).

We will study the convergence properties of this method elsewhere. The numerical results
(see Tables 5 and 6) show that the algorithm is very efficient and robust with respect to
parameterν. Additionally, it does not require any renumbering strategy and can be very
efficiently parallelized, however, one can expect the deterioration of the convergence for
highly anisotropic meshes.

The numerical results below are presented for a V-cycle multigrid with two pre-smoothing
and two post-smoothing steps. First order prolongation and restriction is used for the velocity
function. As an exact solution we takeu(x) = v(x)+ r (x), wherev(x) is a smooth function,
r (x) is a function with a random value from [0,1] in every grid point. The boundary condition
u = 0 is imposed on the discrete level. The initial guess isu0 = 0. The functionw is taken
as in (8.1). The convergence criterion is||resn||/||res0|| < 10−9.One iteration is one sweep
of the V-cycle.

In the row marked by∞ we present the results for the Poisson problem:α = 0,w = 0
in (8.2).

The last remark in the section is that the one sweep of the V-cycle for the convection–
diffusion problem can be used as a preconditionerD−1 in the inexact Uzawa algorithm (4.5).
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Table 6. Multigrid V-cycle for convection–diffusion problem,α = 20, κ = 10

Mesh size

Viscosity 1/32 1/64 1/128 1/256 1/512

1 9(0.10) 9(0.10) 9(0.10) 9(0.10) 9(0.10)
1e-1 10(0.11) 10(0.11) 10(0.11) 10(0.10) 9(0.10)
1e-2 6(0.02) 9(0.09) 9(0.10) 10(0.11) 10(0.11)
1e-3 3(8e-4) 4(3e-3) 7(0.04) 9(0.10) 10(0.11)
1e-4 2(1e-8) 2(6e-7) 3(1e-4) 5(9e-3) 8(0.07)

Number of iterations and average convergence factor

9. Appendix

9.1. Proof of Theorem 5.1

First we prove estimates (5.1). To this end, let us fix someν > 0, α > 0,w ∈ L2(�)
N, p ∈

L0
2(�) and consider an auxiliary velocity vectoru1 from H1

0(�), which solves

α(u1, v)+ ν(∇u1,∇v)+ (w × u1, v) = −(p, div v), ∀ v ∈ H1
0(�) (9.1)

By the definition ofS one has(Sp, p) = −(div u1, p), and hence, choosingv = u1 in
(9.1), one gets

(Sp, p) = α||u1||20 + ν||u1||21 (9.2)

Further, we use the following estimates (see, e.g., [23]):

c0||p||20 ≤ (div1−1
0 ∇p, p) ≤ ||p||20 ∀p ∈ L0

2(�) (9.3)

The first inequality in (9.3) can be observed as the continuous analogue of the LBB condition
(sometimes referred to as the Nečas inequality), since one has

(div1−1
0 ∇p, p) = sup

v∈H1
0(�)

(p, div v)2

||v||21
∀p ∈ L0

2(�)

Consider one more velocity vectoru2 from H1
0(�), which solves

(∇u2,∇v) = −(p, div v) ∀ v ∈ H1
0(�) (9.4)

Similarly, one obtains
− (div1−1

0 ∇p, p) = ||u2||21 (9.5)

Take now in (9.1) and (9.4)v = u1, subtract (9.4) from (9.1) and useε-inequality with
ε = ν to estimate(∇u2,∇u1). These result in

2α||u1||20 + ν||u1||21 ≤ ν−1||u2||21
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hence the estimate,
(Sp, p) ≤ ν−1||p||20

immediately follows thanks to (9.2), (9.3), and (9.5).
To prove the lower bound forS we will use the following estimates (they are proved

in a straightforward way by applying the Hölder inequality with proper subscripts) for the
convection part:

|(w × u, v)| ≤ c||w||0||u||L4||v||L4

|(w × u, v)| ≤ c||w||0||u||L3||v||L6

together with (e.g., [25],)

||u||L4 ≤ c||u||
1
4
0 ||u||

3
4
1

||u||L3 ≤ c||u||
1
2
0 ||u||

1
2
1

||u||L6 ≤ c||u||1
for arbitraryw ∈ L2(�)

N , u, v ∈ H1
0(�).

