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ABSTRACT

This dissertation studies novel computational methodologies for multi-phase problems. The

first part of the thesis focus on computational models for complex interface coupled flow problems.

The problem is studied both numerically and analytically. More specifically, an unfitted finite ele-

ment approach for the simulation of a two-phase flow with an immersed material viscous interface

is studied in the first and second chapters. The interaction between the bulk and surface flows is

characterized by no-penetration and slip with friction interface conditions. The system is shown

to be dissipative and a model stationary problem is proved to be well-posed. The finite element

method applied in this thesis belongs to a family of unfitted discretization. For the unfitted gen-

eralized Taylor–Hood finite element pair, an inf-sup stability property is shown with a stability

constant that is independent of the viscosity ratio, slip coefficient, the position of the interface

with respect to the background mesh and, of course, mesh size. In addition, we prove stability and

optimal error estimates that follow from this inf-sup property. To study numerically the coupled

problem, we introduce an iterative procedure based on the splitting of the system into bulk and

surface problems. Numerical results in two and three dimensions to corroborate the theoretical

findings and demonstrate the robustness of our approach.

Solving strongly-coupled nonlinear partial differential equations which characterize multi-scale,

multi-physics processes with high dimensional chaotic dynamics is computationally expensive for

many practical reasons. The necessity for developing a simulation and prediction strategy with high

fidelity by only utilizing observational data highly increased over the last decades. In the second

part of the thesis, the performance of two deep learning methods for reproducing short-term and

long-term statistics of spatio-temporal data from the surface Cahn–Hilliard phase-field model is

examined. The deep learning methods are echo state network (ESN) and long short-term mem-

ory (LSTM). The numerical discretization scheme of the Cahn-Hilliard system is briefly discussed.

Then we present architectures of the ESN and the LSTM. We show that LSTM substantially out-

performs ESN in short-term and long-term prediction, and give accurate forecasting trajectories

for numerical solver’s time steps.
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1 Introduction

1.1 Motivation

Interfacial interactions between different gas, liquid, and solid phases are omnipresent phenomena

in nature. Over the past decades, the necessity for a profound understanding of complex coupled

flow problems has greatly increased. Nowadays, applications of fluid dynamics are everywhere in

modern scientific fields such as geophysics, astrophysics, biology, and medicine.

For a long period of time, analysis of complex coupled flow problems largely based on laboratory

experiments or prototyping. Thanks to rapid development of computer technology and increase in

computing capacity over the years, developing computational models for complex physical phenom-

ena has become an important topic in science and industry. The main advantage of computational

simulation is allowing a rapid and convenient way for developing engineering products or scientific

research. Due to the increasing complexity of multi-physics model, lab experiments on mutual

interactions are often limited or even fail because of budget and lab constraints. Therefore compu-

tational approaches are in general regarded as superior and more effective.

Most of these complex physical phenomena can be characterized by coupled non-linear partial

differential equations (PDEs) defined on complex geometries. Over the last century, numerical ap-

proximations to the solutions of coupled PDEs system have been proposed such as finite difference

method, spectral method, finite volume method, finite elements method, or even machine learning,

among which finite elements method (FEM) is one of the most powerful and popular approach. Its

ability to simulate single-phase and multi-phase problems has been demonstrated by researchers.

Nowadays due to the need from industrial development, the complexity of configurations of multi-

physics model has been rapidly increasing, gradually pushing to the limit of FEM’s capabilities.

One of the limitations of FEMs is to deal with large deformations and topological changes of do-

mains. Several approaches have been proposed in the last decades to address this shortcoming of

FEM. One of them is so-called geometrically unfitted finite element methods, a class of powerful
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discretization techniques that chooses computational domains unfitted to physical domains. Popu-

lar unfitted methods are XFEM [71] and CutFEM [15]. XFEM enriches the finite element shape

functions by the Partition-of-Unity method. To learn more about XFEM applied to two-phase

flow problems, we refer the reader to [21, 29, 36, 55, 91]. CutFEM is a variation of XFEM, also

called Nitsche-XFEM [41]. CutFEM uses overlapping fictitious domains in combination with ghost

penalty stabilization [14] to enrich and stabilize the solution. The name of the method ”Cut Fi-

nite Element Method“ (CutFEM) is given by the fact that finite elements are cut by the physical

boundary.

Another challenge for FEMs is to generate a computationally efficient and accurate numerical ap-

proximation to solutions of surface PDEs defined on a complex evolving surface. The computational

cost of triangulation or another type of fitting mesh for complex evolving surfaces can be high. To

overcome this limitation, TraceFEM [79] was proposed that uses a surface-independent background

mesh on a fixed bulk domain, such that the fixed bulk domain contains the evolving surface. The

main idea of the method is to introduce a finite element space base on a volume triangulation and

consider traces of finite element function from the finite element space. This trace space is used to

formulate the finite element discretization for the PDE system.

The application of CutFEM and TraceFEM discretization for a coupled flow model constitutes the

major part of the thesis. In the last chpater, we explore the applicability of artificial neural net-

works in prediction of the pattern formation driven by the Cahn-Hilliard model of phase separation.

1.2 Basic equations of fluid dynamics

1.2.1 Governing equations for one phase flow

In this section, we derive the governing equations for the motion of a laminar flow of incompressible

fluid. Let Ω ∈ Rd, d ∈ {2, 3} be a region occupied by fluid. The derivation of the equations is based

on several fundamental assumptions:
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• For all times t > 0, there exists a well-defined mass density function ρ(x, t) such that the

total mass is defined as m(t) :=
∫

Ω ρ(x, t) dV (Hypothesis of continuum).

• For all times t > 0, mass is neither produced nor disappears (Conservation of mass).

• For all times t > 0, energy is neither produced nor disappears (Conservation of energy).

• The rate of change of momentum of an object is directly proportional to the force applied

(Conservation of momentum).

To derive the governing equations, we consider x ∈ Ω, where x = (x1, x2, x3) is a point in Ω

represented in Eulerian coordinates. Let X denote a fluid particle (material point) moving through

x at time t. We describe the change of the particle position as a function φ : Ω×R+ → R3, where

φ(X, t) can be interpreted as position of particle X at given time t.

We define the velocity of fluid particle X at time t,

u(x, t) :=
∂φ

∂t
(X, t) where x := φ(X, t). (1)

The acceleration can be derived as

a(x, t) :=
d

dt
u(x, t) =

d

dt
u(φ(X, t), t) (2)

=
∂

∂t
u(φ(X, t), t) +

3∑
i=1

∂u

∂xi
(φ(X, t), t)

∂φi
∂t

(X, t) (3)

=
∂

∂t
u(φ(X, t), t) +

3∑
i=1

ui(X, t)
∂u

∂xi
(φ(X, t), t) (4)

=
∂u

∂t
+ (u · ∇)u. (5)

Now we are ready to derive the governing equations for one phase flow from our assumptions. We

start with conservation of mass and hypothesis of continuum.

Consider a subdomain W ⊂ Ω, denote the boundary of W as ∂W and n as the unit outer normal.

For the sake of simplicity, we assumed that ρ(x, t) ∈ C1(Ω), and W is a Lipschitz domain. The

3



change of mass in W can be derived as,

d

dt
m(W, t) =

d

dt

∫
W
ρ(x, t) dV (6)

=

∫
W

∂

∂t
ρ(x, t) dV. (7)

The total flow of mass through boundary ∂W can be characterized by,

∫
∂W

ρu · n dA. (8)

Following from the principle of conservation of mass, the change of mass in domain W is equals to

the flow of mass over boundary ∂W into W , i.e.,

∫
W

∂

∂t
ρ(x, t) dV = −

∫
∂W

ρu · n dA. (9)

We rewrite (9) as,

∫
Ω

(
∂

∂t
ρ(x, t) + div(ρu))1W dV = 0 for every W ⊂ Ω, (10)

where 1W denotes an indicator function for the set W and since (10) holds for arbitrary t, we

obtain the following equality,

∂

∂t
ρ(x, t) + div(ρu) = 0 in Ω× (0, T ). (11)

In fluid mechanics, compressibility is defined as a measure of the relative volume change of a fluid

as a response to mean stress change. Here we give a definition of an incompressible fluid: a fluid is

4



incompressible if the following conditions hold,

div u = 0 (12)

ρ̇ = 0. (13)

To derive equalities from the conservation of momentum assumption, we need the Reynold’s trans-

port theorem.

We derive the theorem in Eulerian coordinates. Consider a small subdomain W0 ⊂ Ω (the so-called

material volume). We define Wt := {φ(X, t) : X ∈ W0}. Let f : Wt × (0, T )→ R3 be a sufficiently

smooth function. The following equality holds,

d

dt

∫
Wt

f(x, t) dV =

∫
Wt

(ḟ + fdiv u) dV =

∫
Wt

∂f

∂t
dV +

∫
∂Wt

(u · n)f dA (14)

where ḟ := ∂f
∂t + u · ∇f is so-called material derivative.

Now we are ready to derive equalities from the assumption of conservation of momentum. Recall

Newton’s second law: ”The rate of change in momentum of an object is directly proportional to

the applied force”.

We first distinguish the force applied to the fluid into two categories:

Volume forces:

∫
Wt

ρ(x, t)f(x, t) dV, (15)

with a given force density f = (f1, f2, f3).

Surface forces:

∫
∂Wt

n · σ(x, t) dA (16)

5



where σ ∈ R3×3 is the stress tensor describing internal friction and pressure. n · σ is a vector field

which characterize stress vector on hyper-surface ∂Wt. Hence we could rephrase the conservation

of momentum,

d

dt

∫
Wt

ρu dV =

∫
Wt

ρf dV +

∫
∂Wt

n · σ dA (17)

=

∫
Wt

ρf dV +

∫
Wt

div σ dV. (18)

Combining (14) and (18) we have,

∫
Wt

ρu̇− ρf − divσ dV = 0 for every Wt ⊂ Ω. (19)

Since (19) is true for all Wt ⊂ Ω, one has

ρu̇ = ρf + divσ (20)

or in a equivalent form,

ρ
∂u

∂t
+ ρ(u · ∇)u = ρf + divσ. (21)

We get the so-called Cauchy momentum equation.

1.2.2 Constitutive law between stress tensor and the rate of deformation tensor

In the section we give detailed definition of the stress tensor σ. The stress tensor in Eulerian

coordinates can be represented as matrix form at each position:

σ(x, t) =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 ∈ R3×3 for x ∈ Ω, t ∈ (0, T ). (22)
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For viscous Newtonian fluid, one makes the following assumptions:

• σ = −pI + τ , where p denotes a scalar field on Ω characterizing pressure.

• σ linearly dependends on ∇u.

• σ is invariant with respect to translation and rotation.

• σ is symmetirc.

From the previous assumptions, one can conclude that the stress tensor of the Newtonian fluid

takes the following form,

σ = −pI + λ(∇ · u)I + 2µD(u) (23)

where D(u) := 1
2(∇u +∇uT ) denotes the deformation tensor. In the case of incompressible fluid,

one can further simplify,

σ = −pI + 2µD(u) (24)

Combining (12) (21), and (24), we get the well-known Navier-Stokes equations for incompressible

flow: 
∂ρu
∂t + ρ(u · ∇)u = ρf +∇ · σ

∇ · u = 0
(25)

1.2.3 Navier-Stokes equations for two phase flow

Now we introduce the Navier-Stokes equations for two phase flow. Let Ω ⊂ Rd be a given domain,

d = 2 or d = 3, ∂Ω at least Lipschitz smooth. Consider a time dependent at least C2 smooth closed

hyper-surface (Γ(t))t∈[0,T ] separating Ω = Ω± into two subdomains, Ω+(t) and Ω−(t) := Ω \Ω+(t).

It is assumed that (Γ(t))t∈[0,T ] is a C2 smooth hypersurface without boundary that evolves with a

time-dependent vector field V(t). Let n denote the unit normal on Γ(t) pointing towards Ω+(t),

see Fig.1.
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Figure 1: An illustration for the geometrical setup of the 2D problem.

For any vector field u on Γ we define the normal and tangential components, correspondingly:

uN := u · n , uT := Pu = u− uNn (26)

where P = I − nTn is the projector on the tangent space TΓ(t). Let u : Ω± × [0, T ] → Rd and

p : Ω±× [0, T ]→ R be the bulk fluid velocity and the pressure. The restrictions u+, p+ and u−, p−

are assumed to be C1 and define bulk flows of separate phases correspondingly in Ω+ and Ω−. We

let

[u]−+ := u− − u+

denote the jump of bulk velocity; similar notation is used for jumps of other quantities.

The incompressible Navier-Stokes system for both phases with a prescribed velocity on ∂ΩD
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and presribed stresses on ∂ΩN such that ∂Ω+ = ∂ΩD ∪ ∂ΩN ∪ Γ(t) reads

ρ u̇ = divσ in Ω±(t) (27)

∇ · u = 0 in Ω±(t) (28)

u = g on ∂ΩD (29)

t = f on ∂ΩN (30)

where u̇ = ut+ (∇u)u is the material derivative, σ = −p I+µ(∇u+∇Tu) is the Newtonian stress

tensor, ρ := ρ−H + ρ+(1−H) with H the indicator function of Ω−; the constant densities ρ± and

the dynamic viscosity µ = µ± are material parameters of the phases, and t = t(u) = σñ is the

stress vector on ∂Ω oriented by outward pointing ñ. The classical interface conditions on a moving

interface:

AI Continuous coupling

[u]−+ = 0 on Γ(t) (31)

[σ]−+n = 0 on Γ(t) (32)

AII Friction with slip

[u]−+ · n = 0 on Γ(t) (33)

Pσ−n = −f(Pu− −Pu+) on Γ(t) (34)

Pσ+n = f(Pu+ −Pu−) on Γ(t) (35)

n · [σ]−+n = 0 on Γ(t) (36)

where f is the friction coefficient. Note that in both cases the stress vector is continuous across the

interface Γ(t), [σ]−+n = 0, which is the well-known in continuum mechanics condition of local con-

servation of the momentum flux. The geometrical evolution of the interface Γ(t) between domains
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is coupled with the material velocities on Ω+(t) and Ω−(t):

V · n = u+ · n = u− · n on Γ(t) (37)

1.2.4 Surface Navier-Stokes equations

To formulate the surface Navier-Stokes equations, we need to define additional notations. The

evolution of the material interface can be described in terms of the velocity of this surface fluid

denoted by U. Later, we will need the decomposition of U into tangential and normal components:

U = UT + UNn, with UT · n = 0, UN = n · U. The surface Navier-Stokes equations governing

the motion of a fluidic deformable layer appear in several works [90, 51, 68]. Here, we adopt

the formulation in terms of tangential differential operators from [51], where the equations have

been derived from conservation principles. Let P(x) := I−n(x)n(x)T for x ∈ Γ be the orthogonal

projection onto the tangent plane. For a scalar function π : Γ→ R or a vector function U : Γ→ R3

we define πe : O(Γ) → R, Ue : O(Γ) → R3, smooth extensions of π and U from Γ to its

neighborhood O(Γ). The surface gradient and covariant derivatives on Γ are then defined as

∇Γπ = P∇πe and ∇ΓU := P∇UeP. The definitions of ∇Γπ and ∇ΓU are independent of the

particular smooth extension of π and U off Γ. On Γ, we consider the surface rate-of-strain tensor

[38] given by

DΓ(U) :=
1

2
P(∇U + (∇U)T )P =

1

2
(∇ΓU + (∇ΓU)T ). (38)

The surface divergence for a vector g : Γ → R3 and a tensor A : Γ → R3×3 are defined as:

divΓg := tr(∇Γg), divΓA :=
(

divΓ(eT
1 A), divΓ(eT

2 A), divΓ(eT
3 A)

)T
,where ei is the ith standard

basis vector.

Before deriving the surface Navier-Stokes equations, let us recall the surface integration by parts

identity, and surface analogue of the Reynolds transport theorem.

Consider f ∈ H1(Γ(t)) with t ∈ [0, T ] and vector field v. For arbitrary γ(t) ⊂ Γ(t), the following
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integration by parts identity holds:

∫
γ(t)

f divΓv ds =

∫
∂γ(t)

fv ·m dγ −
∫
γ(t)

v · ∇Γf ds+

∫
γ(t)

κfv · n ds (39)

where κ is the sum of principle curvatures, and m ∈ TΓ(t) is the outward normal defined on ∂γ(t).

Let γ(t) ⊂ Γ(t) be a subdomain follows the evolving principle (37), then the following analogue of

Reynold transport theorem on γ(t) holds,

d

dt

∫
γ(t)

f ds =

∫
γ(t)

(ḟ + f divΓu) ds (40)

with ḟ is the material derivative of f. Now we are ready to derive the surface Navier-Stokes

equations. The derivation is based on conservation laws of mass and momentum.

We assume that the surface Γ(t) is inextensible i.e. for arbitrary material subdomain γ(t) ⊂ Γ(t),

the following equality holds,

d

dt

∫
γ(t)

dA = 0 for all t ∈ [0, T ] (41)

The surface Reynolds transport theorem and the arbitrariness of γ(t) yields,

divΓU = 0 (42)

Conservation of mass yields,

0 =
d

dt

∫
γ(t)

ρΓ dA =

∫
γ(t)

ρ̇Γ dA (43)

The second equality follows from (40), and divΓU = 0. The arbitrariness of γ(t) and (43) imply

ρ̇Γ = 0. We further assume ρΓ is constant on evolving surface Γ(t).
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From conservation of surface momentum, we have the equation,

d

dt

∫
γ(t)

ρΓU dA =

∫
γ(t)

b dA+

∫
∂γ(t)

bm ds (44)

with an area force b, and a contact force bm. We use Cauchy ansatz and Boussinesq-Scriven ansatz

for the contact force term, i.e.

bm = σΓm, σΓ = −πP + 2µΓDΓ(U) (45)

with a stress tensor σΓ and m the in-plane unit normal on ∂γ(t). Using the Stokes theorem, we

obtain the momentum balance,

d

dt

∫
γ(t)

ρΓU dA =

∫
γ(t)

divΓσΓ + b dA (46)

Combining (42), (46), (40), and arbitrariness. One obtains the surface Navier-Stokes system:

ρΓU̇ = divΓσΓ + b on Γ(t) (47)

divΓU = 0 on Γ(t) (48)

σΓ = −πP + 2µΓDΓ(U) on Γ(t) (49)

It is natural to link the geometrical evolution of the bulk interface with the velocity U of the surface

system that occupies it:

V · n = UN on Γ(t) (50)

To derive the surface energy balance laws, we need the following lemma,
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Lemma 1.1 For a vector g ∈ (C1(Γ))d and a matrix G ∈ (C1(Γ))d×d such that G = PG we have

∫
Γ

g · divΓGP dS = −
∫

Γ
G : ∇Γg dS (51)

Proof:

In order to prove the lemma we need 3 steps.

Step 1:

For an arbitrary g ∈ C1(Γ) and for all i ∈ [1, d] consider

∫
Γ
(∇TΓg)i dS =

∫
Γ
(P∇TΓg)i dS =

∫
Γ
∇Γ(idi) · ∇TΓg dS = −

∫
Γ
g4Γidi dS =

∫
Γ
gκni dS

where we used the integration by parts for scalar functions on a surface without boundary.

Step 2:

For an arbitrary f ∈ C1(Γ)d such that f = Pf we replace g with fi g and sum for all i ∈ [1, d]:

∫
Γ
g divΓf + f · (∇TΓg) dS =

∫
Γ
κgf · n dS

which implies

∫
Γ
g div Γf dS = −

∫
Γ

f · ∇TΓgdS (52)

Step 3:

We let Gi denote the i-th row of matrix G and

∫
Γ

g · div ΓGP dS =

3∑
i=1

∫
Γ
gidiv Γ(eTi GP)T dS =

3∑
i=1

∫
Γ
gidiv Γ(PGT

i ) dS = −
3∑
i=1

∫
Γ

PGT
i · ∇TΓgi dS

= −
3∑
i=1

∫
Γ
∇ΓgiPGT

i dS = −
3∑
i=1

∫
Γ
∇giPGT

i dS = −
∫

Γ
tr(∇gPGT ) dS

= −
∫

Γ
tr(∇gPGTP) dS = −

∫
Γ

tr(P∇gPGT ) dS = −
∫

Γ
tr(∇ΓgGT ) dS = −

∫
Γ

G : ∇Γg dS
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Now we are ready to show the balance laws for the kinetic energy EΓ of a fluidic interface with the

help of (51):

d

dt
EΓ =

1

2

d

dt

∫
Γ(t)
ρΓ(U ·U) dS =

1

2

∫
Γ(t)

(
2ρΓU · U̇ + ρΓ(U ·U) divΓU

)
dS

=

∫
Γ(t)

ρΓU · U̇ dS =

∫
Γ(t)

U · ( divΓσΓ + b) dS =

∫
Γ(t)

U · b dS −
∫

Γ(t)
tr(σΓ∇ΓU) dS

=

∫
Γ(t)

U · b dS − 2µΓ

∫
Γ(t)
‖DΓU‖2 dS (53)

where we clearly see the total external force, the total viscous dissipation of the fluidic interface.

