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Incompressible unsteady Navier—Stokes equations in pressure — velocity variables are considered. By use
of the implicit and semi-implicit schemes presented the resulting system of linear equations can be solved
by a robust and efficient iterative method. This iterative solver is constructed for the system of linearized
Navier—Stokes equations. The Schur complement technique is used. We present a new approach of building
a non-symmetric preconditioner to solve a non-symmetric problem of convection—diffusion and saddle-point
type. Itis shown that handling the differential equations properly results in constructing efficient solvers for the
corresponding finite linear algebra systems. The method has good performance for various ranges of viscosity
and can be used both for 2D and 3D problems. The analysis of the method is still partly heuristic, however,
the mathematically rigorous results are proved for certain cases. The proof is based on energy estimates and
basic properties of the underlying partial differential equations. Numerical results are provided. Additionally,

a multigrid method for the auxiliary convection—diffusion problem is briefly discussed. Copyright © 1999
John Wiley & Sons, Ltd.
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1. Introduction

The construction of efficient numerical solvers for laminar incompressible flow problems is
of vital importance not only for the numerical simulations of incompressible Navier—Stokes
flows for low — moderate Reynolds numbers, but also for certain algorithms for compress-
ible, turbulent, and other CFD problems, where the incompressible Navier—Stokes equations
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(non-linear or linearized) serve as auxiliary problems. Although a lot of contributions have
been made by many scientists in establishing suitable methods to solve the problem (see,
e.g., monographs [33,29,16]), there is still the crucial problem of building a robust, flexible,
optimal (in some sense) and efficient algorithm. By this we mean in particular that an ideal
method should be robust with respect to viscosity, time step and spatial mesh parameters,
it should be readily implemented for 3D, complex geometries, efficiently parallelized (vec-
torized), and finally it should provide sufficient convergence and be used as a ‘black box’
solver in appropriate applications.

The ultimate (and probably still not reached) goal of constructing such a method requires
many different tools of numerical analysis and fluid dynamics to be put together in a proper
manner. In this paper we concentrate on an iterative method for linearized incompressible
Navier—Stokes equations (Oseen problem). The problem has the form:

A BT u f
(5%)(2)-(%) &
where the unknowru, p} corresponds to discrete velocity vector function and pressure

scalar functionB andBT are due to the discrete operatorsiv andV, A results after
some time-discretization and linearization of convection—diffusion terms:

Z—l; — VAU + (U-V)u (1.2)
plus boundary conditions far and some finite elements or finite differences in space. The
problem (1.1) is indefinite and non-symmetricAifis non-symmetric.

The common assumptions to ensure (1.1) to be non-singular ar® andBA~1BT > 0.
The operatolS = BA~1BT is a Schur complement for system (1.1). This operator is in
general non-symmetric, & is non-symmetric. The obvious observation is thatatisfies
the equation:

Sp=-g+BAlf (1.3)

The simple method to solve (1.1) is to iterate (1.3) forand than to recoven from
(1.2), if p is obtained with the desired accuracy. However, such iterations require a proper
preconditioner foiS. The same requirement holds for many other methods to solve (1.1),
although some of them do not require the exact evaluatioh df details can be found
in Section 4. The matri$ is not sparse and has rather complicated structure, so standard
preconditioning techniques, e.g. ILU, Gauss—Seidel, are not effective.

To build an effective preconditioner f& one has to exploit the special differential
properties of corresponding PDE systems. To be precige, dorresponds t%u — VAU,
then an effective preconditioner f&is known If Au corresponds to

1
Eu —vAU+ (U-V)u

then an effective and robust (with respect{és and mesh parameters) preconditioner for
Sis notknown (at least to the best of our knowledge). However, the latter operator appears
in implicit and robust time-stepping schemes for unsteady Navier—Stokes equations.

The idea was to linearize (1.2) in such a way that, on the one hand, the implicit nature of
the time-stepping scheme is preserved, on the other Isamdinits an effective and robust
preconditioning, although it is still non-symmetric. It appears that the well-known equality

Copyright © 1999 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl6, 353—378 (1999)



An iterative solver for the Oseen problem 355

foru

2

helps us to linearize the convection term in such a way Ahivolves a zero order term
curl U x u for u instead of a first order terrfl/-V)u. Further in the paper we will benefit
from this fact. Details are presented.

Two key points of the method are the following: the distinguishing of a new pressure
variable (Bernoulli pressure) as the basic iterated unknown; construction of a non-symmetric
preconditioner for the Schur complement of the linearized Navier—Stokes problem. For the
auxiliary problem of convection—diffusion type we consider a multigrid method as an inner
iterator in our approach.

The present research is an extension of the one carried out for the symmetric case in
[27, 5, 23], where convergence theorems are provided together with numerical results for
the generalized Stokes problem. From the computational point of view the approach based
on preconditioning of Schur complement for Navier—Stokes type problems is extensively
studied in [35] with numerical evidence of its efficiency. As discussed in [35] this approachis
closelyrelated and can be viewed as a generalization of many schemes for the incompressible
Navier—Stokes problem known as projection, pressure-correction, fractional-step, SIMPLE
(with modifications), Vanka, etc.

2
(Uu-Vyu = (curlu) x u+V (u)

2. Governing equations and definitions

We consider in a bounded 2D or 3D domélrthe system of equations

0
—u—vAu+(u~V)u+Vp =f
ot in Qx (0,T] (2.1)

divu = 0
with given force fieldf and kinematic viscosity > 0. The vector functioru(z, x) (veloc-

ity) and the scalar functiop(z, x) (kinematic pressure) are to be found, subject to some
conditions. The classical cases are the Dirichlet boundary conditions for velocity:

u=¢ on a2 x [0, T] (2.2)

(further, we takep = 0) initial condition for velocity at = 0

U=up(X) in Q (2.3)

and integral conditiorf, p(x, r)dx = OV € (0, T] to ensure the unique choice of pressure.
The common assumption is also diy = 0, however, the latter is not fundamental for
further considerations.