Now, we choosev = u2 in (9.1) and (9.4), further subtracting (9.4) from (9.1) we get the
following chain of inequalities.

||u2||21 = α(u1, u2)+ ν(∇u1,∇u2)+ (w × u1, u2)

≤ ρα2||u1||20 + 1

4
||u2||21 + ν2||u1||21 + 1

4
||u2||21 + c||w||0||u1||L3||u2||L6

≤ 1

2
||u2||21 + (ρα + ν)(α||u1||20 + ν||u1||21)+ c||w||20||u1||0||u1||1 + 1

4
||u2||21

≤ 3

4
||u2||21 + (ρα + ν)(α||u1||20 + ν||u1||21)+ c

||w||20√
να

(α||u1||20 + ν||u1||21)

Hence

||u2||21 ≤ 4(ρα + ν + c
||w||20√
να

)(α||u1||20 + ν||u1||21)

The last inequality together with (9.2), (9.3) and (9.5) proves estimate (5.1) of the theorem

with K(ν, α,w) = c
||w||20√
να

Equality (9.1) withv = u1 provides

ν(div u1, div u1) ≤ −(div u1, p)

which is nothing but
ν(Sp,Sp) ≤ (Sp, p)

Takingq = Sp one obtains inequality (5.3) withγ4 = ν.
To prove estimate (5.2) we fix some arbitraryq ∈ L0

2(�) and consideru2 as a solution
to

α(u2, v)+ ν(∇u2,∇v)+ (w × u2, v) = −(q, div v) ∀ v ∈ H1
0(�) (9.6)
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Similarly to (9.2) we have

(Sq, q) = α||u2||20 + ν||u2||21
By the definition ofS it holds that(Sp, q) = −(div u1, q)with u1 from (9.1), and hence,

taking in (9.6)v = u1 one obtains

(Sp, q) = α(u2, u1)+ ν(∇u2,∇u1)+ (w × u2, u1)

≤ (α||u1||20 + ν||u1||21)
1
2 (α||u2||20 + ν||u2||21)

1
2 + c||w||0||u1||L4||u2||L4

≤ (Sp, p)
1
2 (Sq, q)

1
2 + c||w||0||u1||

1
4
0 ||u2||

1
4
0 ||u1||

3
4
1 ||u2||

3
4
1

≤ (Sp, p)
1
2 (Sq, q)

1
2 + 6c||w||0

(
1

2ε
||u1||

1
2
0 ||u1||

1
2
1 ||u2||

1
2
0 ||u2||

1
2
1

+ ε

2
||u1||1||u2||1

)
≤ (Sp, p)

1
2 (Sq, q)

1
2 + c||w||0

(
1

4εδ
||u1||0||u2||0 +

(
δ

4ε
+ ε

2

)
||u1||1||u2||1

)

Sinceε and δ are arbitrary positive, we choose in the last inequalityδ = 1
2

(
ν
α

) 1
2 and

ε = 1
2

(
ν
α

) 1
4 . Thus, it follows that

(Sp, q) ≤ (Sp, p)
1
2 (Sq, q)

1
2 + c

||w||0√
ν (αν)

1
4

(α||u1||0||u2||0 + ν||u1||1||u2||1)

≤ (Sp, p)
1
2 (Sq, q)

1
2 + c

||w||0√
ν (αν)

1
4

(α||u1||20 + ν||u1||21)
1
2 (α||u2||20 + ν||u2||21)

1
2

= (Sp, p)
1
2 (Sq, q)

1
2 + c

||w||0√
ν (αν)

1
4

(Sp, p)
1
2 (Sq, q)

1
2

Estimate (5.2) is proved withC(ν, αw) = c
||w||0√
ν (αν)

1
4

.

Estimate (5.4) is proved in a similar manner to (5.1). Instead of (9.4) we choose nowu2
as a solution to

α(u2, v)+ ν(∇u2,∇v) = −(p, div v), ∀ v ∈ H1
0(�)

Term(w × u1, u2) is estimated exactly as in the proof of (5.2).
The last estimate, (5.5), is proved as follows. Givenp ∈ L0

2(�) considerp1 andp2 that
solve together withu1 andu2 the equations: for any{v, q} ∈ H1

0(�)× L0
2(�)

α(u1, v)+ ν(∇u1,∇v)− (p1, div v) = 0,

(div u1, q) = (p, q)
(9.7)

and for any{v, q} ∈ H1
0(�)× L0

2(�)