1.2.5 Surface Navier-Stokes on a stationary interface

Here we would like to understand under which conditions the Bousinesque-Scriven model (47)-

(49) can be used to model a stationary in space fluidic interface. We start by splitting the surface

Navier-Stokes system into normal and tangential parts (see e.g. in [51]):

ρΓPU̇T = −∇TΓπ + 2µΓP divΓDΓ(U) + bT − ρΓUN ṅ on Γ(t) (54)

ρΓU̇N = 2µΓn · divΓDΓ(U) + πκ+ bN + ρΓṅ ·UT on Γ(t) (55)

divΓU = 0 on Γ(t) (56)

Let us consider surface Euler equations assuming µΓ = 0 and demonstrate how momentum and

energy split in the normal and tangential directions. Taking inner product of the first (54) and the

second (55) equations with UT and UN correspondingly we arrive at the energy law:

∫
Γ(t)

ρΓ

(
U̇T ·UT + U̇NUN

)
dS =

∫
Γ(t)

(U · b + UNπκ−UT · ∇TΓπ) dS

=

∫
Γ(t)

U · b dS +

∫
Γ(t)

π(UNκ+ divΓUT ) dS =

∫
Γ(t)

U · b dS
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Since

U̇ ·U = (U̇T + U̇Nn + UN ṅ) · (UT + UNn) = U̇T ·UT + U̇N · UN

+UN (U̇T · n + UT · ṅ) = U̇T ·UT + U̇N · UN

we obtain the splitting of the surface energy balance law

dEΓ

dt
=

1

2

d

dt

∫
Γ(t)

ρΓU2 dS =
1

2

d

dt

∫
Γ(t)

ρΓ

(
U2
T + U2

N

)
dS =

∫
Γ(t)

U · b dS

Now we integrate the first and the second equations assuming µΓ = 0 to obtain the directional

split of the momentum law:

∫
Γ(t)

ρΓ

(
PU̇T + U̇Nn

)
dS =

∫
Γ(t)

(b + πκn−∇TΓπ − ρΓUN ṅ + ρΓ(ṅ ·UT )n) dS

=

∫
Γ(t)

b dS −
∫

Γ(t)
ρΓ(UN ṅ + (n · U̇T )n) dS

where ṅ ·UT = −n · U̇T is used. Noticing ṖUT + PU̇T = U̇T and using

U̇ = U̇T + U̇Nn + UN ṅ = PU̇T + ṖUT + U̇Nn + UN ṅ (57)

we conclude that a part of the momentum balance is the change of velocity on the surface and

another part is due to the geometrical evolution:

dQΓ

dt
=

∫
Γ(t)

ρΓ

(
PU̇T + U̇Nn

)
dS +

∫
Γ(t)

ρΓ(UN ṅ + ṖUT ) dS =

∫
Γ(t)

b dS (58)

It is easy to see that the last statement also holds in case of µΓ 6= 0.

Now we derive a model of a fluidic interface that corresponds to a stationary surface in space,

i.e. UN = 0. Unfortunately, a naive insertion of this condition into the surface Navier-Stokes does
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not lead to a consistent system. Indeed, set UN = 0 and have

ρΓPU̇T = −∇TΓπ + 2µΓP divΓDΓ(UT ) + bT on Γ(t) (59)

0 = −2µtr(H∇ΓUT ) + πκ+ bN + ρΓUT ·HUT on Γ(t) (60)

divΓUT = 0 on Γ(t) (61)

where we used the identity ṅ = HUT − ∇TΓUN . It is clear that the first and the third equation

define a geometric PDE (with the covariant material derivative PU̇T ) on a stationary surface with

a solution UT and π. However, the second equation will be satisfied if only there is an external

force bN that balances other normal forces:

bN = −πκ+ (2µtr(H∇ΓUT )− ρΓUT ·HUT ) (62)

We are assuming that this normal force is always applied to keep the position of the surface, and

is composed of a Laplace force, −πκ, and a normal force N(UT ) that depends on the tangential

motion:

N(UT ) = 2µtr(H∇ΓUT )− ρΓUT ·HUT (63)

where the first term is a normal viscous traction caused by the curvatures and the second term is

so-called centripetal force.

The tangential system, which we denote as NS∗(UT ) = bT , is coupled with the external to the

surface tangent force as follows:

ρΓPU̇T = −∇TΓπ + 2µΓP divΓDΓ(UT ) + bT on Γ(t) (64)

divΓUT = 0 on Γ(t) (65)
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Let us summarize the suggested model of a stationary fluidic interface:

UN = 0 (66)

NS∗(UT ) = bT (67)

bN = −πκ+N(UT ) (68)

The momentum and the energy balance laws of a stationary fluidic interface can be derived similarly

to the general case. We consider the equation (67) solely and compute the following:

∫
Γ(t)

ρΓU̇T dS =
δQpΓ
δt

+
δQcΓ
δt

=

∫
Γ(t)

ρΓPU̇T dS +

∫
Γ(t)

ρΓṖUT dS

=

∫
Γ(t)

(−∇TΓπ + 2µΓP divΓDΓ(UT ) + bT ) dS +

∫
Γ(t)

ρΓ(U̇T · n)n dS

=

∫
Γ(t)

bT dS +

∫
Γ(t)

(−πκn + 2µΓP divΓDΓ(UT )− ρΓ(UT ·HUT )n dS

=

∫
Γ(t)

bT dS +

∫
Γ(t)

(−πκn + 2µtr(H∇ΓUT )− ρΓ(UT ·HUT )n dS

=

∫
Γ(t)

bT dS +

∫
Γ(t)

(−πκ+N(UT ))n dS

=
δQ∗Γ
δt

+

∫
Γ(t)

ρΓ(UT ·HUT )n dS =
dQ∗Γ
dt

Similarly,

d

dt
E∗Γ =

1

2

d

dt

∫
Γ(t)

ρΓU2
T dS =

∫
Γ(t)

ρΓUT · U̇T dS =

∫
Γ(t)

ρΓUT ·PU̇T dS

=

∫
Γ(t)

UT · bT dS +

∫
Γ(t)

(−UT · ∇TΓπ + 2µΓUT ·P divΓDΓ(UT )) dS

=

∫
Γ(t)

UT · bT dS +

∫
Γ
π div ΓUT dS − 2µΓ

∫
Γ
DΓ(UT ) : ∇ΓUT dS
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Finally, the following a priori estimates hold:

dQ∗Γ
dt

=

∫
Γ(t)

bT dS +

∫
Γ(t)

(−πκ+N(UT ))n dS (69)

dE∗Γ
dt

=

∫
Γ(t)

UT · bT dS − 2µΓ

∫
Γ(t)
‖DΓUT ‖2 dS (70)

Remark 1.2 The suggested above momentum and energy laws are due to the structure of NS∗(UT ) =

bT equations. If one takes into account UN = 0 and bN = −πκ + N(UT ) then the non-split mo-

mentum law of surface Navier-Stokes can be recovered.

1.2.6 Mathematical models of two-phase flow with a fluidic interface

Our goal is to investigate proper coupling conditions for the surface flow and the bulk flow such that

momentum and energy balance laws are kept valid. We can couple these systems kinematically

via velocities, dynamically via forces or any combination of them. The kinematic coupling can

be continuous and discontinuous, however the local conservation of the mass guarantees that the

normal bulk velocity should be continuous across the interface. Assuming there are no external

forces like gravity, the dynamical coupling should be performed through an unknown force b that,

from one hand, enters the surface flow momentum equation, and from another hand balances the

jump of stress vector across the interface to guarantee local conservation of the momentum flux:

[σ]−+n + b = 0

This coupling technique results in the following two models.
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BI Continuous coupling with fluidic interface

[u]−+ = 0 on Γ(t) (71)

[σ]−+n + b = 0 on Γ(t) (72)

U = u on Γ(t) (73)

NSΓ(U) = b on Γ(t) (74)

The total bulk momentum and energy can be expressed as follows:

dQ

dt
= −

∫
Γ

b dS + r (75)

dE

dt
= −

∫
Ω±

2µ ‖Du‖2 dV −
∫

Γ(t)
U · b dS +R (76)

or, with the help of the balance of surface momentum and energy:

d

dt
(Q+QΓ) = r (77)

d

dt
(E + EΓ) = −

∫
Ω±(t)

2µ ‖Du‖2 dV − 2µΓ

∫
Γ(t)
‖DΓU‖2 dS +R (78)

where

r =

∫
∂ΩD

t dS +

∫
∂ΩN

f dS (79)

R =

∫
∂Ω

u · t dS =

∫
∂ΩD

g · t dS +

∫
∂ΩN

u · f dS (80)

is the total force and the total mechanical power imposed on the outer boundary ∂Ω.
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BII Friction slip on fluidic interface

[u]−+ · n = 0 on Γ(t) (81)

uN = UN on Γ(t) (82)

Pσ−n = −f−(Pu− −UT ) on Γ(t) (83)

Pσ+n = f+(Pu+ −UT ) on Γ(t) (84)

[σ]−+n + b = 0 on Γ(t) (85)

NSΓ(U) = b on Γ(t) (86)

and the total bulk momentum and energy can be expressed as follows:

dQ

dt
= −

∫
Γ

b dS + r (87)

dE

dt
= −

∫
Ω±

2µ ‖Du‖2 dV −
∫

Γ(t)
U · b dS − F± +R (88)

with the term for the friction dissipation

F± =

∫
Γ
f−(Pu− −UT )2 + f+(Pu+ −UT )2 dS (89)

or, with the help of the balance of surface momentum and energy:

d

dt
(Q+QΓ) = r (90)

d

dt
(E + EΓ) = −

∫
Ω±(t)

2µ ‖Du‖2 dV − 2µΓ

∫
Γ(t)
‖DΓU‖2 dS − F± +R (91)

Both presented models have correct total mass, momentum and energy balance laws.
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Then we would like to consider models of coupling the stationary fluidic interface with bulk flows.

SI Continuous coupling on stationary fluidic interface

[u]−+ = 0 on Γ(t) (92)

[σ]−+n + b = 0 on Γ(t) (93)

U = u on Γ(t) (94)

UN = 0 on Γ(t) (95)

NS∗(UT ) = bT on Γ(t) (96)

Here we choose to relax the normal force equation, bN = −πκ + N(UT ), of the surface

Navier-Stokes equation. Indeed, the total bulk momentum and energy laws can be expressed

as follows:

d

dt
(Q+QΓ) =

d

dt
(Q+Q∗Γ) =

∫
Γ
(bN + πκ−N(UT ))n dS + r (97)

d

dt
(E + EΓ) =

d

dt
(E + E∗Γ) = −

∫
Ω±(t)

2µ ‖Du‖2 dV − 2µΓ

∫
Γ(t)
‖DΓU‖2 dS +R (98)

qSI Continuous coupling on quasi stationary fluidic interface

[u]−+ = 0 on Γ(t) (99)

[σ]−+n + b = 0 on Γ(t) (100)

U = u on Γ(t) (101)

NS∗(UT ) = bT on Γ(t) (102)

bN = −πκ+N(UT ) on Γ(t) (103)

Here we choose to relax the condition of a stationary surface, UN = 0. This means that
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while we use the equilibrium force bN to balance the bulk stress jump, we cannot expect the

surface to be at the same position. The total bulk momentum and energy can be expressed

as follows:

d

dt
(Q+QΓ)−

∫
Γ(t)

ρΓ(U̇Nn + UN ṅ) dS =
d

dt
(Q+Q∗Γ) = r (104)

d

dt
(E + EΓ)−

∫
Γ(t)

ρΓUN U̇N dS =
d

dt
(E + E∗Γ) (105)

= −
∫

Γ(t)
UN (−πκ+N(UT )) dS −

∫
Ω±(t)

2µ ‖Du‖2 dV − 2µΓ

∫
Γ(t)
‖DΓUT ‖2 dS +R (106)

SII Friction slip on stationary fluidic interface with external force

[u]−+ · n = 0 on Γ(t) (107)

uN = UN on Γ(t) (108)

Pσ−n = −f−(Pu− −UT ) on Γ(t) (109)

Pσ+n = f+(Pu+ −UT ) on Γ(t) (110)

[σ]−+n + b = 0 on Γ(t) (111)

UN = 0 on Γ(t) (112)

NS∗(UT ) = bT + beT on Γ(t) (113)

Here we choose to relax the normal force equation, bN = −πκ + N(UT ), of the surface

Navier-Stokes equation. And the total bulk momentum can be expressed as follows:

d

dt
(Q+QΓ) =

∫
Γ

bN dS + r (114)

The total energy balance law for the interface above can be derived similarly to the BII
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interface:

dE

dt
+
dEΓ

dt
= −

∫
Ω±

2µ ‖Du‖2 dV − 2µΓ

∫
Γ(t)
‖DΓUT ‖2 dS + F e − F± +R (115)

where

F e =

∫
Γ

UT · beT dS (116)

qSII Friction slip on quasi stationary fluidic interface with external force

[u]−+ · n = 0 on Γ(t) (117)

uN = UN on Γ(t) (118)

Pσ−n = −f−(Pu− −UT ) on Γ(t) (119)

Pσ+n = f+(Pu+ −UT ) on Γ(t) (120)

[σ]−+n + b = 0 on Γ(t) (121)

NS∗(UT ) = bT + beT on Γ(t) (122)

bN = −πκ+N(UT ) on Γ(t) (123)

Here we choose to relax UN = 0, the condition of a purely tangential interface motion. As a

consequence, while we use the equilibrium force bN to balance the bulk stress jump, we cannot

expect surface to be at the same position. Since the UN 6= 0 it may be more consistent to keep

the κUN term in the incompressibility condition (65) of NS∗(UT ) = bT + be. The total bulk

momentum can be expressed as follows:

d

dt
(Q+QΓ) = r (124)
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The energy balance law for the interface above can be derived similarly to the BII interface:

dE

dt
+
dE∗Γ
dt

= −
∫

Γ
UNbN dS −

∫
Ω±

2µ ‖Du‖2 dV − 2µΓ

∫
Γ(t)
‖DΓUT ‖2 dS + F e − F± +R (125)

1.3 Initial and boundary conditions

For the models discussed in the previous sections, one needs suitable initial and boundary condi-

tions for velocity fields u and U. The initial condition is u(x, 0) = uo(x) and U(x, 0) = Uo(x)

with given vector fields u0,U0, which usually come from the underlying physical problems. For

boundary conditions, one can distinguish between essential and natural boundary conditions. Re-

call the previous settings ∂Ω = ∂ΩD ∪ ∂ΩN and ∂ΩD ∩ ∂ΩN = ∅, one uses the essential boundary

conditions on ∂ΩD which are Dirichlet type. The essential boundary conditions usually describe

inflow conditions or conditions at wall in applications. Dirichlet conditions have the form,

u(x, t) = uD(x, t) on ∂ΩD (126)

with a given vector field uD. For example if ∂ΩD corresponds to a fixed wall, the no-slip condition

can be described by setting uD = 0 for all t and x ∈ ∂ΩD. The natural boundary condition are

given in the form of,

σn = pextn on ∂ΩN (127)

with the outward normal n and given function pext which prescribed stresses on ∂ΩN . An example

would be pext = 0, we obtain a homogeneous natural boundary conditions.

1.4 Numerical challenges

The finite element approximation of multi-phase problems involving immiscible fluids features sev-

eral challenging aspects. The first challenge is the presence of a sharp interface between the two
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phases, that might move and undergo topological changes. The second critical aspect is the pres-

ence of surface tension forces that create a jump in the pressure field at the interface. In addition,

if one accounts for slip between phases [45], a jump in the velocity field at the interface needs to

be captured as well. Finally, a lack of robustness may arise when there is high contrast in fluid

densities and viscosities. Tackling all of these challenges motivated a large body of literature. One

possible way to categorize numerical methods proposed in the literature is to distinguish between

diffusive interface and sharp interface approaches. Phase field methods (e.g., [2, 50]) belong to

the first category, while level set methods (e.g., [97]), and conservative level set methods (e.g.,

[81]) belong to the second. Diffusive interface methods introduce a smoothing region around the

interface between the two phases to vary smoothly, instead of sharply, from one phase to the other

and usually apply the surface tension forces over the entire smoothing region. The major limitation

of diffusive interface methods lies in the need to resolve the smoothing region with an adequate

number of elements, which results in high computational costs. Sharp interface methods require

fewer elements to resolve the interface between phases. Thus, we will restrict our attention to sharp

interface approaches, which can be further divided into geometrically fitted and unfitted methods.

In fitted methods, the discretization mesh is fitted to the computational interface. Perhaps,

Arbitrary Lagrangian Eulerian (ALE) methods [24] are the best known fitted methods. In case of

a moving interface, ALE methods deform the mesh to track the interface. While ALE methods

are known to be very robust for small interface displacement, complex re-meshing procedures are

needed for large deformations and topological changes. Certain variations of the method, like

the extended ALE [4, 3], successfully deal with large interface displacement while keeping the

same mesh connectivity. The price to pay for such improvement is a higher computational cost.

Unfitted methods allow the sharp interface to cut through the elements of a fixed background grid.

Their main advantage is the relative ease of handling time-dependent domains, implicitly defined

interfaces, and problems with strong geometric deformations [11]. The immersed finite element

method (e.g., [1]) and front-tracking methods (e.g., [100]) are examples of unfitted approaches.

Applied in the finite element framework, these methods require an enrichment of the elements
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intersected by the interface in order to capture jumps and kinks in the solution. One complex

aspect of these methods is the need for tailored stabilization. CutFEM uses overlapping fictitious

domains in combination with ghost penalty stabilization [14] to enrich and stabilize the solution.

See [22, 28, 44, 47, 65, 105] for the application of CutFEM or Nitsche-XFEM to approximate two-

phase flows. Finally, recently proposed unfitted methods are a hybrid high-order method [16] and

an enriched finite element/level-set method [46].

In this thesis, we study an isoparametric unfitted finite element approach of the CutFEM or

Nitsche-XFEM family for the simulation of multi-phase Stokes problems. For more details on the

isoparametric unfitted finite element, we refer to [58, 59, 61].

Two-phase flow problems with high contrast for the viscosity are known to be especially chal-

lenging. While some authors test different viscosity ratios but do not comment on the effects of

high contrast on the numerics [22, 46, 106], others show or prove that their method is robust for

all viscosity ratios [47, 16, 55, 78, 105]. In other cases, numerical parameters, like the penalty pa-

rameters, are adjusted to take into account large differences in the viscosity [28]. Through analysis

and a series of numerical tests in two and three dimensions, we demonstrate in Sec. 2.4 and Sec. 2.5

that our approach is robust not only with respect to the contrast in viscosity, but also with respect

to the slip coefficient value and the position of the interface relative to the fixed computational

mesh.

1.5 The Cahn–Hilliard equation and phase separation

The Cahn-Hilliard equation on a stationary, flat domain was introduced in the late 50s to model

segregation of two components in a mixture. In the section, we will derive the Cahn-Hilliard

equations on an evolving surface from conservation laws.

Let (Γ(t))t∈[0,T ] be a time dependent at least C2 smooth closed hyper-surface in R3. Assume there

is a domain Ω such that Γ(t) ⊂ Ω for all t. Let n denote the outward normal vector on Γ.

The evolution of the material surface can be characterized by the Lagrangian mapping Φ(t, ·) :
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Γ(0)→ Γ(t) with the following definitions:

Φ(0,x) = x,
∂Φ(t,x)

∂t
= u(t,Φ(t,x)), t ∈ [0, T ] (128)

Consider a heterogeneous mixture of two species with densities ρi, i ∈ {1, 2}, and denote ρ := ρ1+ρ2

characterizing the total density. On every S(t) ⊂ Ω(t), the conservation of mass can be expressed

as,

0 =
d

dt

∫
S(t)

ρds =

∫
S(t)

(ρ̇+ ρdivΓu) ds. (129)

which implies,

ρ̇+ ρdivΓu = 0 on Γ(t) (130)

We introduce scalar fields ci = mi/m ∈ L2(Ω(t)), i ∈ {1, 2} for specific mass concentrations to

describe the dynamics of phases, with mi are the masses of the components and m = m1 + m2

represents the total mass. Without lost of generality, we consider c1 as representative concentration

c. Clearly, c ∈ [0, 1], c2 = 1− c. The mass conservation for arbitrary subdomain γ(t) ⊂ Γ(t) can be

described as,

d

dt

∫
γ(t)

ρc ds = −
∫
∂γ(t)

j ·m dγ (131)

where j denotes the flux.