Further, we use the following notation. Byg(sz) we denote the usual Sobolev space
with functions vanishing on the boundary,

LIQ) ={q e L) : (¢, =0}
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H~1(Q) is a space dual tHé(Q). We need also the following space of vector functions:
Ho(div) = {u € La()"V : divu € Lo(Q), u-n|sg = 0}

wheren = (ny, ..., ny) is an outward unit normal o8<2. Ho(div ) is provided with the
norm
Ul gy, = H1Ul13 + T1div ul3

The outline of the remainder of the paper is as follows. In Section 3 we consider two possi-
bilities of time stepping for Navier—Stokes equations (2.1)—(2.3), they lead to solution of the
linear Oseen system on every time step. The Oseen problem is studied in Section 4 together
with two iterative algorithms to solve it. These algorithms require a proper preconditioner
for the Schur complement of the Oseen problem. The Schur operator is non-symmetric.
However, first, preconditioners from symmetric theory are tried. For this case some esti-
mates for the Schur operator and convergence results are given in Section 5. Further, we
obtain theoretically and numerically that the symmetric preconditioners do not work well
for convection dominant problems. In Section 6, a new preconditioner is constructed. Since
the problem to be solved is strongly non-symmetric for convection-dominated flows, it is
natural that the appropriate preconditioner is also non-symmetric. The new precondition-
ing leads to a strongly elliptic problem of diffusive type for the pressure. This problem is
also studied. In Section 7 we give some heuristic arguments based on Fourier analysis that
predict convergence behavior of the method. In Section 8 numerical results are presented.
Additionally, a multigrid method for the auxiliary convection—diffusion problem is briefly
discussed. The Appendix collects technical details of proofs.

In Sections 3—6 the considerations in the paper are done for continuous problems. Here we
let the reader be free to choose his particular favorite discretization method, since the basic
properties of the differential problems used are still valid in some sense for ‘reasonable’
finite methods. Moreover, such ‘continuous’ treatment of the problem helps us to construct
preconditioners that provide good convergence for arbitrary fine grids.

3. Time-stepping schemes

A common way of treating the problem (2.1)—(2.3) numerically is the following. First
apply some finite difference discretization in time or some methods from ODE theory,
say, explicit or implicit Euler or Runge—Kutta method. Further discretize in space by some
finite difference, finite element or other method and solve the resulting finite system by an
appropriate iterative algorithm.

Following here the same way, we note that explicit schemes for (2.1)—(2.3) cause severe
stability problems for fine spatial grids and/or small viscosity, since for a small viscosity
system (2.1)—(2.3) becomes stiff. Hence, the effective time-stepping techniques have an
implicit nature and require a non-linear or a linearized problem to be solved on each time
step. For details corresponding to stability and error control, see, e.g., [19, 20]).

Consider the following fully implicit scheme. Givart' andf”+1 find u**! and p"*1
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from
un+l —_uy"

_ vAun+l + (un+1.v)un+1 + Vpﬂ+l — fn+1
ot

divu*l = 0 (3.1)

Un+1|aQ =0

whereu” = u(nét), p" = pndt) andst is a time step. The scheme is known to be very
robust and stable. However, one has to solve a non-linear problem on each time step. Below
we consider two possibilities of further calculations.

Considerations are heavily based on the following formal equality for arbitrary vector
functionsu andv:

(V-V)Uu + (u-V)v = (curlv) x u + (curlu) x v+ V(v, u), 3.2)

where(v, U) = viu1+...+vyuy is ascalar functiong stands for vector product, curl=
(V xu) isavorticity function. For two dimensions we define cull= —9u1/0x2 + duz/9x1
and

—aup

aXU:—UXa:{
auq

for a scalau and vectouw.
If one takes in (3.24 = v it results into a well-known equality:

2
(u-Vyu = (curlu)y x u+ Vv (uz ) (3.3)

3.1. Semi-implicit scheme

The first scheme is related to a widely used linearization of convection terms. In order
to avoid the solution of non-linear equations on every time step we simply linearize the
convection by taking velocity from the previous time steps. To this end consider convection
in the form written on the right-hand side of (3.3)

Further denote by the new pressur@ = p+ UTZ sometimes referred to as the Bernoulli
pressure. Replageurlu) x u by (curl U) x u, wereU is given and corresponds to some
extrapolation of velocity from previous times (e.g. constédft= u(ndr) or linearU" =
2u(nét) — u((n — 1)8r) for equidistant time steps).

The resulting problem on every time step finally reads

1 1
5u’”rl —vAU 4 (curl UMy x w4 v Pt = frtl g 54

divur+l = 0 (3.4)

un+1|aQ =0

Note that(curl U x u,v) = —(curl U x v, u) due to the properties of the vector prod-
uct, hence the corresponding bilinear form is skew-symmetric. Therefore, the solution of
resulting scheme (3.4) satisfies the discrete analogue of the following basic energy estimate
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for (2.1)-(2.3)

t t
||u<t)||é+vf0 ||u<s)||%dss||uo||%+v*1/0 |If (112 1ds.

3.2.  Fully implicit scheme

The second possibility is to apply several non-linear iterations for the direct solution of
nonlinear problem (3.1). This will result in a fully implicit scheme for (2.1)—(2.3). Non-
linear iterations can be performed as: givien, po} (€.9.-Uup = U", po = p") iterate

k=12, ...
Ug \ _  Uk-1) —1( resUg-1)
(Pk ) = (Pkl) Kkk—1F (Ug—1) <div Up1 ) (3.5)

where F (ui_1) is the Frechet derivative in,_1 and resui_1) is the non-linear residual
for ux—_1; kx—1 is a relaxation parameter that can be chosen, for example, as in the adaptive
fixed point defect correction method. If the desired convergence in (3.5) is achieved for
somek setu"t1 = u;, p*tl = py.

The crucial point in method (3.5) is applyif(ux_1) ~1. The common way is to replace
F(ux_1) by an approximaté (ux_1), which is easily inverted. To be precise, consider the
contribution of convection terms ifi(Ug_1)u, that is,

(Uk—1-V)U + (U-V)Ug—1 (3.6)

The first term in (3.6) is skew-symmetric and is preserved {o;_1)u, the second one is
reactive and usually is not included (ux_1)u to ensure good numerical properties of
F(Ug-1).

However, as was explained in Section 1 we want to avoid the first-order(term-V)u
for velocity u. To do this let us act as follows. Due to (3.2) observe the relations

(Ug—1-VIU 4+ (U-V)Ug—1 = (curlug_1) x u+ (curlu) x Ug_1 + V(Ug_1, U) 3.7)

Now, the first term in the right-hand side of (3.7) is skew-symmetric and is retained, the
second one is dropped and the third one is also retained and added to a new pressure. Finally,
the problem to be solved on each step of scheme (3.5) is of the same type as (3.4). Similar
to (3.4) we have the ‘convection’ term of the zero order for velocity.

Remark 3.1.

In [34] it is stated that (3.4) may not be so advantageous in a specific case where the spatial
meshes have high aspect ratio and if a certain adaptive time-step control is used. However,
a fully implicit scheme works satisfactorily in various situations.