α(u2, v)+ ν(∇u2,∇v)+ (w × u2, v)− (p2, div v) = 0,

(div u2, q) = (p, q)
(9.8)
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Inequality (5.5) now takes the form

γ5(p1, p) ≤ (p2, p) (9.9)

Additionally, the following equalities are valid:

(p1, p) = (p1, div u2) = (p1, div u1) = α||u1||20 + ν||u1||21,
(p2, p) = (p2, div u1) = (p2, div u2) = α||u2||20 + ν||u2||21

(9.10)

Let us take in (9.7)v = u2 and in (9.8 )v = u1, subtracting one equality from the other
one gets

(p1, div u2) = (p2, div u1)− (w × u2, u1) (9.11)

In the same way as before one obtains

|(w × u2, u1)| ≤ 1

2
(α||u1||20 + ν||u1||21)+ c

||w||20
ν (αν)

1
2

(α||u2||20 + ν||u2||21)

The combination of the last estimate with (9.10 ) and (9.11 ) gives (9.9), hence inequality
(5.5) is proved.

If the functionw is more smooth one can get use of the sharper estimates for convection
terms:

|(w × u, v)| ≤ c||w||L3||u||0||v||L6

|(w × u, v)| ≤ c||w||L∞||u||0||v||0
The same considerations give the sharper constantsγ1, γ3, andγ5.

Theorem 5.1 is proved.

Remark 9.1.
For α = 0 the similar estimates can be proved. The only alteration is the use ofH1

0(�)

norm||·||1 instead of||·||0 in the estimates of the convection term. This can be always done
thanks to the Poincare–Fridrichs inequality.

9.2. Proof of Theorem 5.2

The errorek = p − pk of the method (4.4) satisfies the relationek+1 = (I − τQ−1S)ek
for all k = 0, 1, . . . Denote by(p, q)Q the scalar product(Qp, q) with a positive and
self-adjointQ. One gets

||ek+1||2Q = ||(I − τQ−1S)ek||2Q = ||ek||2Q − 2τ(Q−1Sek, ek)Q + τ2||Sek||2Q
Let us consider the case ofQ−1 from (5.7). Inequality (5.5) of Theorem 5.1 is equal to

γ5||Sp||2S0
≤ (S−1

0 Sp, p)S0

SinceQ ∼ S0 the last estimate implies

cγ5||Sp||2Q ≤ (Q−1Sp, p)Q
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Therefore, one obtains

||ek+1||2Q ≤ ||ek||2Q − (2τ − c−1τ2γ−1
5 )(Q−1Sek, ek)Q

from which, assumingτ ≤ 2cγ5 and due to (5.4), one gets

||ek+1||2Q ≤ ||ek||2Q − (2τ − c−1τ2γ−1
5 )γ5||ek||2Q

In the last inequality let us takeτ = cγ5, and finally obtain the desired estimate

||ek+1||Q ≤
√

1 − cγ 2
5 ||ek||Q

The case ofQ−1 from (5.6) is simpler and proved in the same manner. The theorem is
proved.

9.3. Proof of Lemma 6.1

Assume thatp from H 1(�) ∩ L0
2(�) is some solution to the problem (6.4) and consider

u = −α−1&(x)∇p. As is shown in Section 5u ∈ L2(�)
N , moreover divu = F ∈ L2(�)

andu·n = ∂p

∂ñ = 0. Thus the vector functionu belongs toH0(div ). Due to the definition
of u and (6.6) one readily gets

α(&−1(x)u, v)+ (∇p, v) = 0 ∀v ∈ H0(div )

−(u,∇q) = (F, q), ∀q ∈ H 1(�) ∩ L0
2(�)

Integrating the above equalities by parts, and due to the boundary conditionsu·n = 0 and
the explicit form of&−1(x) we obtain

α(u, v)+ (w × u, v)− (p, div v) = 0 ∀v ∈ H0(div )

(div u, q) = (F, q), ∀q ∈ H 1(�) ∩ L0
2(�)

(9.12)

The second equality in (9.12) is still true for arbitraryq ∈ L0
2(�). Hence, one gets that

{p, u} is exactly the weak solution to the saddle-point problem (6.2). Both problems are
well posed under the assumption ofw ∈ L∞(�)2N−3. The lemma is proved.
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