Following from (40), we attain the following equation,

∫
γ(t)

(ρ̇c+ ċρ+ cρdivΓu) ds = −
∫
γ(t)

divΓj ds (132)
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Thanks to (130), one could further simplify the above equality to,

∫
γ(t)

ċρ ds = −
∫
γ(t)

divΓj ds (133)

Since the equality holds for arbitrary γ(t), the following holds,

ċ+
1

ρ
divΓj = 0 (134)

Following from Fick’s law, we assume,

j := −M∇Γµ, µ =
δf

δc
(135)

where M denotes mobility coefficient and µ denotes chemical potential which defined as functional

derivative of free energy f with respect to concentration c. Assume f has following form,

f(c) :=
1

ε
f0(c) +

ε

2
|∇Γc|2 (136)

where f0(c) represents the free energy per unit surface which needs to be non-convex. The second

term describes the interfacial free energy. ε is a parameter for the size of interface layer between

two components.

Combining (130), (133) and (136), we obtain the Cahn-Hilliard equation on evolving surface Γ(t),

ρ̇+ ρdivΓu = 0 on Γ(t), t ∈ [0, T ] (137)

ċ+
1

ρ
divΓ(M∇Γ(

1

ε
f
′
0(c)− ε4Γc)) = 0 on Γ(t), t ∈ [0, T ] (138)

with initial conditions,

ρ(·, t) = ρ0, c(·, t) = c0 on Γ(0) (139)
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1.6 Machine learning for predicting nonlinear dynamics

Solving strongly-coupled nonlinear partial differential equations characterizing multi-scale, multi-

physics process is computationally expensive for many practical reasons. Therefore, the necessity

for developing a prediction strategy with high fidelity by only utilizing observational data highly

increased over the last decades [93, 56, 70, 107, 99, 32, 26, 13]. One of the most appealing ad-

vantages of data-driven models that are trained on data from high fidelity numerical simulations is

that they can be used to accelerate the prediction of computationally demanding complex dynamic

systems. Besides, data-driven models can be a complement to traditional numerical methods in

the following ways: (a) they can efficiently integrate high-dimensional, non-linear, coupled PDE

system with multi spatial-temporal scales; (b) in some cases they can efficiently generate missing

data or help predict unknown parameters; (c) they can help the system to be deterministic when

part of the system is not fully understood.

More recently, various machine learning methods have been investigated for complex dynamic sys-

tem simulation or prediction [66, 82, 62]. Among all the sequential model approaches for predicting

time series, artificial neural networks (ANNs) [86, 88, 92], recurrent neural networks(RNNs) [69,

63, 103, 109, 111, 66, 103, 57], and gated recurrent units(GRU) [107, 30] are the most popular ones.

The Neural Network method was initially motivated by modeling sequence processing in mam-

malian brains. The human brain contains billions of neurons that are connected with each other

to form a network. When the network receives signals from either eyes, ears nose, or skin, it rec-

ognizes the signals and processes them with the output. ANNs are models which directly mimic

the structure of biological neural networks. ANNs usually have a network structure of neuron-

processing units interconnected by weighted links. RNNs is a class of ANNs where connections

between neurons form a directed graph along a temporal sequence. Unlike most feedforward neural

networks, this structure allows RNN to exhibit temporal dynamic behavior. This makes RNNs

applicable to tasks such as speech recognition, handwriting recognition and etc. In recent studies,

several promising results have been published regarding using RNNs in weather/climate models
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within machine learning communities [9, 87].

At the beginning of the 20th century, a simplified type of recurrent neural network called echo

state network (ESN) has been proposed by Wolfgang Maass and his colleagues [64]. The main idea

of the method is to generate a large fixed random recurrent neural network with an input signal,

inducing that in each neuron within this recurrent layer a nonlinear response signal, and linearly

combine the desired output signal by a trainable output layer.

Not until recently, Vlachas and Chattopadhyay published results illustrate that ESN outperform

other major RNNs structures such as LSTM and ANN structure in predicting chaotic dynamical

systems [102, 64] . We explore the applicability of artificial neural networks in the prediction of

pattern formation for the Cahn-Hilliard model in the last chapter.

1.7 Outline of the thesis

The remainder of the thesis is organized as follows. Chapter 2 is devoted to studying an isopara-

metric unfitted finite element approach of the CutFEM or Nitsche-XFEM family for the simulation

of two-phase Stokes problems with slip between phases. All the numerical works consider the ho-

mogeneous model of two-phase flow, i.e. no slip is assumed between the phases. We introduce the

strong and weak formulations of the model, together with the finite element discretization. We

present a stability result and prove optimal order convergence for the proposed unfitted finite ele-

ment approach. Numerical results in 2 and 3-dimensional simulations validate these computational

approaches.

Chapter 3 demonstrates the successful application of CutFEM & TraceFEM for two immiscible,

viscous, and incompressible fluids separated by a viscous inextensible material interface modeled

as a Boussinesq–Scriven surface fluid. The following coupling conditions are prescribed between

the bulk two-phase flow and the surface fluid: (i) the immiscibility condition, i.e. the bulk fluid

does not penetrate through the interface; (ii) slip with friction between the bulk fluid and the

viscous interface; and (iii) the load exerted from the bulk fluid onto the surface fluid defined by the

jump of the normal stress across the interface. We introduce the strong formulation of the coupled
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problem and the associated energy balance. Then we present the strong and weak formulations of

the simplified problem, together with the finite element discretization. A partitioned algorithm for

the numerical solution of the coupled problem was proposed. Numerical results in 3 dimensions are

reported.

In Chapter 4, the performance of two deep learning methods for reproducing short-term and

long-term statistics of multi-scale spatio-temporal data from the Cahn-Hilliard system is exam-

ined. The applicability of two recurrent neural networks specifically echo state network (ESN) and

long short-term memory (LSTM) is explored. The numerical discretization scheme of the Cahn-

Hilliard system is briefly discussed. Then we present two RNNs (ESN and LSTM) architectures.

And prediction results are reported later in this chapter.
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2 A two-phase fluid with slip between phases

2.1 Problem description

We consider a fixed domain Ω ⊂ Rd, with d = 2, 3, filled with two immiscible, viscous, and

incompressible fluids separated by an interface Γ. In this study, we assume Γ does not evolve

with time although our approach is designed to handle interface evolution. We assume that Γ

is closed and sufficiently smooth. Interface Γ separates Ω into two subdomains (phases) Ω+ and

Ω− = Ω \ Ω+. We assume Ω− to be completely internal, i.e. ∂Ω− ∩ ∂Ω = ∅. See Fig. 2. Let n±

be the outward unit normal for Ω± and n the outward pointing unit normal on Γ. It holds that

n− = n and n+ = −n at Γ.

Figure 2: Illustration of a domain Ω in R2. On part of the boundary (dashed line) a Neumann

boundary condition is imposed, while on the remaining part of the boundary (solid line with three

bars) a Dirichlet boundary condition is enforced.

Let u± : Ω± → Rd and p± : Ω± → R denote the fluid velocity and pressure, respectively. We

model the motion of the fluids occupying subdomains Ω± by the Stokes equations as in Sec. 1.2.3

−∇ · σ± = f± in Ω±, (140)

∇ · u± = 0 in Ω±, (141)
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endowed with boundary conditions

u+ = g, on ∂ΩD, (142)

σ+n+ = gN on ∂ΩN . (143)

Here, ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅. See Fig. 2. In (140), f± are external the body

forces and σ± are the Cauchy stress tensors. For Newtonian fluids, the Cauchy stress tensor has

the following expression:

σ± = −p±I + 2µ±D(u±), D(u±) =
1

2
(∇u± + (∇u±)T ) in Ω±,

where constants µ± represent the fluid dynamic viscosities. Finally, g and gN in (142) and (143)

are given.

Subproblems (140)-(141) are coupled at the interface Γ. Recall the AII model in 1.2.3, the

conservation of mass requires the balance of normal fluxes on Γ:

u+ · n = u− · n on Γ. (144)

This is the first coupling condition. We are interested in modeling slip with friction between the

two phases. Thus, we consider the following additional coupling conditions:

Pσ+n = f(Pu+ −Pu−) on Γ, (145)

Pσ−n = −f(Pu− −Pu+) on Γ, (146)

where f is a constant that can be seen as a slip coefficient and P = P(x) = I − n(x)n(x)T for

x ∈ Γ is the orthogonal projection onto the tangent plane. Finally, the jump of the normal stress
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across Γ is given by:

[nTσn]−+ = σκ on Γ, (147)

where σ is the surface tension coefficient and κ is the double mean curvature of the interface.

Since the boundary conditions on ∂Ω do not affect the subsequent discussion, from now on we

will consider that a Dirichlet condition (142) is imposed on the entire boundary. This will simplify

the presentation of the fully discrete problem.

2.1.1 Variational formulation

The purpose of this section is to derive the variational formulation of coupled problem (140)–(147).

Let us introduce some standard notation. The space of functions whose square is integrable in

a domain ω is denoted by L2(ω). With L2
0(ω), we denote the space of functions in L2(ω) with

zero mean value over ω. The space of functions whose distributional derivatives of order up to

m ≥ 0 (integer) belong to L2(ω) is denoted by Hm(ω). The space of vector-valued functions with

components in L2(ω) is denoted with L2(ω)d. H1(div , ω) is the space of functions in L2(ω) with

divergence in L2(ω). Moreover, we introduce the following functional spaces:

V − = H1(Ω−)d, V + = {u ∈ H1(Ω+)d,u
∣∣
∂ΩD

= g}, V +
0 = {u ∈ H1(Ω+)d,u

∣∣
∂ΩD

= 0},

V ± = {u = (u−,u+) ∈ V − × V +,u− · n = u+ · n on Γ},

V ±0 = {u = (u−,u+) ∈ V − × V +
0 ,u− · n = u+ · n on Γ},

Q± = {p = (p−, p+) ∈ L2(Ω−)× L2(Ω+)}.

Notice that space V ± can be also characterized as (V −×V +)∩H1(div ,Ω). We use (·, ·)ω and 〈, 〉ω

to denote the L2 product and the duality pairing, respectively.

The integral formulation of the problem (140)-(147) reads: Find (u, p) ∈ V ± × L2(Ω)/R such
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that

− (p−,∇ · v−)Ω− − (p+,∇ · v+)Ω+ + 2(µ−D(u−),D(v−))Ω− + 2(µ+D(u+),D(v+))Ω+

+ 〈f(Pu− −Pu+),Pv−〉Γ + 〈f(Pu+ −Pu−),Pv+〉Γ

= (f−,v−)Ω− + (f+,v+)Ω+ + 〈σκ,v− · n〉Γ (148)

(∇ · u−, q−)Ω− + (∇ · u+, q+)Ω+ = 0 (149)

for all (v, q) ∈ V ±0 ×Q±. The interface terms in (148) have been obtained using coupling conditions

(145), (146), and (147) as follows:

−〈σ−n,v−〉Γ + 〈σ+n,v+〉Γ = −〈Pσ−n,Pv−〉Γ + 〈Pσ+n,Pv+〉Γ − 〈[nTσn]−+,v
− · n〉Γ

= 〈f(Pu− −Pu+),Pv−〉Γ + 〈f(Pu+ −Pu−),Pv+〉Γ

− 〈σκ,v− · n〉Γ.

Notice that problem (148)-(149) can be rewritten as: Find (u, p) ∈ V ± × L2(Ω)/R such that


a(u,v) + b(v, p) = r(v)

b(u, q) = 0

(150)

for all (v, q) ∈ V ±0 ×Q±, where

a(u,v) =2(µ−D(u−),D(v−))Ω− + 2(µ+D(u+),D(v+))Ω+ + 〈f(Pu− −Pu+),Pv− −Pv+〉Γ,

b(v, p) =− (p−,∇ · v−)Ω− − (p+,∇ · v+)Ω+ ,

r(v) =(f−,v−)Ω− + (f+,v+)Ω+ + 〈σκ,v− · n〉Γ.
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2.2 Numerical method for solving two-phase flow problem

We consider a family of shape regular triangulations {Th}h>0 of Ω. We adopt the convention that

the elements T and edges e are open sets and use the over-line symbol to refer to their closure.

Let hT denote the diameter of element T ∈ Th and he the diameter of edge e. The set of elements

intersecting Ω± and the set of elements having a nonzero intersection with Γ are

T ±h = {T ∈ Th : T ∩ Ω± 6= ∅}, T Γ
h = {T ∈ Th : T ∩ Γ 6= ∅}, (151)

respectively. We assume {T Γ
h } to be quasi-uniform. However, in practice adaptive mesh refinement

is possible. The domain formed by all tetrahedra in T Γ
h is denoted by ΩΓ

h := int(∪T∈T Γ
h
T ). We

define the h-dependent domains:

Ω±h = int
(
∪T∈T ±h T

)
(152)

and the set of faces of T Γ
h restricted to the interior of Ω±h :

EΓ,±
h = {e = int(∂T1 ∩ ∂T2) : T1, T2 ∈ T ±h and T1 ∩ Γ 6= ∅ or T2 ∩ Γ 6= ∅}. (153)

For the space discretization of the bulk fluid problems, we restrict our attention to inf-sup stable

finite element pair Pk+1−Pk, k ≥ 1, i.e. Taylor-Hood elements. Specifically, we consider the spaces

of continuous finite element pressures given by:

Q−h = {p ∈ C(Ω−h ) : q|T ∈ Pk(T ) ∀T ∈ T −h }. (154)

Space Q+
h is defined analogously. Our pressure space is given by:

Q±h = {p = (p−, p+) ∈ Q−h ×Q
+
h :

∫
Ω−

µ−1
− p− +

∫
Ω+

µ−1
+ p+ = 0}.
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Let

V −h = {u ∈ C(Ω−h )d : u|T ∈ Pk+1(T ) ∀T ∈ T −h }. (155)

with the analogous definition for V +
h . Our velocity spaces are given by:

V ±h = {u = (u−,u+) ∈ V −h × V
+
h }

and V ±0,h, a subspace of V ±h with vector functions u+ vanishing on ∂Ω. All above constructions and

spaces readily carry over to tessellations of Ω into squares or cubes and using Qk+1−Qk elements.

Functions in Q±h and V ±h and their derivatives are multivalued in ΩΓ
h, the overlap of Ω−h and Ω+

h .

The jump of a multivalued function over the interface is defined as the difference of components

coming from Ω−h and Ω+
h , i.e. [u] = u− − u+ on Γ. Note that this is the jump that we have

previously denoted with [·]−+. We are now using [·] to simplify the notation. Moreover, we define

the following averages:

{u} = αu+ + βu−, (156)

〈u〉 = βu+ + αu−, (157)

where α and β are weights to be chosen such that α+β = 1, 0 ≤ α, β ≤ 1. For example, in [22] the

setting α = µ−/(µ+ + µ−) and β = µ+/(µ+ + µ−) is suggested. In [17], the authors choose α = 0,

β = 1 if µ− ≤ µ+ and α = 1, β = 0 otherwise. Below, in (161) and (164) we will use relationship:

[ab] = [b]{a}+ 〈b〉 [a]. (158)
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A discrete variational analogue of problem (150) reads: Find {uh, ph} ∈ V ±h ×Q
±
h such that


ah(uh,vh) + bh(vh, ph) = rh(vh)

bh(uh, qh)− bp(ph, qh) = 0

(159)

for all (vh, qh) ∈ V ±0,h × Q
±
h . We define all the bilinear forms in (159) for all uh ∈ V ±h , vh ∈ V ±0,h,

p ∈ Q±. Let us start with form ah(·, ·):

ah(uh,vh) =ai(uh,vh) + an(uh,vh) + ap(uh,vh), (160)

where we group together the terms that arise from the integration by parts of the divergence of the

stress tensors:

ai(uh,vh) =2(µ−D(u−h ),D(v−h ))Ω− + 2(µ+D(u+
h ),D(v+

h ))Ω+ + 〈f [Puh], [Pvh]〉Γ

− 2〈{µnTD(uh)n}, [vh · n]〉Γ, (161)

and the terms that enforce condition (144) weakly using Nitsche’s method

an(uh,vh) =
∑
T∈T Γ

h

γ

hT
{µ}〈[uh · n], [vh · n]〉Γ∩T − 2〈{µnTD(vh)n}, [uh · n]〉Γ. (162)

We recall that hT is the diameter of element T ∈ Th. To define the penalty terms ap(uh,vh) we

need ωe, the facet patch for e ∈ EΓ,±
h consisting of all T ∈ Th sharing e. Then, we set

ap(uh,vh) = µ−J−h (uh,vh) + µ+J+
h (uh,vh),

J±h (uh,vh) = γ±u
∑

e∈EΓ,±
h

1

h2
e

∫
ωe

(ue1 − ue2) · (ve1 − ve2)dx, (163)

where ue1 is the componentwise canonical extension of a polynomial vector function u±h from T1

to Rd, while ue2 is the canonical extension of u±h from T2 to Rd(and similarly for v1, v2). We
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recall that he is the diameter of facet e ∈ EΓ,±
h . This version of the ghost penalty stabilization

has been proposed in [84]. In [60], it was shown to be essentially equivalent to other popular

ghost penalty stabilizations such as local projection stabilization [14] and normal derivative jump

stabilization [15]. In the context of the Stokes problem, this stabilization was recently used in [104].

For the analysis in Sec. 2.3 and 2.4, we also define J±h (u,v) for arbitrary smooth functions u,v

in Ω±h . In this case, we set u1 = (ΠT1u|T1)e, u2 = (ΠT2u|T2)e, where ΠTi is the L2(Ti)-orthogonal

projection into the space of degree k + 1 polynomial vector functions on Ti.

The remaining terms coming from the integration by parts of the divergence of the stress tensors

are contained in

bh(vh, ph) =− (p−h ,∇ · v
−
h )Ω− − (p+

h ,∇ · v
+
h )Ω+ + 〈{ph}, [vh · n]〉Γ , (164)

and the penalty terms are grouped together in

bp(ph, qh) = µ−1
− J−h (ph, qh) + µ−1

+ J+
h (ph, qh),

J±h (ph, qh) = γ±p
∑

e∈EΓ,±
h

∫
ωe

(pe1 − pe2)(qe1 − qe2)dx, (165)

where pe1, p
e
2, q

e
1, q

e
2 are canonical polynomial extensions as defined above.

Finally,

rh(vh) =(f−h ,v
−
h )Ω− + (f+

h ,v
+
h )Ω+ + 〈σκ, 〈vh · n〉〉Γ.

We recall that some of the interface terms in ai(·, ·) and bh(·, ·) have been obtained using relationship

(158) and interface conditions.

Parameters γ±u , γ±p and γ are all assumed to be independent of µ±, h, and the position of

Γ against the underlying mesh. Parameter γ in (162) needs to be large enough to provide the

bilinear form ah(·, ·) with coercivity. Parameters γ±u , γ±p can be tuned to improve the numerical

performance of the method.
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2.2.1 Numerical integration

It is not feasible to compute integrals entering the definition of the bilinear forms over cut elements

and over Γ for an arbitrary smooth Γ. We face the same problem if Γ is given implicitly as a zero

level of a piecewise polynomial function for polynomial degree greater than one. Piecewise linear

approximation of Γ on the given mesh and polygonal approximation of subdomains lead to second

order geometric consistency error, which is suboptimal for Taylor–Hood elements. To ensure a

geometric error of the same order or higher than the finite element (FE) approximation error, we

define numerical quadrature rules on the given mesh using the isoparametric approach proposed in

[58].

In the isoparametric approach, one considers a smooth function φ such that ±φ > 0 in Ω± and

|∇φ| > 0 in a sufficiently wide strip around Γ. Next, one defines polygonal auxiliary domains Ω±1

given by Ω±1 := {x ∈ Rd : ±I1
h(φ) > 0}, where I1

h is the continuous piecewise linear interpolation

of φ on Th. Interface Γ1 between Ω+
1 and Ω−1 is then Γ1 := {x ∈ Rd : I1

h(φ) = 0}. On Ω±1 and

Γ1 standard quadrature rules can be applied elementwise. Since using Ω±1 , Γ1 alone limits the

accuracy to second order, one further constructs a transformation of the mesh in T Γ
h with the help

of an explicit mapping Ψh parameterized by a finite element function. The mapping Ψh is such

that Γ1 is mapped approximately onto Γ; see [58] for how Ψh is constructed. Then, Ω̃± = Ψh(Ω±1 ),

Γ̃ = Ψh(Γ1) are high order accurate approximations to the phases and interface which have an

explicit representation so that the integration over Ω̃± and Γ̃ can be done exactly. The finite

element spaces have to be adapted correspondingly, using the explicit pullback mapping: vh ◦Ψ−1
h .