4. The Oseen problem and iterative methods

The problem to be solved on each time step of the semi-implicit scheme and on each inner
iteration of the fully implicit scheme from Section 3 reads: gifenH (), g € Lg(sz),
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andw e Lo(@)?V3find u € H(Q) andp € LI(Q) from

au—vAU+WxU+Vp =f InQ
in Q 4.1)

divu = g
u=0 ono

with @ > 0, v > 0. We recall that2 € RV, N = 2, 3, and boundary is assumed to be
sufficiently smooth. Problem (4.1) is linear, non-symmetric and of saddle point type. The
weak formulation of (4.1) is straightforward. It can be readily checked that the problem is
well posed (see, e.g., [15] Chapter | for a general framework).

We intend to solve problem (4.1) iteratively. A variety of iterative techniques to solve
saddle point problems are known (see, e.g., [1, 4, 7, 3, 11, 13, 30-32, 37]), however most
of them were established and analyzed only for symmetric problems. Although there are
important and quite recent results in papers ([17, 12, 14, 21, 22]) which deal with non-
symmetric saddle-point problems, there is still a lack of theory and robust implementations
in this case. At least, the robustness with respect to small parametes not obtained in
these papers.

To treat problem (4.1) we use the classic Uzawa approach, which includes variants of
exact and inexact Uzawa algorithms. To this end, consider the Schur operator

S= —div(al —vA +wx);'V (4.2)

where(al — vA + Wx)al is the solution operator for the convection—diffusion problem
with the Dirichlet homogeneous boundary condittins

aU—VvAU+WXU =g inQ

Ulagg = 0 ono

Sis a linear operator ong(Q) (the space of pressure functions), it is positive (Theorem
5.1 below) and non-symmetric far # 0. Pressure satisfies equation

Sp=F
o . 1 (4.3)
with given F = g —div (al — vA +wx),f

We note that equation (4.3) readily follows from (4.1) after the elimination of velocity and
does not require any boundary conditions or extra regularity for pressure. Equation (4.3)
can be effectively solved by iterations if some ‘good’ preconditioneSfiravailable.

As a simple possibility, consider the following preconditioned iterations to solve (4.3):
givenp® find p**1 k=0,1, ..., from

Pt =pt —QNspt - F) (4.4)

This algorithm is often referred to as the (exact) Uzawa algorithm and it is very popular for
symmetric problems (in combination with conjugate gradient methods). In the next section
some convergence results for (4.4) are given.

Method (4.4) requires the solution of the convection—diffusion equation on every iterative

11tis not a convection in a physical sense, however, we will refer to this problem as ‘convection—diffusion’.
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step wherS is applied top*. To avoid this generally expensive operation, one can use the
so-called inexact Uzawa algorithm (closely related to the Arrow—Hurwitz algorithm [33])
that iterates both pressure and velocity (see more details in [7, 13]). Let us assume that
D is some preconditioner to the convection—diffusion operatbr— vA + wx)g (for the
particular choices d refer, e.g., to [14, 21], and Section 8 of this paper). Then the inexact
Uzawa algorithm can be written as follows: givet p° find u**1, pk*1 k =0,1,...,
from

ubtl = uk — pDY(aut — vAUK +w x UK 4+ Vpk — 1)

pk+l — pk _ TQ_l(diV uk+l —9) (45)

In the particular case @1 = (al — vA + W><)0 andg = 1, method, (4.5) coincides

with (4.4), otherwise the first relation in (4.5) can be interpreted as one iteration for solving
convection—diffusion problem. Generally more than one iteration could be done, and there-
fore (4.5) is often called thmexactUzawa algorithm. The optimal choice of parameters in
(4.5) and convergence results will be considered elsewhere. More results can be found in
[22, 6] for non-symmetric problems and additionally [10, 30] for symmetric ones. In par-
ticular, we emphasize that method (4.5), as well as (4.4), requires a proper preconditioner
for Sto ensure a ‘good’ convergence.

5. Convergence estimates for Oseen problem with symmetric preconditioning

Let us consider the operat&in more detail. First, denote by the Schur operator for
the symmetric problem, i.e§ = Sfor w = 0. Note thatSy is not a symmetric part ds,
So # 3(S+ S¥) in general.

5.1. Analysis of differential problems

The following theorem holds.

Theorem 5.1. For anya > 0, v > 0 andw e L»(2)2V 3 the estimates

nllpll3 < (Sp.p) < rallpll (5.1)
(Sp.q) < 7/3(319,17)%(56174)% (5.2)
vallpll3 < (S71p, p) (5.3)
ys5(Sop, p) < (Sp,p) < (Sop. p) (5.4)
vs(Sotp.p) < (S7tp,p) (5.5)

hold for all p, g € L9 5(£2) with

1
y1 = I (pa+v+K(vaW))
y2 = vt
y3 = (1+C(von))
Y4 = v
V5 = (1+C(vozw))
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ConstantsK (v, «, w) and C (v, @, W) can be taken as follows, depending on the actual
smoothness of functiom:

2
w2 w2,
KW, a,w) =c or K(v,a,W)=rc
( ) oy ( )
and Wi W]
w w
C,a,w) =0701 or C(v,a, W) = ke
Vv (av)3

o = p(R) andx = «(2) are positive constants from the Poincare—Fridrichs andae
inequalities:
llullo < pllulla vu € H3(Q)

llpllo < V&lIVpll-1 Vp e LYU(Q)

Proof
The proof follows from estimates of the skew-symmetric fofm x u, v), embedding
theorems and the Nas inequality. The details can be found in the Appendix. [ |

Inequality (5.1) ensures the positiveness, and inequality (5.2) together with (5.1) the
continuity of S.
In fact, in viscous flowi|w|| may also depend onin some implicit way, e.g., in a 2D

parabolic boundary layer it is typical to have (cf. [2%19 —0(W™?), du v, g—; = 0(1),

and hence, assuming the width of boundary layer to be e(qu\a%), we have
1
lIwllo = [lull1 = O(v™4)

Another remark is that the estimates from Theorem 5.1 are valid in the general 3D case.
For 2D problems the dependence of the const&rasdC onv is weaker, since embedding
theorems are less restrictive in this case. The interested reader can easily obtain appropriate
results, following the proof in Appendix.

Below, the theorem states some convergence results for method (4.4) with symmetric
preconditioning. These results are based on the estimates from Theorem 5.1. To be precise,
we consider two possibilities of choosing a preconditioner in (4.4):

Ql=1 (5.6)
Q! = vi—any! (5.7)

Here and further omg1 is a solution operator for the scalar Poisson problem with Neu-
mann’s boundary conditions. The choice (5.7) is known to be optimal for the symmetric
problem. In [23] it is proved that con® 1Sg) < ¢, with somer independent off, o. How-

ever for convection dominant problems this may not be a good choice. This is indicated in
Theorem 5.2 and confirmed by numerical results in Section 8.

Theorem 5.2. For Q1 from (5.6) and (5.7), method (4.4) converges for sufficiently small
T > 0.1f ek = p — pFis the error of the iterations (4.4) angkX||p = (Q €, €¥), then the
convergence factoy defined from

el < wllefllo VEk >0
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can be estimated as follows:

e Forthecase (5.6) and = v

W< J1- iK(pa+v+K(v,a,w))*l

e Forthe case (5.7) and = ¢(1+ C(v, a, w)z)fl

Y < \/1 — c(1+ C(v, ot,W)Z)_2

Proof
The proof is quite standard and outlined in the Appendix. ]

The same convergence estimates hold for the more sophisticated GCG-LS method (see
[2]). However, the convergence estimates are very disadvantageoussfd ande — oo
if no preconditioning is applied (case (5.6)). If some preconditioner from symmetric theory
is used Q ~ ), thena — oo is not a poor case any more. Now, for— oo even some
improvement of convergence can be predicted (especially in two dimensions and smooth
w). However the case — 0 and/or|w|| — o< s still disadvantageous. The preconditioner
Q that takes into account convection effects is deduced in the next section.

Remark 5.1.

The estimates of theorems 5.1 and 5.2 are not optimal fer 0. Since, for unsteady flow

a ~ (8t)~1 > 1, the case ofr « 1 is not of particular interest here. However quite similar
results for steady problem= 0 can be readily obtained (see Remark 9.1 in the Appendix).
We only comment that this analysis for the steady Oseen problem readily gives the estimate

-1
v W[ v2
of convergence factorag < (1— — (v +¢c ory ~1—0 5 | for
2K v [IwIlg
small v and/or Iarge||w||(2). This estimate agrees with the theory and numerical results
from [14, 12, 21]. At the same time the estimates of Theorems 5.1 and 5.2 are optimal for
[lw|| — 0, when the problem becomes more ‘symmetric’.

5.2. Remarks for discrete problems

The results of Theorems 5.1 and 5.2 obtained for the differential operators can be transferred
to the discrete case with some minor changes only. As an example consider any LBB-stable
[8] finite element (FE) paitJ;, x P, for velocity and pressure. The arguments for the weak
formulations of differential problems from the proof of Theorem 5.1 (see Appendix) can
be applied in a straightforward way to the FE formulation, since the embedding theorems
are possessed by FE, additionally thehieinequality is replaced by the LBB condition.

Hence, for the discrete operators all the estimates from Theorem 5.1 are still valid with
the constants independent of mesh gizéut dependent on, « and||w;|| in the same
manner.

Due to these arguments for a discrete preconditighefrom (5.6) we haveQ, = M,
where M, is the mass matrix of the pressure FE space. Then the discrete counterpart of
(5.1) implies

VlMp <S8, =< VZM[J
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Therefore the estimates of Theorem 5.2y = M, (the case (5.6)) still hold.
The discrete case (5.7) is more delicate. The equival@@ee VM) +aA;1 was proved
in [5] for a special approximation oi;l on a course pressure grid. However, the numerical

N )
experiments show that the best choice is to(uﬁehMlleh> rather tham, % in (5.7),

whereM is a velocity mass matrix with a proper treatment of boundary conditions.

One more implementation issue is that the exact solvers for the elliptic subproblems (e.g.,
Poisson or convective diffusion) implemented in (4.4) can make these iterations rather
costly for ‘real-life’ problems. However, we refer to [35] for examples of very effective
implementations of such iterations in a multigrid context.

A common possibility is to replace the exact solution of a subproblem with an approximate
one. This can be obtained by utilizing a limited number of iterations to solve the subproblem
or one can explicitly construct an operator (with nice algebraic properties) that is close to
the operator of the discrete subproblem.

Thus, to make the implementation more effective, one can try to repihcavith a
diagonal matrix constructed by a diagonal lumping#y and spectrally equivalent td,

[36]. The exact evaluation af= A;lq for someyg can be replaced by one or few multigrid
cycles to solveA,r = ¢ as often recommended in literature (e.g., [12]). The convergence
estimates from Theorem 5.2 will only alter in a standard way due to the constants of
equivalence between ‘exact’ preconditioners and ‘inexact’ ones.

The situation is less clear if one tries to implement an inexact convection—diffusion
solver. The process in form (4.4) is not applicable now and one necessarily should deal with
methods like (4.5) where velocity and pressure are iterated together. However, the theory
of such methods for non-symmetric problems is far from being developed. Some relevant
results can be found in recent papers [21, 6].

6. Non-symmetric preconditioning and diffusive pressure problem

In this section we concentrate on pressure equation (4.3). A robust and optimal precon-
ditioner for S should take care of diffusive, reactive and convection effects in (4.1). To
construct a preconditioner that works well for all types of flows, let us consider separately
two extreme cases: the case of strongly viscous floys(1) and the case of slightly viscous

flow (v « 1).

It is well known that a strongly viscous flow is nearly symmetric and the effect of
convection terms can be neglected. In this c8se Sy and one can rewrite pressure
problem (4.3) as

—VAU+aou+Vp =0

F (6.1)
0 on o

divu

u

Remark 6.1.

In (6.1) and further in this section if no misunderstanding occurs, we may use notations
andp for some auxiliary functions that appear in the building of a preconditioner. However,
we call them ‘velocity’ and ‘pressure’.
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For problem (6.1) the operat@;,* = vl — a A, provides the estimate

condQy'So) < ¢

with ¢ independent ofv and «. Furthermore, we recall [28] that the opera@s (=
wl — aAgl)‘l) can be realized as a Schur complement of the generalized Stokes problem
(6.1) after relaxing tangential boundary conditions on velocity and posing natural boundary
conditions on vorticityu-n = 0, (curlu) x n = 0 instead ol = 0 in (6.1).

Below we utilize the similar ideas in another extreme case &f 1.

Slightly viscous flows can be considered inviscid almost everywhere in the domain except
for small regions of high velocity gradients, typically, boundary layers. Bearing this in mind,
let us rewrite equation (4.3) and drop the viscous terms. We arrive at the following problem:

au+wxu+Vp =0
divu = F (6.2)
un = 0 onaQ

Note that due to a lack of high order derivatives for the velocity in (6.2) we preserve only
normal boundary conditions.