2.3 Stability

For the analysis in this and the next section, we assume that the integrals over cut elements in Ω±

are computed exactly. In addition, we restrict our attention to the choice α = 0 and β = 1 for the

averages in (156)–(157), assuming µ− ≤ µ+.
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The key for the stability analysis of the two-phase Stokes problem is an inf-sup stability prop-

erty of the unfitted generalized Taylor–Hood finite element pair, which extends the classical LBB

stability result for the standard Pk+1 − Pk Stokes element from [5]. There is no similar stability

result in the literature for Qk+1 − Qk unfitted elements. However, we expect that the extension,

and so the analysis below, can be carried over to these elements as well.

One is interested in the inf-sup inequality with a stability constant that is independent of the

viscosity ratio, position of Γ with respect to the background mesh and, of course, mesh size h. The

result is given in the following lemma.

Lemma 2.1 Denote by Vh the space of continuous Pk+1 finite element vector functions on Ω,

Vh = {u ∈ C(Ω)d : u|T ∈ Pk+1(T ) ∀T ∈ Th}. There exists h0 > 0 such that for all h < h0 and any

qh ∈ Q±h there exists vh ∈ Vh such that it holds

µ−1
− ‖q−h ‖

2
Ω−h

+ µ−1
+ ‖q+

h ‖
2
Ω+

h

≤ (q−h ,∇ · vh)Ω− + (q+
h ,∇ · vh)Ω+ + c bp(qh, qh)

‖µ
1
2∇vh‖2Ω ≤ C

(
µ−1
− ‖q−h ‖

2
Ω−h

+ µ−1
+ ‖q+

h ‖
2
Ω+

h

)
.

(166)

with h0 and two positive constants c and C independent of qh, µ±, the position of Γ in the background

mesh and mesh size h.

Proof: Consider subdomains Ω±h,i ⊂ Ω± built of all strictly internal simplexes in each phase:

Ω
±
h,i :=

⋃
{T : T ∈ Th, T ⊂ Ω±}.

The following two results are central for the proof. First, we have the uniform inf-sup inequalities

in Ω−h,i and Ω+
h,i [39]: there exist constants C± independent of the position of Γ and h such that

0 < C± ≤ inf
q∈Q±h ∩L

2
0(Ω±h,i)

sup

v ∈ Vh

supp(v) ⊂ Ω±h,i

(q,∇ · v)Ω±h,i

‖v‖H1(Ω±h,i)
‖q‖Ω±h,i

. (167)
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The above result can be equivalently formulated as follows: For any q ∈ Q±h ∩ L
2
0(Ω±h,i) there exist

v±h ∈ Vh such that supp(v) ⊂ Ω±h,i and

‖q±‖2
Ω±h,i

=
(
q±,∇ · v±h

)
Ω±h

, ‖∇v±h ‖Ω ≤ C
−1
± ‖q±‖Ω±h,i . (168)

The second important results is the simple observation that the L2 norm of qh in Ω±h can be

controlled by the L2 norm in Ω±h,i plus the stabilization term in (165) (see, [60, 84]):

‖qh‖2Ω±h
≤ C (‖qh‖2Ω±h,i

+ J±h (qh, qh)), (169)

with some constant C independent of the position of Γ and h. We note that (169) holds also for

discontinuous finite elements.

Consider now

qµ =

 µ−|Ω−|−1 ∈ Q−h

−µ+|Ω+|−1 ∈ Q+
h .

Note that qµ satisfies the orthogonality condition imposed for elements from Q±h , and hence

span{qµ} is a subspace in Q±h . Using a trick from [78], we decompose arbitrary qh ∈ Q±h into

a component collinear with qµ and the orthogonal complement in each phase:

qh = q1 + q0, with q1 ∈ span{qµ}, and (q−0 , 1)Ω−h,i
= (q+

0 , 1)Ω+
h,i

= 0.

Thus, q1 and q0 are orthogonal with respect to L2 product in the inner domains Ω±h,i. Next, we let

q± = µ
− 1

2
± q±0 in (168) and for v±h ∈ Vh given by (168) consider v0

h = µ
1
2
−v−h + µ

1
2
+v+

h ∈ Vh. Then

after applying (169) and summing up, the relations in (168) become

µ−1
− ‖q−0 ‖

2
Ω−h

+ µ−1
+ ‖q+

0 ‖
2
Ω+

h

≤ C
(
(q−0 ,∇ · v

0
h)Ω− + (q+

0 ,∇ · v
0
h)Ω+ + bp(q0, q0)

)
,

‖µ
1
2∇v0

h‖Ω ≤ C0

(
µ−1
− ‖q−0 ‖

2
Ω−h

+ µ−1
+ ‖q+

0 ‖
2
Ω+

h

) 1
2
,

(170)

with C from (169) and C0 = max{C−1
− , C−1

+ }, both of which are independent of µ± and how Γ
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overlaps the background mesh. In (170), we also used the fact that supports of v− and v+ do not

overlap. Since supp(v±h ) ⊂ Ω± and q±1 are constant in Ω±, integration by parts shows that

(q±1 ,∇ · v
0
h)Ω±h

= 0. (171)

Next, we need the following result from Lemma 5.1 in [55]: For all h ≤ h0 there exists v1
h ∈ Vh

such that

µ−1
− ‖q−1 ‖

2
Ω−h

+ µ−1
+ ‖q+

1 ‖
2
Ω+

h

= (q1,∇ · v1
h)Ω− + (q1,∇ · v1

h)Ω+ ,

‖µ
1
2∇v1

h‖Ω ≤ C1

(
µ−1
− ‖q−1 ‖

2
Ω−h

+ µ−1
+ ‖q+

1 ‖
2
Ω+

h

) 1
2
,

(172)

with h0 > 0 and C1 > 0 independent of µ± and how Γ overlaps the background mesh. The above

result follows from the classical inf-sup stability condition for P2 − P1 Taylor–Hood elements and

a simple scaling and interpolation argument. See [55] for details.

As the next step, set vh = τv0
h+v1

h with some τ > 0 and proceed with calculations using (171),

(170), (172), and the Cauchy-Schwartz inequality:

(q−h ,∇ · vh)Ω− + (q+
h ,∇ · vh)Ω+

= (q−1 ,∇ · v
1
h)Ω− + (q+

1 ,∇ · v
1
h)Ω+ + τ(q−0 ,∇ · v

0
h)Ω− + τ(q+

0 ,∇ · v
0
h)Ω+

+ (q−0 ,∇ · v
1
h)Ω− + (q+

0 ,∇ · v
1
h)Ω+

≥ µ−1
− ‖q−1 ‖

2
Ω−h

+ µ−1
+ ‖q+

1 ‖
2
Ω+

h

+ τC−1
(
µ−1
− ‖q−0 ‖

2
Ω−h

+ µ−1
+ ‖q+

0 ‖
2
Ω+

h

)
− τbp(q0, q0)

−
(
µ−1
− ‖q−0 ‖

2
Ω−h

+ µ−1
+ ‖q+

0 ‖
2
Ω+

h

) 1
2
d

1
2 ‖µ

1
2∇v1

h‖Ω

≥ µ−1
− ‖q−1 ‖

2
Ω−h

+ µ−1
+ ‖q+

1 ‖
2
Ω+

h

+ τC−1
(
µ−1
− ‖q−0 ‖

2
Ω−h

+ µ−1
+ ‖q+

0 ‖
2
Ω+

h

)
− τbp(q0, q0)

−
(
µ−1
− ‖q−0 ‖

2
Ω−h

+ µ−1
+ ‖q+

0 ‖
2
Ω+

h

) 1
2
C1d

1
2

(
µ−1
− ‖q−1 ‖

2
Ω−h

+ µ−1
+ ‖q+

1 ‖
2
Ω+

h

) 1
2

≥ 1

2

(
µ−1
− ‖q−1 ‖

2
Ω−h

+ µ−1
+ ‖q+

1 ‖
2
Ω+

h

)
+

(
τ

C
− C2

1d

2

)(
µ−1
− ‖q−0 ‖

2
Ω−h

+ µ−1
+ ‖q+

0 ‖
2
Ω+

h

)
− τbp(q0, q0).
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We set τ such that τ
C −

C2
1d
2 = 1

2 and note that bp(q0, q0) = bp(qh, qh). Using this and the orthogo-

nality condition for q0, we get

(qh,∇ · vh)Ω− + (qh,∇ · vh)Ω+

≥ 1

2

(
µ−1
− ‖q−1 ‖

2
Ω−h

+ µ−1
+ ‖q+

1 ‖
2
Ω+

h

)
+

1

2

(
µ−1
− ‖q−0 ‖

2
Ω−h

+ µ−1
+ ‖q+

0 ‖
2
Ω+

h

)
− τbp(qh, qh)

≥ 1

2

(
µ−1
− ‖q−1 ‖

2
Ω−h,i

+ µ−1
+ ‖q+

1 ‖
2
Ω+

h,i

)
+

1

2

(
µ−1
− ‖q−0 ‖

2
Ω−h

+ µ−1
+ ‖q+

0 ‖
2
Ω+

h,i

)
− τbp(qh, qh)

=
1

2

(
µ−1
− ‖q−h ‖

2
Ω−h,i

+ µ−1
+ ‖q+

h ‖
2
Ω+

h,i

)
− τbp(qh, qh)

≥ 1

2C

(
µ−1
− ‖q−h ‖

2
Ω−h

+ µ−1
+ ‖q+

h ‖
2
Ω+

h

)
−
(
τ +

1

2

)
bp(qh, qh).

(173)

Using (q±0 , q
±
1 )Ω±h,i

= 0, |Ω±h \ Ω±h,i| ≤ c h and so ‖q±1 ‖Ω±h \Ω±h,i ≤ ch
1
2 ‖q±1 ‖Ω±h , we estimate

|µ−1
− (q−0 , q

−
1 )Ω−h

+ µ−1
+ (q+

0 , q
+
1 )Ω+

h
|

≤ c h
1
2

(
µ−1
− ‖q−0 ‖

2
Ω−h

+ µ−1
+ ‖q+

0 ‖
2
Ω+

h

) 1
2
(
µ−1
− ‖q−1 ‖

2
Ω−h

+ µ−1
+ ‖q+

1 ‖
2
Ω+

h

) 1
2
. (174)

From (170), (172), and (174), we also get the following upper bound for vh,

‖µ
1
2∇vh‖2Ω ≤ 2(‖µ

1
2 τ∇v0

h‖2Ω + ‖µ
1
2∇v1

h‖2Ω)

≤ 2τ2C2
0

(
µ−1
− ‖q−0 ‖

2
Ω−h

+ µ−1
+ ‖q+

0 ‖
2
Ω+

h

)
+ 2C2

1

(
µ−1
− ‖q−1 ‖

2
Ω−h

+ µ−1
+ ‖q+

1 ‖
2
Ω+

h

)
≤ 2 max{τ2C2

0 , C
2
1}

1− c h
1
2

(
µ−1
− ‖q−h ‖

2
Ω−h

+ µ−1
+ ‖q+

h ‖
2
Ω+

h

)
.

(175)

The assertion of the lemma follows from (173) and (175) after simple calculations.

�

The next lemma shows the uniform coercivity of the symmetric form ah(uh,vh) in (160) on

V ±h × V
±
h .

Lemma 2.2 If γ = O(1) in (162) is sufficiently large, then it holds

ah(uh,uh) ≥ C
(
µ−‖D(u−h )‖2

Ω−h
+ µ+‖D(u+

h )‖2
Ω+

h

+ h−1‖{µ}[uh · n]‖2Γ + f‖[Puh]‖2Γ
)

(176)
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∀ uh ∈ V ±h , with C > 0 independent of µ±, h, f, and the position of Γ with respect to the background

mesh.

Proof: For the proof, we need the local trace inequality in T ∈ T Γ
h (see, e.g. [39, 41]):

‖v‖T∩Γ ≤ C(h
− 1

2
T ‖v‖T + h

1
2
T ‖∇v‖T ), ∀ v ∈ H1(T ), (177)

with a constant C independent of v, T , how Γ intersects T , and hT < h0 for some arbitrary but

fixed h0. We also need the following estimate

‖D(v±h )‖2
L2(Ω±h )

≤ C(‖D(v±h )‖2L2(Ω±) + J±(v±h ,v
±
h ) ), (178)

which follows from (169) by applying it componentwise and further using FE inverse inequality (note

h−2 scaling in the definition of J± in (163)). Applying (177), finite element inverse inequalities and

(178), we can bound the interface term

〈{µnTD(vh)n},[uh · n]〉Γ = 〈µ−nTD(v−h )n, [uh · n]〉Γ

≤
∑
T∈T Γ

h

[
hT δ

2
‖µ

1
2
−nTD(v−h )n‖2T∩Γ +

1

2hT δ
‖µ

1
2
−[uh · n]‖2T∩Γ

]

≤ δ

2
‖µ

1
2
−nTD(v−h )n‖2

Ω−h
+

1

hT δ
{µ}|[uh · n]|2Γ, ∀ δ > 0, uh,vh ∈ V ±h .

This estimate with vh = uh and with δ > 0 sufficiently small, together with the definition of the

bilinear form ah(uh,uh), allows to show its coercivity. �

We further need the continuity result for the velocity stabilization form contained in the next

lemma.

Lemma 2.3 It holds

ap(vh,vh) ≤ C
(
µ−‖D(v−h )‖2

Ω−h
+ µ+‖D(v+

h )‖2
Ω+

h

)
∀ vh ∈ V ±h ,
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with C > 0 independent of µ±, h, and the position of Γ in the background mesh.

Proof: For any v = v−h ∈ V −h , facet e ∈ EΓ,−
h and the corresponding patch ωe formed by two

tetrahedra T1 and T2, it holds

‖ve1 − ve2‖2ωe
= ‖v1 − ve2‖2T1

+ ‖ve1 − v2‖2T2
≤ (1 + c)‖v1 − ve2‖2T1

,

where the constant c depends only on shape regularity of the tetrahedra, since ve1−v2 on T2 is the

canonical polynomial extension of v1 − ve2 from T1.

Now, we need the following local Korn’s inequality:

‖∇v‖T ≤ C‖D(v)‖T , ∀ v ∈ H1(T )d, s.t. v = 0 on any face of T ∈ Th, (179)

where C depends only on shape regularity of T . The result in (179) follows from eq. (3.3) in [12]

and the observation that vector fields vanishing on any face T support only zero rigid motions. A

simple scaling argument also proves the local Poincare inequality:

‖v‖T ≤ Ch2
T ‖∇v‖T , ∀ v ∈ H1(T )d, s.t. v = 0 on any face of T ∈ Th, (180)

where C depends only on shape regularity of T . Applying (179), (180) and triangle inequalities on

T1 for v1 − ve2 which vanishes on e (a face of T1), we obtain:

‖v1 − ve2‖2T1
≤ Cph2‖D(v1 − ve2)‖2T1

≤ 2Cph
2(‖Dv1‖2T1

+ ‖Dve2‖2T1
)

≤ 2Cph
2(‖Dv1‖2T1

+ c ‖Dv2‖2T2
), (181)

where for the last inequality we again use shape regularity and the fact that Dve2 = (Dv2)e. Thus,

we see that ‖ve1 − ve2‖2ωe
≤ c h2‖Dv‖2ωe

, with some c depending only on shape regularity. Summing

up over all e ∈ EΓ,−
h leads to the required upper bound for J−h (v,v): J−h (v,v) ≤ C‖D(v)‖Ω−h .

Repeating the same argument for the edges in EΓ,+
h and summing up the two bounds scaled by
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viscosity coefficients proves the lemma.

�

The finite element problem (159) can be equivalently formulated as follows: Find {uh, ph} ∈

V ±h ×Q
±
h such that

A(uh, ph; vh, qh) = rh(vh), ∀ {vh, qh} ∈ V ±h ×Q
±
h (182)

with

A(uh, ph; vh, qh) = ah(uh,vh) + bh(vh, ph)− bh(uh, qh) + bp(ph, qh).

Lemmas 2.1–2.3 enable us to show the inf-sup stability of the bilinear form A. The stability

result is formulated using the following composite norm:

‖v, q‖2 := µ−‖D(v−)‖2
Ω−h

+µ+‖D(v+)‖2
Ω+

h

+h−1‖{µ}[v ·n]‖2Γ+f‖[Pv]‖2Γ+µ−1
− ‖q−‖2Ω−h

+µ−1
+ ‖q+‖2

Ω+
h

for v ∈ V ±h , q ∈ Q
±
h .

Theorem 2.4 There exists h0 > 0 such that for all h < h0 it holds

sup
{vh,qh}∈V ±h ×Q

±
h

A(uh, ph; vh, qh)

‖vh, qh‖
≥ C ‖uh, pp‖, ∀ {uh, ph} ∈ V ±h ×Q

±
h ,

with h0 > 0 and C > 0 independent of µ±, h, f, and the position of Γ in the background mesh.

Proof: For a given ph ∈ Q±h , Lemma 2.1 implies the existence of such wh ∈ Vh that

bh(wh, ph) + bp(ph, qh) ≥ c
(
µ−1
− ‖p−h ‖

2
Ω−h

+ µ−1
+ ‖p+

h ‖
2
Ω+

h

)
(183)

and

‖µ
1
2∇wh‖2Ω ≤ C

(
µ−1
− ‖p−h ‖

2
Ω−h

+ µ−1
+ ‖p+

h ‖
2
Ω+

h

)
, (184)
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with some positive c, C independent of µ and how Γ overlaps the background mesh. Next, we

extend the finite element function wh ∈ Vh to the element of the product space ŵh ∈ V ±h by setting

ŵ±h = wh|Ω±h ∈ V
±
h . We let vh = uh + τŵh for some τ > 0 and qh = ph. Using the definition of

the form A and (183), we calculate

A(uh, ph; vh, qh) = ah(uh,uh) + τah(uh, ŵh) + τbh(ŵh, ph) + bp(ph, ph)

≥ 1

2
ah(uh,uh)− τ2

2
ah(ŵh, ŵh) + min{τ, 1} c

(
µ−1
− ‖p−h ‖

2
Ω−h

+ µ−1
+ ‖p+

h ‖
2
Ω+

h

)
,

(185)

where we used the Cauchy-Schwartz inequality:

τah(uh, ŵh) ≤ τ |ah(uh,uh)|
1
2 |ah(ŵh, ŵh)|

1
2 ≤ 1

2
ah(uh,uh) +

τ2

2
ah(ŵh, ŵh).

Note that it holds [ŵh · n] = 0 and [Pŵh] = 0 on Γ. Since all Nitsche and ‘friction’ terms in

ah(ŵh, ŵh) vanish, the results of the Lemma 2.3 and estimate (184) imply the upper bound

ah(ŵh, ŵh) ≤ C ‖µ
1
2∇ŵh‖2Ω ≤ C

(
µ−1
− ‖p−h ‖

2
Ω−h

+ µ−1
+ ‖p+

h ‖
2
Ω+

h

)
.

Using it in (185) and choosing τ > 0 small enough, but independent of all problem parameters,

leads us to the lower bound

A(uh, ph; vh, qh) ≥ 1

2
ah(uh,uh) + c

(
µ−1
− ‖p−h ‖

2
Ω−h

+ µ−1
+ ‖p+

h ‖
2
Ω+

h

)
≥ c ‖uh, ph‖2, (186)

with some c > 0 independent of µ±, h, and the position of Γ in the background mesh. For the last

inequality, we used (176).

Finally, by the construction of vh and thanks to (184) it is straightforward to see the upper

bound:

‖vh, qh‖ ≤ c ‖uh, ph‖.

This combined with (186) proves the theorem.
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The stability of the finite element solution in the composite norm immediately follows from

(182) and Theorem 2.4:

‖uh, ph‖ ≤ C sup
{vh,qh}∈V ±h ×Q

±
h

|rh(vh)|
‖vh, qh‖

,

where on the right-hand side we see the dual norm of the functional rh and constant C, which is

independent of the mesh size h, the ratio of the viscosity coefficients µ±, and the position of Γ in

the background mesh.

2.4 Error analysis

The stability result shown in Sec. 2.3 and interpolation properties of finite elements enable us to

prove optimal order convergence with uniformly bounded constants.

We assume in this section that the solution to problem (140)–(147) is piecewise smooth in the

following sense: u± ∈ Hk+2(Ω±)d and p± ∈ Hk+1(Ω±). For the sake of notation, we define the

following semi-norm

‖u, p‖∗ =
(
µ−|u−|2Hk+2(Ω−) + µ+|u+|2Hk+2(Ω+) + µ−1

− |p−|2Hk+1(Ω−) + µ−1
+ |p+|2Hk+1(Ω+)

) 1
2
. (187)

Since we assume Γ to be at least Lipschitz, there exist extensions Eu± and Ep± of the solution

from each phase to Rd such that Eu± ∈ Hk+2(Rd)3, Ep± ∈ Hk+1(Rd). The corresponding norms

are bounded as follows

‖Eu±‖Hk+2(Rd) ≤ C ‖u±‖Hk+2(Ω±), ‖Ep±‖Hk+1(Rd) ≤ C ‖p±‖Hk+1(Ω±) (188)

See [94]. Denote by Ihu
± the Scott-Zhang interpolants of Eu± onto V ±h and Ihu := {Ihu−, Ihu+}.