The appropriate weak saddle-point formulation of (6.2) is the following. For given
LY() find {u, p} € Ho(div) x L3(2) such that for anyv, g} € Ho(div) x L3(2)

a(u,v) + W x u,v) — (p,divv) = 0

. (6.3)
(divu,q) = (F,q)

It is easy to see that the bilinear fomniu, v) = a(u, Vv) + (W x U, V) is coercive on
Ker(div) in Ho(div ), and the infsup condition

. ,divu
inf sup _(p.dvu) >c(Q)>0
peLd(®) ueHo(div) 1UllH@v) [1Pllo

is valid. However, since the velocity spaldg(div ) is more general thaH(l)(Q), the form
a(u, V) is no longer continuous. The additional assumption on smoothness(af
Loo(£2)2V—3) improves this situation. Fortunately, in most applications the velocity field
is smooth or almost smooth except in the neighborhoods of some singular points of the
boundary.

Now, Corollary 5.1 from [15] implies that problem (6.3) is well posed.

Itis clear that (6.2) can be considered as a mixed formulation of some elliptic problem for
the pressure (this is the point where we benefit from the zero order of the new convection
term). Indeed, we can formally eliminate velocity from the first equality in (6.2). Further
using the second equality and the boundary conditions, we get the following diffusive
problem with the Neumann conditions fpr

— }div %(X)Vp) = F
¢ (6.4)
ap

— = 0, on dQ
on
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where9(x) = {g;;(X)}, i, j =1, ..., N is the ‘diffusive’ matrix detailed below an% =
GX)Vp - n.
The matrix§(x) is expressed in terms afandw as follows.

e 2D case
2 o
G(x) = 2 +W2I T Ziw? (Wx) (6.5)
e 3D case
900 = % (1 +a HW W) — —— (W) (6.6)
T a2 4+ w2 ¢ a? 4+ w? % '

Here | stands for the identity matrixw ® w) for the one withij-element equals
w; (X)w; (X), and (wx) stands for the matrix corresponding to the vector product with

W:
(W) = ( 1?; o )

0 —w3 w2
(Wx) = wz 0 —wp
—w2 w1 0

The first term in (6.5) or (6.6) is the symmetric partfx) and the second is skew-
symmetric.

Let us consider problem (6.4). Note thgt;(X)| < ¢ < oo, i,j = 1,..., N, with
some constant independent ok, w, o, and thusg;; (X) € L (£2). Consider the function
v = 9(x)Vp and assume that € H1($2). Now 8ij(X) € Loo(R2) impliesv Lo()N.

Therefore, the following weak formulation of (6.4) makes sense. For g‘(’venLg(Q)
find p € H1() N LY(Q) such that

e 2D case

e 3D case

1
;(‘Q(X)Vp, Vq) = (F,q), Vg € H'(Q)N LY(Q) (6.7)

Equality (6.7) can be a starting point for a finite element discretization of (6.4).
In almost every poink in the domair2 the matrix4(x) is positive, i.e.,

(%(¥)¢.¢) >0

for any non-zera: € RY. Thus the problem is strongly elliptic and has a weak solution
satisfying (6.7) (see, e.g., [25]). Similar to (6.3) the additional assumptiarL .. ()% 3
ensures problem (6.7) to be uniformly elliptic and the weak solution to be unique.

The following lemma is valid.

Lemma 6.1. Assumev € L. ($2)?N=3. Then problems (6.2) and (6.4) have unique weak
solutions in the sense of (6.3) and (6.7), respectively. Moreover, the pressure component
of the solution of (6.2) belongs #1($2) N LI(2) and solves problem (6.4).

Proof
See Appendix ]
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Remark 6.2.

The minimal regularity of the velocity function in (3.)e Hé(Q) provides thatv belongs
to L(2)?V—3. The extra regularity of given data and hence of the solution ensures
Loo(£2)?N=3, and, as was noted above, the fotf(x)V p, Vq) is coercive (uniformly
elliptic) on H1(Q) N LY (), i.e.,

IIVplI2 < C(4(x)Vp,Vp) Vpe HYQ)NLIQ) (6.8)

If some spatial discretization is considered, then (6.8) holds in any caseCvgiémerally
depending on mesh size The dependence dnis weaker for a smoottv.

Now, denote by kw)~1 (Lw)~t : LY(Q) — H(R2) N LY(Q)) the solution operator
for problem (6.4), in brackets we emphasize the dependence of the operator omgiven
Consider the operator

Qw) t=vl+Lw? (6.9)

as a preconditioner f@. On the one hand, for strongly viscous flows (when we can ignore
the convection effects) the new preconditioner coincideswith aA;,le(O)_l, whichis
known to be optimalin this case. On the other hand, for convection-dominant flows, omitting
the diffusion terms in (4.1) does not alter much the global properties of the problem and
L(w) is again close t&. Hopefully, the choice of(w) covers all intermediate cases as
well. Heuristic analysis of the next section and numerical results from Section 8, support
this conclusion.

7. Fourier analysis

In this section we give some arguments in a framework of the Fourier analysis to justify the
effectiveness of the preconditioning proposed. We consider only the 2D case and constant
w(X) = w. This choice considerably simplifies further calculations.

Let us consider the periodic flow iR? and evaluate the operatBon a given harmonic.
To this end, assumg(x) = exp(i (a, X)), wherea, x € R?. Then

VpX) = {i arexpi(a, X)), i azexpi(a, X))}

Looking foru of the formuy = i k1 exp(i(a, X)), up =i ko exp(i(a, X)), we find from

Ip(X
—VAul +ouyl —wup = — P
0x1
Ip(X
—VvAuy +aur+wuy = — P
0x2
the coefficients
_ —(@+viaPatwa; |, —(@+viaPaz—wa

9 2=

(@ +v]al?)2 + w? (o + v]al?)2 + w?

Therefore, we get

(@ + vlal?)|al?
(a + v|a|2)2 + w2

S, expi(a, x)) =divu = exp(i(a, X))
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Note thatS, is not exactlyS from (4.2), but an operator with periodic conditions for the
convection—diffusion solver involved i8, instead of the Dirichlet boundary conditions
involved inS.

In a similar manner we get

2

Qw)texpi(a x)) = (v + # n w—) expli (a, X))

alal?
Hence, by a straightforward superposition we obtain
w2vatal?
(@ +vla|?)? + w?

Qw) s, expli(a, x)) = (1 + ) expi (a, X))

Let us denote

wzvoz_1|a|2

p(lal®) =

(a + v|al?)? + w?
We readily get

2 2, _ Vo2 +w?
lal;, = arg maxo(la|?) = ——
la]>0 v
and
maxp (lal?) w? (7.1)
pmax = Maxp(ja|®) = _
max la]=0 20 (Va2 + w2 + a)

Sincep(|al?) — 0 for |a|?> — oo, One gets
CondQ(W)_lSp) ~ 1+ pmax

Therefore, the smaller the coefficientax is, the closer to identity the operat@(w)‘lsp
is.

Remark 7.1.

In this model example we see that the preconditioning gives the estimate independent of
viscosityv. It is no contradiction to the fact that for = 0 the preconditioner is ‘exact’.

The explanation is that we have a non-uniform convergence with respect to mesh size for
v — 0 of the problem to the limit case of = 0. Moreover, the above analysis predicts
that the worst case occurs for mesh dize~ |a|;1 < ~a~ 1y, hencer,, — Oforv — 0.

Recall thaix—! ~ 51 (see (3.1)).

Remark 7.2.
If other parameters, including the mesh size, are fixed, the condition number improves with
v — 0.

Remark 7.3.
Convergence improves with — oo (the time step goes to zero).

Remark 7.4.
Let us denoté = w/« and rewrite (7.1) as

_ §2
Pmax = 2 T-I—éz 1
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The latter indicates some deterioration of convergenceé fer co.

The same analysis can be done for the preconditioner provided by the theory for symmetric
problem. Indeed, one can check

w2

(@ +v]ad)? + w?

Q0)s, expli(a, x)) = (l ) exp(i(a, X))

Now, the worst convergence case is observed for low harmonics. By the same arguments
we get
2 2
Wt g8
(a +v)? 1+ v/a)?
If we consider the worst cases with respect tind the mesh size, it follows fgr— oo

condQ(0)71s,) ~ 1+

condQw)~!S,) ~ 1+ 0()
condQ(0)~1S,) ~ 14 0(?)

In this paper these asymptotics are not checked numerically. What we observe numerically
is that for increasing the convergence of an iterative method wiv1(w) does not
deteriorate much, while the convergence of the same methodQwiti0) can deteriorate
dramatically ifv is sufficiently small (see Section 8).

Finally, although the present Fourier analysis doeprtethe appropriate convergence
results for operatos, it is widely recognized to be a good predictor of a ‘real’ solvers’ be-
havior, at least for symmetric problems (see [9]). For the problemwighconst numerical
results from the next section support the conclusions from Remarks 7.1-7.4. However, the
actual convergence rates appear not to be predicted by the above formulas. Probably, some
effects induced by # const are not recovered by Fourier analysis.

8. Numerical results and convection—diffusion solver

We consider2 = (0,1) x (0,1) and a finite difference scheme on staggered grids for
velocity and pressure. This scheme is sometimes referred to as MAC and is known to be
LBB stable (for details see, e.g., [22]). We get= V x v, wherev = (v1, v2),

v1 k(2y — Dx(1—x)
v2 = k(2 =Dyl —y)

(8.1)

The convection function can be considered as the velocity field of a rotating vortex in a
cavity. On a discrete level, the condition= 0 on <2 is satisfied, so, near the boundary
is not smooth. The magnitude of the convection is ruled by the parameter

As an iterative method to solve (4.3) we consider the MINRES algorithm with one search
direction on each iteration. As an exact solutie(x) we take a function with a random
value from [0,1] in every grid point, finally normalized to satigfy, 1) = 0. Hence the
solution is substantially non-smooth. The initial guesg9s= 0.

The convergence criteria jged'||/||red|| < 10, where resis the residuaBp’ — F.
By the average convergence factor we qa (||re€'||/||re|)Y/".

In Tables 1 and 2 the convergence results for the slightly non-symmetric prablen {
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Table 1. MINRES method with new non-symmetric preconditioning; 20, « = 1

Mesh size
Viscosity 132 1/64 1/128 1/256 1/512
1 17(0.43) 18(0.45) 18(0.45) 17(0.44) 17(0.44)
le-1 12(0.30) 14(0.37) 15(0.39) 16(0.41) 15(0.39)
le-2 7(0.13) 10(0.23) 11(0.28) 13(0.37) 13(0.36)
le-4 3(3e-3) 3(%e-3) 4(0.03) 6(0.08) 7(0.13)
le-6 2(2e-5)  2(9e-5) 2(3e-4) 3(1e-3)  3(5e-3)

Number of iterations and average convergence factor.

Table 2. MINRES method with symmetric preconditioning= 20, x = 1

Mesh size
Viscosity 132 1/64 1/128 1/256 1/512
1 17(0.43) 18(0.46) 18(0.45) 17(0.44) 17(0.43)
le-1 12(0.31) 14(0.37) 15(0.39) 16(0.41) 15(0.40)
le-2 8(0.15) 10(0.23) 11(0.28) 13(0.34) 13(0.34)
le-4 7(0.13) 7(0.13) 6(0.10) 6(0.10) 8(0.16)
le-6 7(0.13) 7(0.14) 7(0.13) 7(0.13) 7(0.13)

Number of iterations and average convergence factor.

are presented. The convergence rates are quite good for both preconditioners: the symmetric
one from (5.7) and the new non-symmetric one from (6.9). The difference is seerfdb.

In this case the convergence rates for the method with the new preconditioning significantly
improve.

Remark 8.1.

As we expect from the construction of the preconditioner and Fourier analysis the value
of condQ~1(w)S(w)) is bounded independently of mesh size. However, i§ small a

bound for convergence factors is achieved for very fine mesh (see Section 7), hence it was
expected that for sufficiently smallthe results should be mesh-dependent until the mesh

is not very fine. This is observed in Tables 1 and 3.

In Tables 3 and 4 we present the convergence results for the problem with stronger
convection £ = 10). Now the convergence rates are quite good only for the algorithm with
the new non-symmetric preconditioner from (6.9). The symmetric preconditioning gives
poor results fon — 0. In this case the convergence rates for the method with the new
preconditioning significantly improve contrary to the symmetric case.

Note that the convergence rates with the new preconditioner do not differ much in the
casesc = 1 andxk = 10. The latter case is slightly worse. This is in agreement with the
analysis of Section 7: the value ®f= ||w||/« is higher forx = 10.

We complete the section with the brief description of the solver used for the ‘convection-
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Table 3. MINRES method with new non-symmetric preconditionings 20, x = 10

Mesh size
Viscosity 1/32 1/64 1/128 1/256 1/512
1 17(0.42) 17(0.42) 18(0.43) 180.45) 19(0.47)
le-1 18(0.45) 21(0.52) 23(0.54) 23(0.55) 23(0.55)
le-2 12(0.30) 15(0.39) 17(0.44) 20(0.50) 21(0.51)
le-4 4(0.01) 5(0.05) 8(0.15) 11(0.26) 12(0.30)
le-6 2(le-4) 2(le-4)  3(le-3) 3(3e-3) 4(0.02)

Number of iterations and average convergence factor.