Same notation Ihp
± will be used for the Scott-Zhang interpolants of Ep± onto Q±h . For the pressure

interpolants, we can always satisfy the orthogonality condition of Q±h by choosing a suitable additive

constant in the definition of p.
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Applying trace inequality (177), standard approximation properties of Ih, and bounds (188),

one obtains the approximation property in the product norm:

‖u− Ihu, p− Ihp‖ ≤ C hk+1‖u, p‖∗. (189)

The following continuity result is the immediate consequence of the Cauchy–Schwatz inequality:

A(u− Ihu, p− Ihp; vh, qh) ≤ C ‖u− Ihu, p− Ihp‖‖vh, qh‖

+ |〈{µnTD(vh)n}, [(u− Ihu) · n]〉Γ + 〈{µnTD(u− Ihu)n}, [vh · n]〉Γ|, (190)

for all {vh, qh} ∈ V ±h × Q
±
h . The last term on the right-hand side in (190) needs a special treat-

ment. Applying the Cauchy–Schwatz, inequalities (177) and (178), FE inverse inequalities and

approximation properties of the interpolants, we get

|〈{µnTD(vh)n}, [(u− Ihu) · n]〉Γ| ≤ C hk+1‖u, 0‖∗‖vh, 0‖,

|〈{µnTD(u− Ihu)n}, [vh · n]〉Γ| ≤ C hk+1‖u, 0‖∗‖vh, 0‖.
(191)

The consistency of the stabilization term is formalized in the estimates that follow from [60, lemma

5.5]: For p− ∈ Hk+1(Ω−), u− ∈ Hk+2(Ω−)d, it holds

J−h (p−, p−) ≤ C h2k+2‖p−‖2Hk+1(Ω−), J−h (u−,u−) ≤ C h2k+2‖u−‖2Hk+2(Ω−). (192)

The above estimates and the stability of the interpolants also imply

J−h (p− − Ihp−, p− − Ihp−) ≤ C h2k+2|p−|2Hk+1(Ω−),

J−h (u− − Ihu−,u− − Ihu−) ≤ C h2k+2|u−|2Hk+2(Ω−).

(193)

Similar estimates to (192), (193) hold for J+
h and J+

h with p+ ∈ Hk+1(Ω+), u+ ∈ Hk+2(Ω+)d,
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which can be combined with suitable weights to yield

bp(p− Ihp, p− Ihp) + ap(u− Ihu,u− Ihu) ≤ C h2k+2‖u, p‖2∗. (194)

Denote the error functions by eu = Eu−uh and ep = Ep− ph. Galerkin orthogonality holds up

to the consistency terms

A(eu, ep; vh, qh) = bp(p− Ihp, qh) + ap(u− Ihu,vh), (195)

for all vh ∈ V ±h and qh ∈ Q±h .

The result of Lemma 2.2, (194) and the trivial bound bp(qh, qh) ≤ C‖0, qh‖2 imply the following

estimate for the consistency term on the right-hand side of (195):

|bp(p− Ihp, qh) + ap(u− Ihu,vh)|

≤ |bp(p− Ihp, p− Ihp)|
1
2 |bp(qh, qh)|

1
2 + |ap(u− Ihu,u− Ihu)|

1
2 |ap(vh,vh)|

1
2

≤ C hk+1‖u, p‖∗‖vh, qh‖,

(196)

The optimal order error estimate in the energy norm is given in the next theorem.

Theorem 2.5 For sufficiently regular u, p solving problem (140)–(147) and uh, ph solving problem

(159), the following error estimate holds:

‖u− uh, p− ph‖ ≤ Chk+1‖u, p‖∗, (197)

with a constant C independent of h, the values of viscosities µ±, slip coefficient f ≥ 0, and the

position of Γ with respect to the triangulation Th.

Proof: This result follows by standard arguments (see, for example, section 2.3 in [27]) from the

inf-sup stability results of Theorem 2.4, continuity estimates (190) and (191), Galerkin orthogonality

and consistency (195)–(196), and approximation properties (189). �
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Remark 2.6 If we consider using isoparametric elements to handle numerical integration over cut

cells (see section 2.2.1), then the Sobolev seminorms in the definition of ‖u, p‖∗ on the right-hand

side in (197) should be replaced by the full Sobolev norms of the same order; see the error analysis

of the isoparametric unfitted FEM in [61].

2.5 Numerical examples

The aim of the numerical results collected in this section is twofold: (i) support the theoretical

results presented in Sec. 2.4 and (ii) provide evidence of the robustness of the proposed finite

element approach with respect to the contrast in viscosity, slip coefficient value, and position of the

interface relative to the fixed computational mesh.

For the averages in (156)-(157), we set α = 0 and β = 1 for all the numerical experiments since

we have µ− ≤ µ+. Recall that this is the choice for the analysis carried out in Sec. 2.3 and 2.4. In

addition, we set γ±u = 0.05, γ±p = 0.05, and γ = 40. The value of all other parameters will depend

on the specific test.

For all the results presented below, we will report the L2 error and a weighted H1 error for the

velocity defined as

(
2µ−‖D(u− u−h )‖2L2(Ω−) + 2µ+‖D(u− u+

h )‖2L2(Ω+)

) 1
2
, (198)

and a weighted L2 error for the pressure defined as

(
µ−1
− ‖p− p−h ‖

2
L2(Ω−) + µ−1

+ ‖p− p+
h ‖

2
L2(Ω+)

) 1
2
. (199)

2.5.1 2D tests

First, we perform a series of tests in 2D. For all the tests, the domain Ω is square [−1, 1]× [−1, 1]

and interface Γ is a circle of radius 2/3 centered at c = (c1, c2). Let (x, y) = (x̃ − c1, ỹ − c2),
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(x̃, ỹ) ∈ Ω. The exact solution we consider is given by:

p− = (x− c1)3, p+ = (x− c1)3 − 1

2
, (200)

u− = g−(x, y)

 −y
x

 , u+ = g+(x, y)

 −y
x

 , (201)

where

g+(x, y) =
3

4µ+
(x2 + y2), g−(x, y) =

3

4µ−
(x2 + y2) +

µ− − µ+

3µ+µ−
+

1

f
.

The forcing terms f− and f+ are found by plugging the above solution in (140). The surface tension

coefficient σ is set to -0.5. The value of the other physical parameters will be specified for each

test.

We impose a Dirichlet condition (142) on the entire boundary, where function g is found from

u+ in (201).

Spatial convergence. First, we check the spatial accuracy of the finite element method described

in Sec. 2.2. The aim is to validate our implementation of the method and support the theoretical

findings in Sec. 2.4. For this purpose, we consider exact solution (200)-(201) with c = 0 (i.e.,

interface Γ is a circle centered at the origin of the axes), viscosities µ− = 1 and µ+ = 10, and

f = 10.

We consider structured meshes of quads with six levels of refinement. The initial triangulation

has a mesh size h = 1/2 and all the other meshes are obtained by halving h till h = 1/128. We

choose to use finite element pairs Q2 − Q1. Fig. 3 shows the velocity vectors colored with the

velocity magnitude and the pressure computed with mesh h = 1/128. Fig. 4 shows the L2 error

and weighted H1 error (198) for the velocity and weighted L2 error (199) for the pressure against the

mesh size h. For the range of mesh sizes under consideration, we observe close to cubic convergence

in the L2 norm for the velocity and quadratic convergence in the weighted L2 norm for the pressure

and in the weighted H1 norm for the velocity.
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Figure 3: Approximation of exact solution (200)-(201) for c = 0, µ− = 1, µ+ = 10, and f = 10,

computed with mesh h = 1/128: velocity vectors colored with the velocity magnitude (left) and

pressure (right).

Figure 4: 2D test with c = 0, µ− = 1, µ+ = 10, and f = 10: L2 error and weighted H1 error (198)

for the velocity and weighted L2 error (199) for the pressure against the mesh size h.

Robustness with respect to the viscosity contrast. The case of high contrast for the

viscosities in a two-phase problem is especially challenging from the numerical point of view. To
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test the robustness of our approach, we consider exact solution (200)-(201) and fix µ− = 1, while

we let µ+ vary from 1 to 108. We set c = 0 and f = 10.

We consider one of the meshes adopted for the previous sets of simulations (with h = 1/64) and

use again Q2 − Q1 finite elements. Fig. 5 (left) shows the L2 error and weighted H1 error (198)

for the velocity and weighted L2 error (199) for the pressure against the value of µ+. We observe

that all the errors quickly reach a plateau as the µ+/µ− ratio increases, after initially decreasing.

These results show that our approach is substantially robust with respect to the viscosity contrast

µ+/µ−.

Figure 5: 2D test with c = 0 and µ− = 1: L2 error and weighted H1 error (198) for the velocity

and weighted L2 error (199) for the pressure against the value of µ+ (left) and corresponding scaled

norms against the value of the slip coefficient f (right).

Robustness with respect to the slip coefficient. For the next set of simulations, we

consider exact solution (200)-(201) and let the slip coefficient f in (145)-(146) vary from 1/256 to

256. Notice that the larger f becomes, the closer the two-phase problem gets to the homogeneous

model. The other parameters are set as follows: c = 0, µ− = 1, and µ+ = 10.

We consider again the structured mesh with mesh size h = 1/64 and Q2 −Q1 finite elements.

Fig. 5 (right) shows the L2 error and weighted H1 error (198) for the velocity scaled by the H3

norm of u and weighted L2 error (199) for the pressure, also scaled by the H3 norm of u, against the
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value of f . We observe that the scaled weighted H1 error for the velocity and scaled weighted L2

error for the pressure do not vary substantially as f varies, while the scaled L2 error for the velocity

increase as f decreases. When f goes to zero, the external phase loses its control over tangential

motions in the internal fluid on Γ, thus allowing for purely rigid rotations in the perfectly circular

Ω−; see the definition of u− in (201). While the seminorm ‖u, p‖∗ appearing on the right-hand

side in (197) remains the same, the full Sobolev norm ‖u−‖k+2 grows as O(f−1). Since we use

isoparametric unfitted FE, we indeed see the uniform error bound with respect to f → 0 if we

normalize the error by the full Sobolev norm of the solution. See Remark 2.6. Summarizing, the

approach proves to be robust in the energy norm as the physical parameter f varies.

Robustness with respect to the position of the interface. We conclude the series of

the 2D tests with a set of simulations aimed at checking that our approach is not sensitive to the

position of the interface with respect to the background mesh. For this purpose, we vary the center

of the circle that represents Γ:

c = (c1, c2), c1 =
h

20
k cos

(
k

10
π

)
, c2 =

h

20
k sin

(
k

10
π

)
, k = 1, 2, ..., 20, (202)

where h is the mesh size. We set µ− = 1, µ+ = 10 and f = 10.

Just like the two previous sets of simulations, we consider the mesh with mesh size h = 1/64

and the Q2 − Q1 pair. Fig. 6 shows the L2 error and weighted H1 error (198) for the velocity

and weighted L2 error (199) for the pressure against the value of k in (202). We see that all the

errors are fairly insensitive to the position of Γ with respect to the background mesh, indicating

robustness.
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Figure 6: 2D test with c = 0, µ− = 1, µ+ = 10, and f = 10: L2 error and weighted H1 error (198)

for the velocity and weighted L2 error (199) for the pressure against the value of k in (202).

2.5.2 3D tests

For the 3D tests, the domain Ω is cube [−1.5, 1.5] × [−1.5, 1.5] × [−1.5, 1.5] and interface Γ is the

unit sphere, centered at origin of the axes. We characterize Γ as the zero level set of function

φ(x) = ||x||22 − 1, with x = (x, y, z). We consider the exact solution given by:

p+ =
1

2
x, p− = x, (203)

u− = g−(x, y)


−y

x

0

 , u+ = g+(x, y)


−y

x

0

 , (204)

where

g+(x, y) =
1

2µ+
(x2 + y2 + z2),

g−(x, y) =
1

2µ−
(x2 + y2 + z2) +

µ− − 2µ+µ− − µ+

2µ+µ−
.
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The forcing terms f− and f+ are found by plugging the above solution in in (140). We set f = 1,

µ− = 1, and µ+ = 100. The surface tension coefficient is set to σ = −0.5x.

Just like for the 2D tests, we impose a Dirichlet condition (142) on the entire boundary, where

function g is found from u+ in (204).

To verify our implementation of the finite element method in Sec. 2.2 in three dimensions and

to further corroborate the results in Sec. 2.4, we consider structured meshes of tetrahedra with four

levels of refinement. The initial triangulation has mesh size h = 1 and all the other meshes are

obtained by halving h till h = 0.125. All the meshes feature a local one-level refinement near the

corners of Ω. We choose to use finite element pair P2 − P1. Fig. 7 shows a visualization of the

solution computed with mesh h = 0.125. Fig. 8 shows the L2 error and weighted H1 error (198)

for the velocity and weighted L2 error (199) for the pressure against the mesh size h. For the small

range of mesh sizes that we consider, we observe almost cubic convergence in the L2 norm for the

velocity, quadratic convergence in the weighted L2 norm for the pressure and in the weighted H1

norm for the velocity.

Figure 7: Approximation of exact solution (203)-(204) computed with the mesh with h = 0.125:

velocity vectors colored with the velocity magnitude on the xz-section of Ω+ and in Ω− (left) and

pressure in Ω− and half Ω+ (right).
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Figure 8: 3D test: L2 error and weighted H1 error (198) for the velocity and weighted L2 error

(199) for the pressure against the mesh size h.

2.6 Conclusions

In this section, we focused on the two-phase Stokes problem with slip between phases, which has

received much less attention than its homogeneous counterpart (i.e. no slip between the phases).

For the numerical approximation of this problem, we chose an isoparametric unfitted finite element

approach of the CutFEM or Nitsche-XFEM family. For the unfitted generalized Taylor–Hood finite

element pair Pk+1−Pk, we prove stability and optimal error estimates, which follow from an inf-sup

stability property. We show that the inf-sup stability constant is independent of the viscosity ratio,

slip coefficient, position of the interface with respect to the background mesh and, of course, mesh

size.

The 2D and 3D numerical experiments we used to test our approach feature an exact solution.

They have been designed to support the theoretical findings and demonstrate the robustness of

our approach for a wide range of physical parameter values. Finally, we show that our unfitted

approach is insensitive to the position of the interface between the two phases with respect to the

fixed computational mesh.
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3 A Two-Phase Fluid with Material Viscous Interface

3.1 Problem description

Consider a fixed volume Ω ⊂ R3 filled with two immiscible, viscous, and incompressible fluids

separated by an interface Γ(t) for all t ∈ [0, T ]. We assume that Γ(t) stays closed and sufficiently

smooth (at least C2) for all t ∈ [0, T ]. Surface Γ(t) separates Ω into two phases (subdomains) Ω+(t)

and Ω−(t) := Ω \ Ω+(t). We assume Ω−(t) to be completely internal, i.e. ∂Ω−(t) ∩ ∂Ω = ∅ for all

times. See Fig. 1.

Denote by n± the outward normals for Ω±(t) and n the normal on Γ pointing from Ω−(t) to Ω+(t):

it holds that n− = n and n+ = −n at Γ. For ease of notation, from now on we will drop the

dependance on t for Γ, Ω+, and Ω−.

Recall model BII in Sec. 1.2.6,



ρ±∂̇tu
± − µ±∆u± +∇p± = f± in Ω±,

div u± = 0 in Ω±,

ρΓ∂̇tU− 2µΓ divΓDΓ(U) +∇Γπ − πκn = [σn]+− + be on Γ,

divΓU = 0 on Γ,

u+ · n = u− · n = UN on Γ,

Pσ±n = ±f±(Pu± −UT ) on Γ,

(205)

The motion of the fluids occupying subdomains Ω± is governed by the incompressible Navier–Stokes

equations

ρ±∂̇tu
± = divσ± + f± in Ω±, (206)

div u± = 0 in Ω±, (207)
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for all t ∈ (0, T ). In (206), constants ρ± represent the fluid density, ∂̇t denotes the material

derivative, f± are the external body forces, and σ± are the Cauchy stress tensors.

We assume interface Γ to be a thin material layer with possibly different material properties

from the bulk fluid. Motivated by applications in cell biology, we consider a viscous inextensible

interface modeled as an “incompressible” surface fluid. The evolution of the material interface can

be described in terms of the velocity of this surface fluid denoted by U. Later, we will need the

decomposition of U into tangential and normal components: U = UT + UNn, with UT · n = 0,

UN = n · U. The surface Navier-Stokes equations governing the motion of a fluidic deformable

layer:

ρΓ∂̇tU = −∇Γπ + 2µΓ divΓDΓ(U) + fΓ + be + πκn on Γ, (208)

divΓU = 0 on Γ, (209)

where ρΓ is the surface fluid density, µΓ is the surface fluid dynamic viscosity, κ denotes point-wise

doubled mean curvature on Γ, and π is the surface fluid pressure. The material derivative in (208)

is taken with respect to surface fluid trajectories, i.e. ∂̇tU = ∂U
∂t + (U · ∇)U. Note that ∂̇tU is an

intrinsic surface quantity, although both terms ∂U
∂t and (U · ∇)U depend on extension of U in the

bulk. On the right hand side of (208), fΓ denotes the external area force acting on the surface as a

result of the interaction with the bulk fluids (specified below), while be denotes other possible area

force (such as elastic bending forces) and not further specified.

Next, we turn to the coupling conditions between equations (206)–(207) posed in the bulk and

equations (208)–(209) posed on Γ. First, the immiscibility condition means that the bulk fluid does

not penetrate through Γ, which implies that

u+ · n = UN = u− · n on Γ. (210)

Normal velocity UN determines radial deformations of Γ(t) and so it governs the geometric evolution

of the interface, which can be defined through the Lagrangian mapping Ψ(t, ·) from Γ(0) to Γ(t):
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for x ∈ Γ(0), Ψ(t,x) solves the ODE system

Ψ(0,x) = x,
∂Ψ(t,x)

∂t
= UN (t,Ψ(t,x)), t ∈ [0, T ]. (211)

In fluid vesicles and cells, typically a viscous and dense lipid membrane, represented by Γ, is

surrounded by a less viscous and less dense liquid. We are interested in modelling slip with friction

between the bulk fluid and the viscous membrane. Thus, we consider Navier-type conditions

Pσ+n = f+(Pu+ −UT ) on Γ, (212)

Pσ−n = −f−(Pu− −UT ) on Γ, (213)

where f− and f+ are friction coefficients at Γ on the Ω− and Ω+ side, respectively. Condi-

tions (212)–(213) model an incomplete adhesion of a bulk fluid to the material surface with 1/f±

often referred to as a “slip length” [72]; see, e.g., [7, 57] for the modern description of experimen-

tal and theoretical validations. In particular, the acceptance of non-zero slip length resolves the

well-known “no-collision paradox” [23, 49, 33], thus suggesting (212)–(213) to be an important

modeling assumption in the simulation of a lipid vesicle – cell membrane contact (and fusion). We

finally note that the Navier conditions are not an uncommon choice in numerical models, if the

flow in boundary region is under-resolved [53].

The area force in (208) coming from the bulk fluid is defined by the jump of the normal stress

on Γ:

fΓ = [σn]+− = σ+n− σ−n on Γ. (214)

On ∂Ω the system is endowed with boundary conditions either for the bulk velocity or for the

bulk normal stress:

u+ = g on ∂ΩD, (215)

σ+n+ = fN on ∂ΩN . (216)
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Here ∂ΩD ∪∂ΩN = ∂Ω and ∂ΩD ∩∂ΩN = ∅. See Fig. 1. At t = 0, initial velocity is given u± = u±0

in Ω±(0) and U = U0 on Γ(0).

3.1.1 Balance laws

We look for the energy balance of the coupled system (205)–(216). We make use of the following

identities for time-dependent domains Ω±(t), whose only moving part of the boundary is Γ(t):

1

2

d

dt

∫
Ω±(t)

|u±|2 dV =

∫
Ω±(t)

u± · ∂u±

∂t
dV +

1

2

∫
Γ(t)
|u±|2u± · n± dS, (217)∫

Ω±(t)
(u± · ∇)u± · u± dV =

1

2

∫
∂Ω±(t)

|u±|2u± · n± dS. (218)

Identity (217) is the Reynolds transport theorem, while identity (218) is obtained from integration

by parts.