Table 4. MINRES method with symmetric preconditioning= 20, « = 10

Mesh size
Viscosity /32 1/64 1/128 1/256 1/512
1 18(0.46) 18(0.46) 180.45) 17(0.44) 17(0.44)
le-1 29(0.62) 20(0.50) 22(0.53) 21(0.51) 190.48)
le-2 29(0.62) 22(0.53) 20(0.50) 18(0.45) 18(0.46)
le-4 78(0.84) 790.84) 57(0.78) 31(0.63) 21(0.52)
le-6 90(0.86) 90(0.85) 90(0.85) 89%0.85) 83(0.84)

Number of iterations and average convergence factor.
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Table 5. Multigrid V-cycle for convection—diffusion problem,= 20, x = 1

Mesh size

Viscosity 1/32 1/64 1/128 1/256 1/512

00 9(0.10) 9(0.10) 9(0.10) 9(0.10) 9(0.10)
1 9(0.10) 9(0.10) 9(0.10) 9(0.10) 9(0.10)
1e-1 9(0.08) 9(0.09) 9(0.10) 9(0.10) 9(0.10)
1e-2 5(0.02) 8(0.06) 9(0.09) 9(0.09) 9(0.10)
1e-3 3(6e-5) 4(3e-3) 6(0.03) 8(0.07) 9(0.09)
1le-4 2(1e-8) 2(2e-6) 3(3e-4) 5(8e-3) 7(0.05)

Number of iterations and average convergence factor.

diffusion’ problem: giverw, f, find u from

au—VvAU+WwWxUu = f

8.2
Ujpe = 0 8.2)

As an iterative method to solve (8.2) we consider a V-cycle multigrid, as a smoother
MINRES algorithm with one search direction is used with the following preconditioning.
The diagonal lumping for the symmetric part of the convection—diffusion operator is done
and a first-order approximation for the tesnx u is made. Thus, on every cell we solve
the problem (2D case) for the local valuesucdindw:

Brui — wuz g1
Poup+wui = g

The smoother is nearly an exact solver for (8.2) in the ease 0 (this is another point
where we benefit from the zero order of the convection term). In the literature this property
is often required from robust multigrid solvers for singularly-perturbed problems (see, e.g.,
[18]).

We will study the convergence properties of this method elsewhere. The numerical results
(see Tables 5 and 6) show that the algorithm is very efficient and robust with respect to
parametew. Additionally, it does not require any renumbering strategy and can be very
efficiently parallelized, however, one can expect the deterioration of the convergence for
highly anisotropic meshes.

The numerical results below are presented for a V-cycle multigrid with two pre-smoothing
and two post-smoothing steps. First order prolongation and restriction is used for the velocity
function. As an exact solution we takiéx) = v(x) +r(x), wherev(x) is a smooth function,

r (x) is afunction with arandom value from[0,1] in every grid point. The boundary condition
u = 0 is imposed on the discrete level. The initial guesslis= 0. The functionw is taken
asin (8.1). The convergence criterior|i®g'||/||red|| < 10~°. One iteration is one sweep

of the V-cycle.

In the row marked by we present the results for the Poisson problem: 0,w = 0
in (8.2).

The last remark in the section is that the one sweep of the V-cycle for the convection—
diffusion problem can be used as a preconditi@etin the inexact Uzawa algorithm (4.5).
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Table 6. Multigrid V-cycle for convection—diffusion problem,= 20, x = 10

Mesh size
Viscosity 132 1/64 1/128 1/256 1/512
1 9(0.10) 9(0.10) 9(0.10) 9(0.10) 9(0.10)
le-1 10(0.11) 10(0.11) 10(0.11) 10(0.10) 9(0.10)
le-2 6(0.02) 9(0.09) 9(0.10) 10(0.11) 10(0.11)
le-3 3(8e-4)  4(3e-3) 7(0.04) 9(0.10) 10(0.11)
le-4 2(1e-8) 2(6e-7) 3(le-4) 5(%e-3) 8(0.07)

Number of iterations and average convergence factor

9. Appendix

9.1. Proof of Theorem 5.1
First we prove estimates (5.1). To this end, let us fix some0, o > O,w € Lo(Q)V, p €
Lg(SZ) and consider an auxiliary velocity vector from H%(Q), which solves

a(ug, V) + v(Vug, VV) + (W x Uz, V) = —(p, divv), Yve H3(Q) (9.1)

By the definition of S one hag(Sp, p) = —(divuy, p), and hence, choosing = uj in
(9.1), one gets
(Sp, p) = elluzll§ + vllua|f (9.2)

Further, we use the following estimates (see, e.g., [23]):
collplly < @AV A Vp, p) < 1Ipll5 ¥ p € LY(Q) (9.3)

The firstinequality in (9.3) can be observed as the continuous analogue of the LBB condition
(sometimes referred to as the ¢ée inequality), since one has

' 2
divAagiVp, p) = sup (p. divv)”

— VpelLiQ
veHi IIVIIT

Consider one more velocity vectog from Hé(Q), which solves

(Vuz, V) = —(p,divv) Yv e H3(Q) (9.4)

Similarly, one obtains
— (div Ay Vp, p) = Uzl (9.5)

Take now in (9.1) and (9.4) = uj, subtract (9.4) from (9.1) and useinequality with
& = v to estimatg Vup, Vuj). These result in

2 2 _ =1y0112
20| |uallg + viuallf < v7u2llg
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hence the estimate,
(Sp, p) < v HIpll3

immediately follows thanks to (9.2), (9.3), and (9.5).

To prove the lower bound foB we will use the following estimates (they are proved
in a straightforward way by applying thedttler inequality with proper subscripts) for the
convection part:

[(wxu, )| =< clwllollullLylIVIlL,
(W > u, V[ =< cllwllol|ullzs]IV|L

together with (e.g., [25],)

A

Ty
llullL, = cllullgllully

AL
clluflg lull
cllufly

[ullzs

=
lulle =

for arbitraryw € Lo(Q)", u, v € H3 ().
Now, we choos& = u in (9.1) and (9.4), further subtracting (9.4) from (9.1) we get the
following chain of inequalities.

a(uy, U2) +v(Vug, Vup) + (W x Ug, U2)

2
[luz|l1

A

22 L2, o0 o Lo
po ||U1||o+4||U2||1+V [lus]lT + 4||UZ||1'I'C||W||O||Ul||L3||Uz||L6

1 2 2 2 2 1 2
S 1U2ll1 + (par +v)(efjuallo + vilusllp) + cliwilgliuzllolluall + 7 llu2ll1