Let us start from the kinetic energy of the fluid in Ω−:

d

dt
E− =

1

2

d

dt

∫
Ω−

ρ−|u−|2 dV =

∫
Ω−

ρ−u− · ∂u−

∂t
dV +

1

2

∫
Γ
ρ−|u−|2u− · n dS

=

∫
Ω−

u− · (divσ− + f− − ρ−(u− · ∇)u−) dV +
1

2

∫
Γ
ρ−|u−|2u− · n dS

=

∫
Ω−

∇ · (σ−u−) dV −
∫

Ω−

σ− : ∇u− dV +

∫
Ω−

u− · f− dV

=

∫
Γ

u− · (σ−n) dS −
∫

Ω−

σ− : D(u−)dV +

∫
Ω−

u− · f− dV

=

∫
Γ

u− · (σ−n) dS − 2µ−
∫

Ω−

‖D(u−)‖2 dV +

∫
Ω−

u− · f− dV (219)

Above, we have used (217), (206), (207), (218), and integration by parts.

We repeat similar steps for the kinetic energy of the fluid in Ω+, the main difference being that

∂Ω+ = Γ ∪ ∂ΩD ∪ ∂ΩN while ∂Ω− = Γ. We obtain:

d

dt
E+ = −

∫
Γ

u+ · (σ+n) dS − 2µ+

∫
Ω+

∥∥D(u+)
∥∥2
dV +

∫
Ω+

u+ · f+ dV +B (220)

63



where

B =

∫
∂ΩD

(
g · (σ+n)− 1

2
ρ+|g|2g · n+

)
dS +

∫
∂ΩN

(
u+ · f − 1

2
ρ+|u+|2u+ · n+

)
dS. (221)

Putting together (219) and (220), we obtain the total kinetic energy for the bulk flow:

dE

dt
=
d

dt
(E+ + E−) = −2µ−

∫
Ω−

‖D(u−)‖2 dV − 2µ+

∫
Ω+

∥∥D(u+)
∥∥2
dV −

∫
Γ
UN [nTσn]+−dS

−
∫

Γ
f−Pu− · (Pu− −UT )dS −

∫
Γ
f+Pu+ · (Pu+ −UT )dS

+

∫
Ω−

u− · f− dV +

∫
Ω+

u+ · f+ dV +B (222)

where we have used (210), (212), and (213).

The energy balance on Γ is given by:

dEΓ

dt
=

1

2

d

dt

∫
Γ
ρΓ|U|2 dS =

∫
Γ

(
ρΓU · ∂̇tU +

1

2
ρΓ|U|2 divΓU

)
dS

=

∫
Γ

U · (−∇Γπ + 2µΓ divΓDΓ(U) + fΓ + be) dS

= −2µΓ

∫
Γ

DΓ(U) : ∇ΓU dS +

∫
Γ

U · [σn]+− dS +

∫
Γ

UT · be dS

= −2µΓ

∫
Γ
‖DΓ(U)‖2 dS +

∫
Γ
UN [nTσn]+− dS

+

∫
Γ

UT ·
(
f+(Pu+ −UT ) + f−(Pu− −UT )

)
dS +

∫
Γ

U · be dS, (223)

where we have applied (40) and used (51), (208)-(210), (212)-(214), and integration by parts.
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Combining (222) and (223), we get the kinetic energy for the bulk and surface flows:

dE

dt
+
dEΓ

dt
= −2µ−

∫
Ω−

‖D(u−)‖2 dV − 2µ+

∫
Ω+

∥∥D(u+)
∥∥2
dV︸ ︷︷ ︸

Bulk fluid viscous dissipation

−2µΓ

∫
Γ
‖DΓ(UT )‖2 dS︸ ︷︷ ︸

Surface fluid viscous dissipation

−
∫

Γ
f−‖Pu− −UT ‖2dS −

∫
Γ
f+‖Pu+ −UT ‖2d︸ ︷︷ ︸

Frictional energy dissipation

+

∫
Γ

u− · f− dV +

∫
Γ

u+ · f+ dV +

∫
Γ

U · bedS︸ ︷︷ ︸
work of external forces

+B︸︷︷︸
work of b.c.

(224)

where B, i.e. the work of the boundary conditions, is defined in (221).

From (224), we see that in the absence of external forces and with no energy inflow through the

boundary the system is dissipative, i.e. thermodynamically consistent.

3.1.2 A simplified steady problem

In this section, we consider a (strongly) simplified version of the problem presented in previous

section. Our main assumption is that the coupled bulk and surface fluid system has reached a

steady state and inertia terms can be neglected. Since the steady state implies Γ(t) = Γ(0),

we have UN = 0 and hence U = UT . This simplified surface–bulk Stokes problem models a

viscosity dominated two-phase flow with the viscous interface in a dynamical equilibrium; see also

Remark 3.1. It is an interesting model problem for the purpose of numerical analysis. With these

simplifications, the equations (206)–(207) become:

−µ±∆u± +∇p = f± in Ω±, (225)

div u± = 0 in Ω±. (226)

We impose a non-homogeneous Dirichlet condition on the entire outer boundary of Ω, i.e. prob-

lem (225)–(226) is supplemented with boundary condition (215) with g ∈ [H1/2(∂ΩD)]3 and

∂ΩD = ∂Ω. Under our assumption, the momentum equation for the surface fluid simplifies to
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−2µΓ divΓDΓ(UT ) + ∇Γπ − πκn = [σn]+− + be. The tangential part of the above momentum

equation together with the inextensibility condition (209) leads to the surface Stokes problem

−2µΓP divΓDΓ(UT ) +∇Γπ = [Pσn]+− + Pbe on Γ, (227)

divΓUT = 0 on Γ, (228)

while the normal part simplifies to

[nTσn]−+ = πκ on Γ. (229)

The interface condition above is standard in many models of two-phase flows, where π has the

meaning of the surface tension coefficient.

Coupling condition (210) is replaced by:

u+ · n = u− · n on Γ, (230)

while conditions (212) and (213) still hold:

Pσ±n = ±f±(Pu± −UT ) on Γ. (231)

Finally, we will see that the (weak formulation of the) problem is well-posed under two mean

conditions for the bulk pressure: ∫
Ω±

p± dx = 0.

Remark 3.1 Since U · n = 0, condition (230) allows the flow through the steady interface Γ.

This is inconsistent with (210), which assumes immiscibility of fluids. For a physically consistent

formulation that describes the true equilibrium one has to set u+ · n = u− · n = 0 on Γ, but

allow the shape of Γ to be the unknown, i.e. to be determined as a part of the problem. For

such equilibrium to exist, external forces and boundary conditions may have to satisfy additional
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constraints. Finding such constraints and solving the resulting non-linear problem is outside the

scope of this paper. We rather follow a common convention in the analysis of models for steady

two-phase problems and allow (230) for the steady interface; see, e.g. [31, 78, 37, 10].

3.1.3 Variational formulation

The purpose of this section is to derive the variational formulation of coupled problem (225)–(231).

Let us introduce some standard notation. The space of functions whose square is integrable in a

domain ω is denoted by L2(ω). The space of functions whose distributional derivatives of order up

to m ≥ 0 (integer) belong to L2(ω) is denoted by Hm(ω). The space of vector-valued functions

with components in L2(ω) is denoted with L2(ω)3. H1(div , ω) is the space of functions in L2(ω)

with divergence in L2(ω). Moreover, we introduce the following functional spaces:

V − = H1(Ω−)3, V + = {u ∈ H1(Ω+)3,u
∣∣
∂ΩD

= g}, V +
0 = {u ∈ H1(Ω+)3,u

∣∣
∂ΩD

= 0},

V ± = {u = (u−,u+) ∈ V − × V +,u− · n = u+ · n on Γ},

V ±0 = {u = (u−,u+) ∈ V − × V +
0 ,u− · n = u+ · n on Γ},

L2
± = {p = (p−, p+) ∈ L2(Ω−)× L2(Ω+), s.t.

∫
Ω±

p± dx = 0},

VΓ = {U ∈ H1(Γ)3 : U · n = 0}.

The space V ± can be also characterized as (V − × V +) ∩H1(div ,Ω). We use (·, ·)ω and 〈·, ·〉ω to

denote the L2 product and the duality pairing, respectively.

Multiplying (225) by v ∈ V ±0 and (226) by q ∈ L2
0(Ω) and integrating over each subdomain, we
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see that smooth bulk velocity and pressure satisfy integral identity:

− (p−,div v−)Ω− − (p+, div v+)Ω+ + 2(µ−D(u−),D(v−))Ω− + 2(µ+D(u+),D(v+))Ω+

− 〈πκ,v− · n〉Γ + 〈f−(Pu− −U),Pv−〉Γ + 〈f+(Pu+ −U),Pv+〉Γ

= (f−,v−)Ω− + (f+,v+)Ω+ (232)

(div u−, q−)Ω− + (div u+, q+)Ω+ = 0 (233)

for all (v, q) ∈ V ±0 × L2
0(Ω). The interface terms in (232) have been obtained using coupling

conditions (231) and (229) as follows:

−〈σ−n,v−〉Γ + 〈σ+n,v+〉Γ = −〈Pσ−n,Pv−〉Γ + 〈Pσ+n,Pv+〉Γ − 〈[nTσn]−+,v
− · n〉Γ

= 〈f−(Pu− −U),Pv−〉Γ + 〈f+(Pu+ −U),Pv+〉Γ

− 〈πκ,v− · n〉Γ.

Likewise, we find that the surface velocity and pressure satisfy the following integral identities:

− (π, divΓV)Γ + 2(µΓDΓ(U),DΓ(V))Γ − 〈f−(Pu− −U),V〉Γ

− 〈f+(Pu+ −U),V〉Γ = (Pbe,V)Γ (234)

( divΓU, τ)Γ = 0 (235)

for all (V, τ) ∈ VΓ × L2
0(Γ).

The weak formulation of the coupled problem (225)–(231) follows by combining (232)–(233)

and (234)–(235). In order to write it, we introduce the following forms for all u ∈ V ±, v ∈ V±0 ,
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U,V ∈ VΓ, p ∈ L2(Ω), π ∈ L2(Γ):

a({u,U}, {v,V}) =2(µ−D(u−),D(v−))Ω− + 2(µ+D(u+),D(v+))Ω+

+ 2(µΓDΓ(U),DΓ(V))Γ + 〈f−(Pu− −U),Pv− −V〉Γ

+ 〈f+(Pu+ −U),Pv+ −V〉Γ,

b({v,V}, {p, π}) =− (p−, div v−)Ω− − (p+,div v+)Ω+ − (π, divΓV)Γ,

s(v, π) =− 〈πκ,v · n〉Γ,

r(v,V) =(f−,v−)Ω− + (f+,v+)Ω+ + (Pbe,V)Γ.

Then, the weak formulation reads: Find (u, p) ∈ V ± × L2
±, and (U, π) ∈ VΓ × L2(Γ) such that


a({u,U}, {v,V}) + b({v,V}, {p, π}) + s(v, π) = r(v,V)

b({u,U}, {q, τ}) = 0

(236)

for all (v, q) ∈ V ±0 ×L2
0(Ω) and (V, τ) ∈ VΓ×L2

0(Γ). Note that test and trial pressure spaces both

involve two (different) gauge conditions.

3.1.4 Well-posedness

With the goal of proving the well-posedness of the stationary problem, we start by showing that

a({·, ·}, {·, ·}) is coercive. Let ‖u‖2H1(Ω±) = ‖u+‖2H1(Ω+) + ‖u−‖2H1(Ω−). Let ‖p‖2L2(Ω±) = ‖p‖2Ω+
+

‖p‖2Ω− . We define the following additional norms:

|||{v,V}|||2 = ‖v‖2H1(Ω±) + ‖V‖2H1(Γ) , |||{p, π}|||2 = ‖p‖2Ω± + ‖π‖2Γ

The coercivity result is formulated in the form of a lemma.

Lemma 3.2 For any v ∈ V ±0 and V ∈ VΓ it holds

a({v,V}, {v,V}) ≥ C|||{v,V}|||2 (237)
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with a positive constant C, which may depend on the viscosity values and Ω±.

Proof: One readily computes that

a({v,V}, {v,V}) = 2(µ−D(v−),D(v−))Ω− + 2(µ+D(v+),D(v+))Ω+

+ 2(µΓDΓ(V),DΓ(V))Γ + f−‖Pv− −V‖2Γ + f+‖Pv+ −V‖2Γ. (238)

Since function v+ satisfies homogeneous Dirichlet boundary condition on ∂Ω+ \ Γ, we apply the

following Korn’s inequality in Ω+:

∥∥v+
∥∥
H1(Ω+)

≤ C‖D(v+)‖Ω+ (239)

By the triangle and trace inequalities in Γ, we get

‖V‖Γ ≤ ‖Pv+ −V‖Γ + ‖Pv+‖Γ ≤ ‖Pv+ −V‖Γ + C
∥∥v+

∥∥
H1(Ω+)

. (240)

We further apply Korn’s inequality on Γ [51]:

‖V‖H1(Γ) ≤ C (‖V‖Γ + ‖DΓ(V)‖Γ) . (241)

Next, we can estimate the trace of v− on Γ through the triangle inequality:

∥∥v−∥∥
Γ
≤ ‖Pv− −V‖Γ + ‖V‖Γ ≤ ‖Pv− −V‖Γ + ‖V‖H1(Γ) . (242)

We finally apply the following Korn’s inequality in Ω−:

‖v‖H1(Ω−) ≤ C
(
‖D(v−)‖Ω− +

∥∥v−∥∥
Γ

)
. (243)

Identity (238) and inequalities (239)–(243) lead to (237) after easy computations.
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The continuity of the bilinear forms a({·, ·}, {·, ·}), b({·, ·}, {·, ·}) and s(·, ·) follows from standard

arguments based on the Cauchy–Schwarz and triangle inequalities:

a({u,U}, {v,V}) ≤ C|||{u,U}||||||{v,V}||| for all u,v ∈ V ±0 , U,V ∈ VΓ,

b({u,U}, {p, π}) ≤ C|||{u,U}||||||{p, π}||| for all u ∈ V ±0 , U ∈ VΓ, p ∈ L2(Ω), π ∈ L2(Γ),

s(v, π) ≤ C|||{v, 0}||||||{0, π}||| for all v ∈ V ±, π ∈ L2(Γ).

(244)

Problem (236) falls into the class of so-called generalized saddle point problems. An abstract well-

posedness result for such problems can be found, e.g. in [6, 73], which extend the Babuşka–Brezzi

theory. Applied to (236), this well-posedness result requires coercivity (237), continuity (244) and

two inf-sup conditions formulated in the following lemma.

Lemma 3.3 The following inf-sup conditions hold with positive constants γ1 and γ2:

sup
v∈V ±0 ,V∈VΓ

b({v,V}, {p, π}) + s(v, π)

|||{v,V}|||
≥ γ1|||{p, π}|||, ∀ p ∈ L2

±, π ∈ L2(Γ), (245)

sup
v∈V ±0 ,V∈VΓ

b({v,V}, {p, π})
|||{v,V}|||

≥ γ2|||{p, π}|||, ∀ p ∈ L2
0(Ω), π ∈ L2

0(Γ). (246)

Proof: The proof follows by combining well-known results about the existence of a continuous

right inverse of the divergence operator in H1
0 (Ω)3 [8] and VΓ [51]: For arbitrary p ∈ L2

0(Ω) and

π ∈ L2
0(Γ) there exist v ∈ H1

0 (Ω)3 and V ∈ VΓ such that

p = div v in Ω, and ‖v‖H1(Ω) ≤ cΩ‖p‖L2(Ω),

π = divΓV on Γ, and ‖V‖H1(Γ) ≤ cΓ‖π‖Γ.
(247)
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Letting v± = v|Ω± , (v−,v+)T ∈ V ±0 , and adding estimates in (247) we get

|||{p, π}|||2 ≤ b({v,V}, {p, π}), (248)

|||{v,V}||| ≤ cΩ‖p‖Ω + cΓ‖π‖Γ ≤ (cΩ + cΓ)|||{p, π}|||. (249)

This proves (246) with γ2 = 1/(cΩ + cΓ).

To show (245), we split π = π0 + π⊥ with π0 ∈ L2
0(Γ) and π⊥ = |Γ|−1

∫
Γ π ds. For the π0 part

of π, we use again (247) as above, while for p± ∈ L2
0(Ω±) we use the existence of a continuous right

inverse of div in H1
0 (Ω±)3 to claim the existence of v ∈ H1

0 (Ω−)3 × H1
0 (Ω+)3 ⊂ V ±0 and V ∈ VΓ

such that

|||{p, π0}||| ≤ b({v,V}, {p, π0}) + s(v, π), |||{v,V}||| ≤ (cΩ + cΓ)|||{p, π0}|||, (250)

with some positive cΩ, cΓ depending only on Γ and Ω. We also used that v = 0 on Γ implies

s(v, π) = 0.

Let C± = ±|Ω±|−1|Γ|
∫

Γ κ ds. To control ‖π⊥‖Γ, we need v1 ∈ V ±0 such that

div v1 = −C± in Ω±, v1 · n = κ on Γ and ‖v1‖H1(Ω±) ≤ C. (251)

Such v1 can be built, for example, as follows: Let v−1 = ∇ψ, where ψ ∈ H2(Ω−) solves the Neumann

problem −∆ψ = C− in Ω−, n · ∇ψ = κ on Γ. Since Γ = ∂Ω− is smooth, by the H2-regularity

of the Neumann problem we have that ‖v−1 ‖H1(Ω−) ≤ ‖ψ‖H2(Ω−) ≤ C. The boundary ∂Ω is only

Lipschits and so the Neumann problem in Ω+ is not necessarily H2-regular. To handle this, we

first extend v−1 from Ω− to a function ṽ1 in H1
0 (Ω)3 such that ‖ṽ1‖H1(Ω+) ≤ c‖v−1 ‖H1(Ω−) [96].

Next, we consider w ∈ H1
0 (Ω+)3 such that div w = C+ − div ṽ1 ∈ L2

0(Ω+), and ‖w‖H1(Ω+) ≤

cΩ+‖ div w‖L2(Ω+) ≤ C [8]. The desired v+
1 is given in Ω+ by v+

1 = ṽ1 + w. Since div v1 = −C±,
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for p ∈ L2
±(Ω) and π ∈ L2(Γ) we have identities

b({v1, 0}, {p, π}) = 0 = ( divΓV, π⊥)Γ. (252)

We also note the equality ‖π⊥‖2Γ = ĉ s(v1, π
⊥), with

ĉ = π⊥|Γ|/
∫

Γ
κ2ds.

The denominator above is positive, since Γ is closed and so κ cannot be zero everywhere on Γ. We

use (248)–(252) to estimate for some β > 0:

|||{p, π}|||2 = |||{p, π0}|||2 + β‖π⊥‖2Γ

≤ b({v,V}, {p, π0}) + s(v, π) + s(βĉv1, π
⊥)

= b({v + βĉv1,V}, {p, π}) + s(v + βĉv1, π)− (βĉv1, π0)Γ

≤ b({v + βĉv1,V}, {p, π}) + s(v + βĉv1, π) +
β2ĉ2

2
‖v1‖2Γ +

1

2
‖π0‖2Γ

≤ b({v + βĉv1,V}, {p, π}) + s(v + βĉv1, π) + c3 β
2‖π⊥‖2Γ +

1

2
‖π0‖2Γ.

with some c3 > 0 depending only on Γ and Ω. For β > 0 sufficiently small such that β
2 − c3 β

2 ≥ 0,

we get

c|||{p, π}|||2 ≤ b({v + βĉv1,V}, {p, π}) + s(v + βĉv1, π), (253)

with c > 0 depending only on Γ and Ω. Thanks to the triangle inequality, the second estimate in

(250) and the definition of ĉ and v1, we find the bound

|||v + βĉv1,V||| ≤ |||v,V|||+ βĉ|||βĉv1, 0||| ≤ (cΩ + cΓ)|||{p, π0}|||+ C ‖π⊥‖Γ ≤ C |||{p, π}|||,

with C > 0 depending only on Γ and Ω. The combination of the above bound and (253) completes

the proof of the lemma. �

73



3.2 Numerical method for solving coupled bulk-surface flow problem

We adopt the notations and discretization scheme for the bulk problem in Sec. 2.2. For the dis-

cretization of the surface Stokes problem, we first consider the generalized Taylor–Hood bulk spaces

in the strip ΩΓ
h:

VΓ,h = {U ∈ C(ΩΓ
h)3 : U|T ∈ Pk+1(T ) ∀T ∈ T Γ

h },

QΓ,h = {π ∈ C(ΩΓ
h) : π|T ∈ Pk(T ) ∀T ∈ T Γ

h },

Q0
Γ,h = QΓ,h ∩ L2

0(Γ). In the trace finite element method, we use the traces of functions from VΓ,h

and QΓ,h on Γ. The inf-sup stability of the resulting trace FEM was analyzed in [77] for k = 1 and

extended to higher order isoparametric trace elements in [52].

In the treatment of the surface Stokes problem, one has to enforce the tangentiality condition

U · n = 0 on Γ. In order to enforce it while avoiding locking, we follow [42, 43, 51, 89, 74] and add

a penalty term to the weak formulation.

A discrete variational analogue of problem (236) reads: Find (uh, ph) ∈ V ±h × L2
±(Ω)h, and

(Uh, πh) ∈ VΓ,h ×QΓ,h such that


ah({uh,Uh}, {vh,Vh}) + bh({vh,Vh}, {ph, πh}) + sh(vh, πh) = rh(vh,Vh)

bh({uh,Uh}, {qh, τh})− bp(ph, qh)− bs(πh, τh) = 0

(254)

for all (vh, qh) ∈ V ±0,h×Q
±
h and (Vh, τh) ∈ VΓ,h×Q0

Γ,h. We define all the bilinear forms in (254) for

all uh ∈ V ±h , vh ∈ V ±0,h, U,V ∈ VΓ,h, p ∈ L2(Ω), π ∈ L2(Γ). Let us start from form ah({·, ·}, {·, ·}):

ah({uh,Uh}, {vh,Vh}) =ai({uh,Uh}, {vh,Vh}) + an(uh,vh)

+ ap({uh,Uh}, {vh,Vh}) + as(Uh,Vh), (255)

where we group together the terms that arise from the integration by parts of the divergence of the
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stress tensors:

ai({uh,Uh}, {vh,Vh}) = 2(µ−D(u−h ),D(v−h ))Ω− + 2(µ+D(u+
h ),D(v+

h ))Ω+

+ 〈f−(Pu−h −Uh),Pv−h −Vh〉Γ + 〈f+(Pu+
h −Uh),Pv+

h −Vh〉Γ

− 2〈{µnTD(uh)n}, [vh · n]〉Γ + 2(µΓDΓ(Uh),DΓ(Vh))Γ (256)

the terms that enforce condition (230) weakly using Nitsche’s method

an(uh,vh) =
∑
T∈T Γ

h

γ

hT
{µ}([uh · n], [vh · n])Γ − 2〈{µnTD(v)n}, [uh · n]〉Γ, (257)

and the stabilization and penalty terms:

ap({uh,Uh}, {vh,Vh}) = J−h (uh,vh) + J+
h (uh,vh) + τs(Uh · n,Vh · n)Γ, (258)

J±h (uh,vh) =
k+1∑
`=1

|e|2`−1
∑

e∈EΓ,±
h

γ±u µ
±([∂`nu

±
h ], [∂`nu

±
h ])e. (259)

In (259), ∂`nu
−
h denotes the derivative of order ` of u−h in the direction of n. The Jh terms in (258)

are so called ghost-penalty stabilization [14, 15] included to avoid poorly conditioned algebraic

systems due to possible small cuts of tetrahedra from T Γ
h by the interface. The terms in (260) and

(262) have the same role for the surface bilinear forms.

The last form in (255) is related to the algebraic stability of the surface Stokes problem:

as(Uh,Vh) = ρu(∇uhn,∇vhn)ΩΓ
h
. (260)

Similarly, the terms coming from the integration by parts of the divergence of the stress tensors
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are contained in

bh({vh,Vh}, {ph, πh}) =− (p−h ,div v−h )Ω− − (p+
h , div v+

h )Ω+

+ 〈{ph}, [vh · n]〉Γ + (∇Γπh,Vh)Γ, (261)

the penalty terms are grouped together in

bp(ph, qh) = J−h (ph, qh) + J+
h (ph, qh), J±h (ph, qh) =

γ±p
µ±

∑
e∈EΓ,±

h

k∑
`=1

|e|2`+1([∂`np
±
h ], [∂`nq

±
h ])e,

and we have a term related to algebraic stability of the surface Stokes problem in:

bs(πh, τh) = ρp(∇ph · n,∇ph · n)ΩΓ
h
. (262)

Finally,

sh(vh, πh) =− 〈πhκ, 〈vh · n〉〉Γ,

rh(vh,Vh) =(f−h ,v
−
h )Ω− + (f+

h ,v
+
h )Ω+ + (Pbeh,Vh)Γ.

We recall that some of the interface terms in ai({·, ·}, {·, ·}) and bh({·, ·}, {·, ·}) have been obtained

using relationship (158).

Parameters γ±u , γ±p , and γ are all assumed to be independent of µ±, h, and the position of Γ

against the underlying mesh. Parameter γ in (257) needs to be large enough to provide the bilinear

form ah({·, ·}, {·, ·}) with coercivity. Parameters γ±u and γ±p can be tuned to improve the numerical

performance of the method. As for the parameters required by the discretization of the surface

Stokes problem, we allow:

τs = cτh
−2, ρp = cph, ρu ∈ [cuh,Cuh

−1], (263)
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where cτ , cp, cu, and Cu are positive constants independent of h and how Γ cuts the bulk mesh.

The definition of bilinear forms requires integration over Γ ∩ T and T ∩ Ω± for T from ΩΓ
h.

In general, there are no exact quadrature formulas to accomplish this task [80]. In practice, ap-

proximations should be made which introduce geometric errors. To keep these geometric errors

of the order consistent with the approximation properties of the finite element spaces, we use

isoparametric variants of the above spaces introduced in [58]; see also [61, 35].

We expect that the stability of the finite element formulation can be analyzed largely following

the same steps of the well-posedness analysis for the weak formulation in Sec. 3.1.4, with a special

treatment of cut elements, Nitsche terms and surface elements as available in the literature for bulk

Stokes interface and surface Stokes problems.

3.3 A partitioned method for the coupled bulk-surface flow

For the solution of the coupled problem described in Sec. 3.1.2 we intend to use a partitioned

strategy, i.e. each sub-problem is solved separately and the coupling conditions are enforced in

an iterative fashion. Partitioned method are appealing for solving coupled problems because they

allow to reuse existing solvers with minimal modifications. In order to devise such a method for

the simplified problem in Sec. 3.1.2, let us take a step back and look at the original problem (205).

Discretize problem (205) in time with, e.g., the Backward Euler method and consider the coupled

problem at a particular time t = tn+1. Let Sb be the map that associates the jump in the normal

stress across the interface to any given surface flow velocity U = UT + UNn:

Sb(U) = [σn]+− = σ+(u+, p+)n− σ−(u−, p−)n on Γ,

where (u+, p+) and (u−, p−) represent the solution of the two-phase time-discrete Navier-Stokes

problem at time t associated to (206)–(207) endowed with interface conditions (210), (212), and

(213). Moreover, let Ss be the operator associated to the surface flow such that to any given surface
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flow velocity U it associates the load fΓ:

Ss(U) = fΓ on Γ,

through the time-discrete surface Navier-Stokes problem at time t associated to (208)–(209). Note

that Sb and Ss are nonlinear and their definitions can involve also forcing terms and, in the case

of the bulk fluid problem, terms due to the boundary conditions. For the surface operator, we can

define S−1
s as the map that associates the surface flow velocity U to any given load fΓ on Γ.

With the above definitions, we can express the time discrete version of coupled problem (205)

in terms of the solution U of a nonlinear equation defined only on Γ. This interface equation is

usually presented in one of three formulations that are equivalent from the mathematical point of

view, but give rise to different iterative algorithms. The first and perhaps most used formulation

is the fixed-point one: Find U such that

S−1
s (Sb(U)) = U on Γ. (264)

The second formulation is a slight modification of (264), which lends itself to a Newton iterative

method: Find U such that

S−1
s (Sb(U))−U = 0 on Γ.

The third approach is given by the Steklov-Poincaré equation: Find U such that

Sb(U)− Ss(U) = 0 on Γ.

See, e.g., [85] for more details on these three formulations.

A standard algorithm for eq. (264) uses fixed-point iterations: Given Uk, compute

Uk+1 = Uk + ωk(U
k −Uk) with U

k
= S−1

s (Sb(U
k)). (265)
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The choice of the relaxation parameter ωk determines the efficiency of the algorithm or it might

be crucial for convergence in certain ranges of the physical parameters. An effective strategy for

setting ωk is the Aitken’s acceleration method.

For simplicity, we present algorithm (265) applied to the time discrete version of coupled problem

(205) with ωk = 1 for all k (i.e., no relaxation). At time t = tn+1, assuming that Uk is known,

perform the following steps:

- Step 1: solve the two-phase time-discrete Navier-Stokes problem at time t associated to

(206)–(207) for the bulk flow variables (u−k+1, p
−
k+1) and (u+

k+1, p
+
k+1) with interface conditions

u+
k+1 · n = UkN = u−k+1 · n on Γ

Pσ+
k+1n = f+(Pu+

k+1 −Uk
T ) on Γ,

Pσ−k+1n = −f−(Pu−k+1 −Uk
T ) on Γ.

- Step 2: solve the time-discrete surface Navier-Stokes problem at time t associated to (208)–

(209) for variables (Uk+1, πk+1) with interface condition

fk+1
Γ = [σk+1n]+− on Γ.

- Step 3: Check the stopping criterion

||Uk+1 −Uk||Γ < ε||Uk||Γ,

where ε is a given stopping tolerance.

Notice that the bulk and surface flow problems are solved separately and sequentially. In general,

this algorithm is easy to implement but convergence could be slow in certain ranges of the physical

parameters and require relaxation for speed-up.

The above algorithm adapted to simplified problem (225)–(231), reads as follows. At iteration
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k + 1, assuming that (Uk
T , π

k) are known, perform the following steps:

- Step 1: solve two-phase problem (225)–(226) for the bulk flow variables (u−k+1, p
−
k+1) and

(u+
k+1, p

+
k+1) with interface conditions

u+
k+1 · n = u−k+1 · n on Γ (266)

Pσ+
k+1n = f+(Pu+

k+1 −Uk
T ) on Γ, (267)

Pσ−k+1n = −f−(Pu−k+1 −Uk
T ) on Γ, (268)[

nTσk+1n
]−
+

= πkκ on Γ. (269)

- Step 2: solve surface flow problem (227)–(228) for variables (Uk+1
T , πk+1) with interface

condition

Pfk+1
Γ = [Pσk+1n]+− on Γ. (270)

- Step 3: Check the stopping criterion

||Uk+1
T −Uk

T ||Γ < ε||Uk
T ||Γ. (271)

Notice that only interface condition (267)–(270) are coupling conditions for bulk and surface

flows. If one was to compute the load exerted on the surface fluid in (270) directly from the solution

of the problem at Step 1, the overall accuracy of the method would be spoiled. Instead, one can

compute Pfk+1
Γ by plugging (267)–(268) into (270):

Pfk+1
Γ = f+Pu+

k+1 + f−Pu−k+1 − (f+ + f−)Uk
T on Γ.
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However, we prefer to use a more implicit version of the above condition:

Pfk+1
Γ = f+Pu+

k+1 + f−Pu−k+1 − (f+ + f−)Uk+1
T on Γ.

since it could help have a better control of approximate rigid rotations (Killing vector fields).

3.4 Numerical examples

The aim of the numerical results collected in this section is to provide evidence of the robustness

of the proposed finite element approach with respect to the contrast in viscosity in the bulk fluid,

surface fluid viscosity, value of the slip coefficients, and position of the interface relative to the fixed

computational mesh.

For the averages in (157), we set α = 0 and β = 1 for all the numerical experiments since we

have µ− ≤ µ+. In addition, we set γ±u = 0.05, γ±p = 0.05, and γ = 80. The value of all other

parameters will depend on the specific test. The stopping tolerance for criterion (271) is set to

ε = 10−6. For all the simulations, we choose to use finite element pair P2 − P1 for both the bulk

and surface fluid problems.

For all the results presented below, we will report the L2 error and a weighted H1 error for the

bulk velocity defined as

(
2µ−‖D(u− u−h )‖2Ω− + 2µ+‖D(u− u+

h )‖2Ω+

) 1
2 , (272)

and a weighted L2 error for the bulk pressure defined as

(
µ−1
− ‖p− p−h ‖

2
Ω− + µ−1

+ ‖p− p+
h ‖

2
Ω+

) 1
2 . (273)

Such weighted norm naturally arise in the error analysis of the Stokes interface problem [78]. In

addition, we will report the L2 and H1 errors for the surface velocity and L2 error for the surface

pressure.

81



3.4.1 Sphere embedded in a cube

We perform a series of tests where domain Ω is the cube [−1.5, 1.5]3 and interface Γ is the unit

sphere centered at the origin. Let x = (x, y, z) ∈ Ω. Surface Γ is characterized as the zero level set

of function φ(x) = ||x||22 − 1. We consider the following solution for the bulk flow:

p− = 3x
√
x2 + y2 + z2 − 2x(x2 + y2 + z2), u− =

2f−

f− − µ−
a(x, y, z), (274)

p+ = 6x
√
x2 + y2 + z2 − 4x(x2 + y2 + z2), u+ =

2f+

f+ + µ+
a(x, y, z), (275)

where

a(x, y, z) =

(
3

2
−
√
x2 + y2 + z2

)
(−y − z)x+ y2 + z2

(−x− z)y + x2 + z2

(−x− y)z + y2 + x2

 ,

coupled to the following exact solution for the surface flow:

π = x, U =


(−y − z)x+ y2 + z2

(−x− z)y + x2 + z2

(−x− y)z + y2 + x2

 , (276)

The forcing terms f− and f+ are found by plugging the solution (274)–(275) in (140). We impose

a Dirichlet condition (215) on the faces x = 1.5, y = −1.5, z = −1.5, where function g is found

from u+ in (275). On the remaining part of the boundary, we impose a Neumann condition (216)

where fN is found from p+ in (274) and u+ in (275).

The value of the physical parameters will be specified for each test.

Spatial convergence. To check the spatial accuracy of the finite element method described in

Sec. 3.2, we consider exact solution (274)–(276) with viscosities µ− = 1, µ+ = 10 and µΓ = 1, and

friction coefficients f− = 2 and f+ = 10. Notice that the fluid outside the sphere has a larger

82



viscosity than the fluid inside the sphere, which has the same viscosity as the surface fluid. We

consider structured meshes of tetrahedra with five levels of refinement, the coarsest mesh having

mesh size h = 0.5 while the finest mesh has h = 0.05. All the meshes feature a local one-level

refinement near the corners of Ω. Table 1 reports the number of DOFs for each mesh. Fig. 9 (left)

shows the L2 error and weighted H1 error (198) for the bulk velocity, weighted L2 error (199) for the

bulk pressure, L2 and H1 errors for the surface velocity and L2 error for the surface pressure against

the mesh size h. We observe optimal convergence rates for all the norms under consideration. Fig. 9

(right) shows the number of bulk-surface iterations to satisfy stopping criterion (271) as h varies.

As we can see, the number of iterations is fairly insensitive to a mesh refinement or coarsening.

h 0.5 0.25 0.125 0.0625 0.05

# bulk velocity DOFs 1.1e4 7.4e4 5.2e5 3.6e6 6.4e6

# bulk pressure DOFs 6.2e2 3.7e3 2.3e4 1.6e5 2.8e5

# surface velocity DOFs 2.4e3 1.0e4 4.0e4 1.5e5 2.2e5

# surface pressure DOFs 1.4e2 5.9e2 2.3e3 8.5e3 1.3e4

Table 1: Sphere: DOFs for bulk and surface variables for all the meshes under consideration in the

spatial convergence test.

Figure 9: Sphere: (left) Bulk and surface FE errors against the mesh size h. (right) Number of

bulk-surface iterations of the partitioned method as h varies.
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Robustness with respect to the viscosity contrast. It is known that the case of high

contrast for the viscosities in a two-phase problem is especially challenging from the numerical

point of view. To test the robustness of our approach with respect to the viscosity contrast in the

bulk, we consider exact solution (274)–(276) and fix µ− = 1, while we let µ+ vary from 1 to 256.

We set µΓ = 1 and friction coefficients f− = 2 and f+ = 10.

We consider one of the meshes adopted for the previous sets of simulations (with h = 0.125).

Fig. 10 (left) shows the L2 error and weighted H1 error (272) for the bulk velocity, weighted L2

error (273) for the bulk pressure, L2 and H1 errors for the surface velocity and L2 error for the

surface pressure against the value of µ+. We see that the errors remain mostly unchanged as µ+

varies, with the exception of the weighted L2 error for the bulk pressure, which decreases as µ+

increases. In [75], which focuses only on two-phase bulk flow, we found that such error reaches a

plateau as µ+ is further increased. Fig. 10 (left) shows that our approach is substantially robust

with respect to the viscosity contrast µ+/µ−.

Figure 10: Sphere: (left) Bulk and surface FE errors against the value of µ+. (right) Number of

bulk-surface iterations of the partitioned method as µ+ varies.

Fig. 10 (right) reports the number of bulk-surface iterations to satisfy stopping criterion (271)

as µ+ varies. We observe that the number of iterations increases as the µ+/µ− ratio decreases,

indicating that the coupled bulk-surface problem becomes more stiff as µ+ decreases to match µ−

and µΓ.
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Robustness with respect to the value of the surface viscosity. We now let µΓ vary from

1 to 256 and keep all the other physical parameters fixed to the following values: µ− = 1, µ+ = 10,

f− = 2 and f+ = 10. Again, we consider exact solution (274)–(276) and the mesh with mesh size

h = 0.125. Fig. 11 (left) shows all the errors we have considered so far against the value of µΓ. We

notice that all the bulk errors stay constant as µΓ varies. The L2 errors for the surface velocity and

pressure increase as µΓ increases, while the H1 error for the surface velocity slightly decreases as

µΓ increases. This experiment suggests that more viscous embedded layer is less controlled by the

bulk fluid which effects the numerical stability of the complete system. In a water – lipid membrane

system, the ratio of lateral dynamic viscosities of the embedded bi-layer and bulk water is typically

1–10 µm (depending on the temperature and composition) with the size of a vesicle being generally

between 0.1 and 10 µm. Hence the observed increase of the numerical error does not look critical

for this application.

Figure 11: Sphere: (left) Bulk and surface FE errors against the value of µΓ. (right) Number of

bulk-surface iterations of the partitioned method as µΓ varies.

Fig. 11 (right) shows the number of bulk-surface iterations to satisfy stopping criterion (271)

as µΓ varies. Our partitioned method seems to be insensitive to a variation in the value of µΓ.

In particular, for the range of µΓ under consideration the number of iterations stays constant and

equal to 12.

Robustness with respect to the slip coefficients. To check the sensitivity of the errors
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and partitioned method to the value of the slip coefficients, we run two sets of experiments, both

involving exact solution (274)–(276). In the first set we fix f+ = 2 and vary f− from 1 to 256,

while in the second set we take f+ = f− and let them both vary from 1 to 256 . The viscosities

are set as follows: µ− = 1, µ+ = 10, and µΓ = 1. We consider again the mesh with mesh size

h = 0.125. Fig. 12 (left) and 13 (left) show all the errors under consideration against the value of

the slip coefficient(s) for both sets of tests. The only error that shows a substantial variation is the

weighted H1 error the bulk velocity, which increases as the slip coefficient(s) increase. However,

such error seems to reach a plateau in both cases.

Figure 12: Sphere: (left) Bulk and surface FE errors against the value of f+. (right) Number of

bulk-surface iterations of the partitioned method as f+ varies.

Fig. 12 (right) and 13 (right) report the number of bulk-surface iterations to satisfy stopping

criterion (271) as the value of the coefficient(s) varies for both sets of tests. In Fig. 12 (right), we

see a rather sharp increase in the number of iterations as f− increases. This is even more true when

both slip coefficients are increased together, as we can see from Fig. 13 (right). Fig. 14 reports the

relative difference of the surface velocity between subsequent iterations in L2 norm until stopping

criterion (271) is met for f+ = f− = 22 and f+ = f− = 28. We see that such relative difference

decreases regularly for f+ = f− = 22, while for f+ = f− = 28 it decreases quickly for the first

few iterations and then it slows down. A heuristic explanation we have for this is that as the two

friction coefficients increase interface conditions (212)–(213) become close to Dirichlet conditions,
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making the surface flow more “passive”. Thus, separating the surface flow from the bulk flow as in

the partitioned algorithm might not make much sense.

Figure 13: Sphere: (left) Bulk and surface FE errors against the value of f+ = f−. (right) Number

of bulk-surface iterations of the partitioned method as the value of f+ and f− (with f+ = f−)

varies.