IA

2
1wl 5 2 2
(alua|lg + vilugllD

v

3 2 2 2
2/1U2ll + (oo +v)(euallp + vijusllp) +c

IA

Hence 5
[Iwllg

A/ Vo
The last inequality together with (9.2), (9.3) and (9.5) proves estimate (5.1) of the theorem
with K (v, a, W) = cM

s Ky m

Equality (9.1) withv = uj provides

luzl13 < 4(pa +v +c )(@llugll3 + vllua]13)

v(divug, divuy) < —(divuy, p)

which is nothing but
v(Sp, Sp) < (Sp, p)
Takingg = Sp one obtains inequality (5.3) withy = v.
To prove estimate (5.2) we fix some arbitrary= Lg(Q) and consideu; as a solution

to
a(Uz, V) + v(VUz, VW) + (W x Uz, V) = —(g, divv) YV e Hi(Q) (9.6)
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Similarly to (9.2) we have

(Sq, q) = alluz|l3 + vlluz|l

By the definition ofSit holds that(Sp, ¢) = —(div u1, ¢) with u; from (9.1), and hence,
taking in (9.6)v = u; one obtains

(Sp.q) = a(uz,u1) +v(Vuz, Vug) + (W x Uz, Up)

2 2,3 2 2.1
(afluallg + vilugllD) 2 (efuzllg + vIluzl1D) 2 + cllwllol|utllz,luz]lL,

IA

1 1 1 1 3 3
(Sp, P)2(Sq, q)2 + cllwllolluallglluzllg lluallf [luzll{
1 1

3 3 1 3 3 3 3
(Sp, p)2(&q, g)2 + 6¢||W(lo 2—8||U1||0 [uallf luzllg Huzllf

IA

IA

&
=uU u
+ Slluallalually)

A

1 1 1 1) e
S 3 3 il 24 Z
< (Sp, p)2(&, 9)2 + c|lW||o ( l 3||U1||0||U2||0+ (48 + 2) ||U1||1||U2||1>

1
Sincee and$ are arbitrary positive, we choose in the last inequality= % (3)2 and

o
1 .
e =1 (%)% Thus, it follows that

1 1 Wilo
Sp.a) < (Sp. E(Sa. )} + 10 uy ol uzllo + vilugllalluzlly)
v (xv)2
1 1 [IwWllo 1 1
< (Sp, p)2(Sq,q)? + c—— 5 (@|lua]I3 + vI|uslD) 2 (@|uz| |3 + v]|uzl?)2
v (xv)a
1 1 [IW[lo 1 1
= (Sp,p)2(S9.9)2 +c—5(Sp, p)2(Sq.q)?
v (av)4
Estimate (5.2) is proved with (v, aw) = ¢—Wllo
@)

Estimate (5.4) is proved in a similar manner to (5.1). Instead of (9.4) we choosexnow
as a solution to

a(Uz, V) 4 v(VUz, VV) = —(p,divv), Vv e H3(Q)

Term(w x u1, Up) is estimated exactly as in the proof of (5.2).
The last estimate, (5.5), is proved as follows. Giyea Lg(Q) considerp; andp, that
solve together withu; andu, the equations: for anfv, ¢} € H(l)(sz) X Lg(Q)
a(uy, V) +v(Vuy, Vv) — (p1,divv) = 0,

_ 9.7)
(divui, q) = (p.q)
and for any{v, ¢} € H3() x LI(Q)

a(U2, V) +v(Vuz, VV) + (W X U2, V) — (p2,divv) = 0,

. (9.8)
divuz,q) = (p,q)
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Inequality (5.5) now takes the form

vs5(p1, p) < (p2, p) (9.9)

Additionally, the following equalities are valid:

(pr.p) = (pr.divuz) = (pr.divuy) = afjugl§+vilullf, (9.10)
(p2.p) = (p2.divuy) = (pz.divup) = alluzli§+ viluzll]

Let us take in (9.7¥ = uz and in (9.8 v = uz, subtracting one equality from the other
one gets
(p1, divuz) = (p2, divug) — (W x Uz, Ug) (9.11)

In the same way as before one obtains

1 2 2 lIwlI§
[(wx Uz, up)] = 5 (ellullp + viluallp) +c—

2 2
7 (afuzllg + vl|uz]l7)
v (av)?2

The combination of the last estimate with (9.10) and (9.11) gives (9.9), hence inequality
(5.5) is proved.

If the functionw is more smooth one can get use of the sharper estimates for convection
terms:

[(wxu,v)[ < clwllLsllullolV]lLg

=
(W xu,v)[ =< clwllL,lullolIVllo

The same considerations give the sharper consianis, andys.
Theorem 5.1 is proved.

Remark 9.1.

For o = 0 the similar estimates can be proved. The only alteration is the ubk%(ﬁ)
norm||-||1 instead of |-||o in the estimates of the convection term. This can be always done
thanks to the Poincare—Fridrichs inequality.

9.2. Proof of Theorem 5.2
The errore;, = p — pi of the method (4.4) satisfies the relation.1 = (I — 1Q1S)ex
forall £ = 0,1,... Denote by(p, g)q the scalar productQ p, ¢) with a positive and
self-adjointQ. One gets
llewrlld =110 — 1Q ' S)er|[§ = llexllg — 2t (Q*Sex, ex)q + t°11Sexl Iy
Let us consider the case @1 from (5.7). Inequality (5.5) of Theorem 5.1 is equal to
y511SplI3, < (S5 Sp. s

SinceQ ~ Sg the last estimate implies

cyslISplld < (Q'Sp. p)g
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Therefore, one obtains
llexr1l1d < llexlly — (27 — ¢ 1275 H(Q ' Sex, ex)q

from which, assuming < 2cys and due to (5.4), one gets

llewsall§ < llexlld — v — ¢~ r2yg5 Hysllerlld

In the last inequality let us take = cys, and finally obtain the desired estimate

lleks1llo < /1 — cvlleclo

The case of)~1 from (5.6) is simpler and proved in the same manner. The theorem is
proved.

9.3. Proof of Lemma 6.1

Assume thap from H1(€) N Lg(Q) is some solution to the problem (6.4) and consider
u= —oz‘l%;(x)Vp. As is shown in Section & € L»(2)Y, moreover diwu = F € Ly()
andu-n = 22 — 0. Thus the vector function belongs taHp(div ). Due to the definition

of u and (6.6) one readily gets
a6 r)u,v) + (Vp,v) = 0 Vv € Ho(div)
—(U,Vq) = (F,q), Vq e HYQ)NLYR)

Integrating the above equalities by parts, and due to the boundary conditioasO and
the explicit form oﬁg_l(x) we obtain

a(u,Vv) +(wxu,v) —(p,divv) = 0 Vv € Ho(div)

_ . . (9.12)
divu,q) = (F,q), Vg € HXQ) N LYAR)

The second equality in (9.12) is still true for arbitrarye Lg(gz). Hence, one gets that
{p, u} is exactly the weak solution to the saddle-point problem (6.2). Both problems are
well posed under the assumptionvefe L. (£2)2Y—3. The lemma is proved.
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