Figure 14: Sphere: relative difference of the surface velocity between subsequent iterations in L2

norm until stopping criterion (271) is met.
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3.4.2 Torus embedded in a cube

The domain Ω is cube [−2, 2]3 and surface Γ is a torus centered at c = (c1, c2, c3). Let (x, y) =

(x̃ − c1, ỹ − c2, z̃ − c3), (x̃, ỹ, z̃) ∈ Ω. We can characterize Γ as the zero level set of function

φ(x) =

√
z2 + (

√
x2 + y2 − 1)2 − 1

2 . Finding an exact solution problem (225)–(229), (212), and

(213) with this more complicated surface is highly non-trivial. To simplify the task, we relax

interface conditions (212), (213), and (229) as follows:

Pσ±n = ±f±(Pu± −U) + g± on Γ,[
nTσn

]−
+

= πκ+ gn on Γ.

where g+, g−, and gn are computed such that exact solution given below satisfy these relaxed

interface conditions. The solution is given by

p− =

(
1

2
− 2− 4

√
x2 + y2√

x2 + y2

)
(x3 + x), p+ =

1

2
(x3 + x), u− = u+ =


x2y

5− xy2 + z2

−xy

 , (277)

for the bulk and:

π = x3 + x, U =

[
−zx√
x2 + y2

,
−zy√
x2 + y2

,
√
x2 + y2 − 1

]T
, (278)

for the surface. The forcing terms f− and f+ are found by plugging the solution (277)–(278) in

(225). We impose a Dirichlet condition (215) on the faces x = 2, y = −2, z = −2, where function g

is found from u+ in (277). On the remaining part of the boundary, we impose a Neumann condition

(216) where fn is found from p+ and u+ in (277).

Spatial convergence. Once again, we start by checking spatial accuracy. To this end, we consider

exact solution (277)–(278) with c = (0, 0, 0), viscosities µ− = 1, µ+ = 10, µΓ = 1, and friction

coefficients f− = 2 and f+ = 10. Just like in the case of the sphere, we consider structured meshes
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of tetrahedra that feature a local one-level refinement near the corners of Ω. The details of the

meshes under consideration are reported in Table 2. Fig. 15 shows the L2 error and weighted H1

error (272) for the bulk velocity, weighted L2 error (273) for the bulk pressure, L2 and H1 errors

for the surface velocity and L2 error for the surface pressure against the mesh size h. Also for this

second convergence test, we observe optimal convergence rates for all the norms.

h 0.25 0.125 0.0625 0.05

# bulk velocity DOFs 1.6e5 1.2e6 8.5e6 1.5e7

# bulk pressure DOFs 7.6e3 5.4e4 3.7e5 6.7e5

# surface velocity DOFs 1.6e4 6.0e4 2.3e5 3.4e5

# surface pressure DOFs 9.0e2 3.4e3 1.3e4 2.0e4

Table 2: Torus: DOFs for bulk and surface variables for all the meshes under consideration in the

spatial convergence test.

Figure 15: Torus: Bulk and surface FE errors against the mesh size h.

Robustness with respect to the position of the interface. We conclude our series of

numerical results with a set of simulations aimed at checking that our approach is not sensitive to

the position of the interface with respect to the background mesh. We vary the center c = (c1, c2, c3)
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of the torus that represents Γ:

c1 = h
k

20
sin

(
kπ

10

)
, c2 = h

k
√

2

40
cos

(
kπ

10

)
, c3 = h

k
√

2

40
cos

(
kπ

10

)
, (279)

where h is the mesh size. The physical parameters are set like in the convergence test. We consider

the mesh in Table 2 with h = 0.125. Fig. 16 shows all the errors against the value of k in (279).

We see that all the errors are fairly insensitive to the position of Γ with respect to the background

mesh, indicating robustness.

Figure 16: Torus: Bulk and surface FE errors against the value of k in (279).
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4 Neural Network Prediction of the Pattern Formation Driven by

the Cahn-Hilliard Model of Phase Separation

Motivated by its critical role in a variety of cellular processes, over the past decades, cell mem-

branes phase separation has become an important research topic. In fact, lipid-driven separation of

immiscible liquid phases likely plays an important role in the formation of rafts in cell membranes

[95, 101]. Lipid rafts in eukaryotic cells have been related to important biological processes such as

adhesion, signaling, and protein transport, see Figure 17. However, due to the frail nature of giant

cell membranes, experimental investigation of dynamics of phase separation and pattern formation

often proved to be challenging. Computational studies help observe and gain insights into dynam-

ics for pattern formation. This chapter is focused on predicting statistics that characterized the

dynamics of pattern formation during the lateral phase separation in multicomponent lipid bi-layer

modeled by the Cahn-Hilliard equations.

Figure 17: Upper: Simulation with a surface Cahn-Hilliard model from [110], Bottom: Phase

organization in a giant unilamellar vesicle (GUV) [101].

A computationally efficient neural network is proposed in this chapter to complement numerical

experimental investigations. The method relies on reservoir computing [98]. The results show that

our neural network approach delivers promising quantitative predictions about the dynamics of the

membrane organizations. In particular, the neural network prediction results and numerical results

that are in good agreement.
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4.1 Problem description

Consider a stationary domain Γ to be a unit sphere immersed in a cube Γ, representing a cell

membranes. Consider the surface Cahn-Hilliard equation on Γ derived in Sec. 1.5. Recall the surface

Cahn-Hilliard equation on a surface Γ, which governs the evolution of concentration c = c(t,x) in

time t, x ∈ Γ ⊂ R3 [18, 19],

∂c

∂t
+ divΓ(Mc∇Γ(f

′
0(c)− ε24Γc)) = 0 on Γ(t), t ∈ [0, T ] (280)

with initial conditions,

c(·, t) = c0 on Γ(0) (281)

where c0 = c0(x) is an initial distribution of concentration, corresponding to a homogenous mixture

and f0(c) = 1
4c

2(1 − c)2. Parameter ε > 0 defines the width of the diffuse interface between the

phases. Finally we consider the mobility coefficient Mc of the form

Mc = Dc(1− c) (282)

with diffusion coefficient D > 0. To model an initially homogenous liposome, the initial concentra-

tion c0 is defined as a Bernoulli random distribution with mean araft. We set:

c0 := crand(x) for active mesh nodes x (283)

with crand ∼ Bernoulli(araft), araft = 0.1.

We discretize the system (280) by the trace finite element method. As introduced in [110], the

first step is to introduce an equivalent integral form of the surface Cahn-Hilliard system, also

known as weak formulation. The weak formulation of the Cahn-Hilliard equation (280) reads: Find
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concentration c and chemical potential µ such that

∫
Γ

∂c

∂t
v ds+

∫
Γ
Mc∇Γµ∇Γv ds = 0 (284)∫

Γ
µq ds−

∫
Γ
f ′0(c)q ds−

∫
Γ
ε2∇Γc∇Γq ds = 0 (285)

for any sufficiently regular test functions v and q on Γ. The rest of steps are specific to TraceFEM

[79]. For further implementation detail, we refer to [110]. For temporal discretization, we use

a semi-implicit stabilized Euler method [94] and an adaptive time stepping technique as in [40].

The finite element approximations ch and µh are available at time tn ∈ [0, tfinal]. The time step

δt = tn − tn−1 adaptively varies from 2.5 · 10−5 at the initial phase of spinodal decomposition to

103 when the process is close to equilibrium. We apply GMRES iterative procedure with a block

preconditioner to solve the discretized system.

Note that the finite element solution still satisfies mass conservation, i.e.

∫
Γ
ch(x, tn) ds =

∫
Γ
ch(x, tn−1) ds for all n=1,...,N, (286)

which implies,

∫
Γh
ch(x, tn) ds∫
Γh

1 ds
≈ araft for all n=1,...,N. (287)

An important quantity about the dynamics of the membrane structure is the total perimeter of the

rafts over time. We denote it as praft. A good approximation of praft is given by,

praft(tn) ≈ p0

∫
Γh

ε‖∇Γch(x, tn)‖21 ds (288)

where p0 is a calibration constant satisfies p0

∫
Γh
ε‖∇Γcref‖21 ds = 2π. cref is an order parameter

for the reference configuration, when the north semisphere of Γ is in phase 1.
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Figure 18: Results of praft over time for the initial condition (287) from 80 numerical experiments.

Since co is initialized randomly, this will result in different dynamics of phase separation in each

numerical simulation. We can observe this in the plot of the total raft perimeter estimate over time

from different numerical simulations. Figure 18 depicts up to 80 numerical simulation results of

perimeter estimate praft for the initial condition (287).

4.2 Recurrent neural network

In the past few years, various machine learning methods have been investigated for complex dy-

namic system simulation or prediction [66, 82, 62]. Recent studies have shown promising results

in using artificial neural networks to build data-driven parametrization for modeling turbulence

and dynamical systems. Among all the sequential model approaches for predicting time series, the

artificial neural networks (ANNs) [86, 88, 92], recurrent neural networks (RNNs) [69, 63, 103, 109,

111, 66, 103, 57], and gated recurrent units (GRU) [107, 30] are most popular ones.
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Figure 19: Architecture of a traditional RNN.

Recurrent neural networks (RNNs) [67] are a class of artificial neural networks [108]. The dif-

ference between recurrent neural network and other neural networks are its connection between

nodes form a directed or undirected graph along a temporal sequence. This allows RNNs to use

their internal state to process sequences of inputs, which allows RNN to exhibit temporal dynamic

behavior, see Figure (19), where I(t),x(t),y(t) are input, internal state, and output for each time

step t. Inspired by several recent studies [25, 103, 20], in which the authors reported their Long

Short-Term Memory (RNN-LSTM) and Echo State Network (RC-ESN) have shown promising re-

sults in data-driven prediction of the spatio-temporal evolution of several chaotic models such as

the Lorenz system. Our goal is to build on these pioneering studies, investigate and compare the

performance of ESN, LSTM side by side in predicting several statistics that characterize the surface

Cahn-Hilliard system.
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4.2.1 Echo State Network Architecture

Figure 20: The architecture of an Echo State Network.

We briefly introduce the Echo State Network [64]. ESN is a simple type of RNN which consists

of three layers namely, the input layer, the recurrent layer (the reservoir) which contains a large

number of sparsely connected neurons, and the output layer, see Figure 20. The connection weights

of the input layer Win and the reservoir layer Wres are fixed after initialization, the output weights

Wout are trainable and can be obtained by solving a linear regression problem.

Consider a D dimensional time series I(t) ∈ RD, and x(t) ∈ RM denote the state of the reservoir

at time t, where M is a given positive integer representing the size of the recurrent layer. We

use y(t) ∈ RD to denote the output value of ESN. Win ∈ RM×D represents the connection weights

between input layer and recurrent layer, Wres ∈ RM×M denotes the connection weights in recurrent

layer, Wout ∈ RD×M denotes the connection weights between recurrent layer and output layer see
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Figure 20. Define the state transition equations:

x(t) = f(WinI(t) +Wresx(t− 1)), (289)

y(t) = Woutx(t) (290)

where f is a nonlinear map. In this study, f is chosen as,

f :



v1

v2

v3

v4

...


→



tanh(v1)

tanh2(v2)

tanh(v3)

tanh2(v4)

...


(291)

We use tanh for odd indices elements and tanh2 for even indices elements [83, 20]. The read-out

weights Wout can be obtained by solving the following least-squares problem,

min
Wout∈RD×M

||WoutX − Y ||22, (292)

Wout = Y X−1 (293)

where Y := [ŷ(0), ŷ(1), ...ŷ(T )] and ŷ(t) denote the desire output, and X := [x(0),x(1), ...x(T )].

Before the training phase, there are three main hyper-parameters that need to be initialized:

• win is an input-scaling parameter. The elements in Win are commonly randomly initialized

from a uniform distribution in [−win, win].

• α is the sparsity parameter of Wres which denotes the proportion of non-zero elements.

• ρ(Wres) is the spectral radius of Wres

Suppose part of time series {I(t), t ∈ {0, 1, 2, ...t0}} are given and we want to predict the next N

steps of I(t). {Î(t), t ∈ {t0 + 1, ..., t0 + N}} denote the prediction from ESN for the next N steps
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of I(t). The prediction procedure is described below,

Algorithm 1 ESN Predicting Procedure

1: x(0) := 0, i = 1,

2: Compute x(t0) and y(t0) from system (289) and (290),

3: while i ≤ N do

4: Î(t0 + i) := y(t0 + i− 1)

5: Compute x(t0 + i) and y(t0 + i) by using Î(t0 + i) and x(t0 + i− 1) as input to the system

(289) and (290) .

6: i=i+1

7: end while
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4.2.2 LSTM Network Architecture

Figure 21: Architecture of LSTM.

Long-Short Term Memory networks (LSTM) [48] is another popular RNN architecture, see Fig-

ure 21. LSTM is most suited for predicting sequential data, for example, time series. In recent

years, LSTM received attention due to its excellent performance and potential in time series mod-

elings such as supply chain, stock pricing, language processing, and speech recognition. The major

difference between LSTM and other RNN architectures is that LSTM networks have gates that

control the information flow into the neural network from previous steps of the time series. A

gate in a neural networks usually acts as a threshold for helping the neural network to distinguish

between using normal stacked layers and using an identity connection. The major advantage of
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adding gates to the structure is that it successfully overcomes the difficulty of vanishing and ex-

ploding gradients during the backpropagation training procedure in traditional RNN architecture.

We use Di, Df and Dh to denote the dimension of the input gate, the forget gate, hidden layers.

gi(t), gi(t) and gi(t) ∈ RDh×(Dh+Di) are the input gate, forget gate and output gate. I(t) is the

input of multi-dimensional time series at time t. C(t) is the cell state. Wi, Wf , Wo, Wc and

Woh are trainable weights. The governing equations for LSTM networks:

gf (t) = σf (Wf [h(t− 1), I(t)] + bf ), (294)

gi(t) = σi(Wi[h(t− 1), I(t)] + bi), (295)

C̃(t) = tanh(Wc[h(t− 1), I(t)] + bh), (296)

C(t) = gf (t)C(t− 1) + gi(t)C̃(t), (297)

go(t) = σh(Wh[h(t− 1), I(t)] + bh), (298)

h(t) = gi(t)tanh(C(t)), (299)

φ(t) = Wohh(t), (300)

X(t+ δt) ≈ φ(t) (301)

where σf , σi, σh are the softmax functions. The LSTM we used in this chapter has 50 hidden layers

in each cell. We use BPTT algorithm [34] with ADAM optimizer to tune the parameters in our

experiments.

4.3 Training and testing dataset

Three datasets are generated using the numerical simulations with the finite element method de-

scribed in Sec. 4.1 with initial condition (283). We generate the total of 80 observations of total

perimeter of rafts, number of rafts, Helmoholtz free energy over time with different initial dis-

tributions. We assign the results of experiment No.1 − No.65 to the training set, the results of

experiment No.66 − No.70 to the validation set, the results of experiment No.70 − No.80 to the
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testing set. Recall the definition of the Helmoholtz free energy f(c) = 1
εf0(c)+ ε

2 |∇Γc|2. We present

80 numerical results of number of rafts, Helmoholtz free energy, and total perimeter of rafts over

time in Figures (22)-(23),

Figure 22: Results of f(c) and the number of rafts over time for the initial condition (287) from 80

numerical experiments.

(22),

Figure 23: Results of praft over time for the initial condition (287) from 80 numerical experiments.

For the sake of simplicity, we denote the perimeter curve from experiment No.1 as {u(t), t ∈

{0, 1, ..., N}}, see Figure 24. Consider a smoothed curve generated by averaging u(t), denote it as
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us(t):

us(t) :=
1

min{n, t}

t∑
max{0,t−n}

u(t) (302)

where n is the width of the averaging window. We denote the remainder as uo(t),

uo(t) := u(t)− us(t). (303)

Figure 24: u(t) from experiment NO.1 with respect to the number of time steps.
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Figure 25: uo(t) (left), us(t) (right) from experiment NO.1 with respect to the number of time

steps.

Similarly, we process the Helmholtz free energy, the number of rafts. We denote the corre-

sponding smooth and oscillating part by hs(t), ho(t), ws(t), wo(t). We train two neural networks

separately to predict the smoothed curve and the oscillating curve. Define training time series

Is(t), Io(t):

Is(t) :=



us(t)

hs(t)

ws(t)

sin(2πt
N )


, Io(t) :=



uo(t)

ho(t)

wo(t)

sin(2πt
N )


, (304)

where N is the maximum number of time steps from 80 numerical experiments. We concate-

nate numerical results to construct Is(t) and Io(t). Then we train the ESN with Is(t), Io(t) for

t ∈ {1, ..., 30030}, and the LSTM with Is(t), Io(t) for t ∈ {1, ..., 500040}. Furthermore, we would

want the machine to know that the period of the numerical results is N . We can use the sin(2πt
N )

functions. The length of Is, Io for training each network are chosen by the post-training perfor-

mance.
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4.4 Prediction of trajectories with different initial distributions

The aim of the prediction results collected in this section is to provide a predicting performance

comparison of proposed LSTM and ESN. We restrict our attention to prediction of the total perime-

ter of rafts over time. To evaluate the overall performance of each network in the testing data set,

we define an averaged relative L1 error,

e(t) =

[‖Itrue(t)− Ipred(t)‖1
‖Itrue(t)‖1

]
, (305)

where [·] indicates the averaging over 10 experiments with different initial distributions. The

input to LSTM is a time-delay-embeded matrix of I(t) with dimension q × D [54]. To gain the

best predicting performance from LSTM, one needs to input the previous q steps of I(t), i.e.

{I(t− (q − 1)δt), ..., I(t)} to predict I(t+ δt). The input of ESN only requires I(t) and inner state

x(t) to predict I(t + δt). Predicting results and an averaged error are presented in Figure 26-31.

Only the LSTM result for oscillating trajectories is reported, as the ESN does not perform very well

in predicting oscillating trajectories. The hyper parameters in (289)-(290) are chosen as: reservoir

size D = 10, input radius win = 0.35, sparsity parameter α = 0.05, and spectral radius of Wres

ρ = 0.35.

For the LSTM parameters in (294)-(301), we set q = 3, Dh = 50, Di = (4 × q). The prediction

skills of the two neural networks for the same training/testing sets are compared in Figures 26-31.
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Figure 26: Comparison of the prediction skills over us(t) among the two deep learning methods.

The lines show ground truth (blue), LSTM (orange), ESN (green). Left and right plots show

examples where ESN and LSTM yields respectively the best and the worst prediction with respect

to the relative L1 error.

Figure 27: Average relative L1 error of LSTM (blue) and ESN (orange) over 10 trajectories in the

testing set (left), averaged relative L1 error of LSTM over 10 trajectories in the testing set (right).
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Figure 28: LSTM prediction of uo(t). The lines show ground truth (blue), LSTM (orange). left and

right plots show examples where the LSTM yields respectively the best and the worst prediction

with respect to the relative L1 error.

Figure 29: Averaged relative L1 error over 10 trajectories in testing set.

We combine the prediction from LSTM for the oscillating curves and the prediction from ESN,

LSTM for the smoothed curves.
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Figure 30: Left and right plots show examples where ESN+LSTM and LSTM+LSTM yield respec-

tively the best and the worst prediction with respect to the relative L1 error.

Figure 31: Averaged relative L1 error of LSTM+LSTM (blue) and ESN+LSTM (orange) over 10

trajectories in testing set (left), averaged relative L1 error of LSTM+LSTM over 10 trajectories in

testing set (right).

From Figures 26 - 31, we conclude that LSTM+LSTM significantly outperformed ESN+LSTM

with higher prediction accuracy averaged e(t) < 0.16, t ∈ [0, 100000]. Figure 31 (right) further

demonstrates the capabilities of LSTM for short-term spatio-temporal predictions, with averaged

e(t) < 0.08, for t ∈ [0, 13000].

In this chapter, we investigated the application of the ESN and LSTM to learning and predicting
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total perimeter of rafts over time which characterizes the dynamics governed by the Cahn-Hilliard

equations. Our training dataset consists of numerical solutions with different initial distributions.

We demonstrated in this chapter that the plain LSTM+LSTM has a high utility of prediction

for solutions consistent with the training data, i.e. for solutions with the same initial statistical

distributions.

108



Bibliography

[1] Adjerid, S., Chaabane, N., Lin, T.: An immersed discontinuous finite element method
for Stokes interface problems. Computer Methods in Applied Mechanics and Engi-
neering 293, 170 – 190 (2015). DOI https://doi.org/10.1016/j.cma.2015.04.006. URL
http://www.sciencedirect.com/science/article/pii/S004578251500153X

[2] Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechan-
ics. Annual Review of Fluid Mechanics 30(1), 139–165 (1998)

[3] Basting, S., Quaini, A., Canic, S., Glowinski, R.: Extended ALE method for fluid-
structure interaction problems with large structural displacements. Journal of Computa-
tional Physics 331, 312 – 336 (2017). DOI https://doi.org/10.1016/j.jcp.2016.11.043. URL
http://www.sciencedirect.com/science/article/pii/S0021999116306350

[4] Basting, S., Weismann, M.: A hybrid level set/front tracking approach for finite el-
ement simulations of two-phase flows. Journal of Computational and Applied Math-
ematics 270, 471–483 (2014). DOI http://dx.doi.org/10.1016/j.cam.2013.12.014. URL
http://www.sciencedirect.com/science/article/pii/S0377042713006870

[5] Bercovier, M., Pironneau, O.: Error estimates for finite element method solution of the Stokes
problem in the primitive variables. Numerische Mathematik 33(2), 211–224 (1979)

[6] Bernardi, C., Canuto, C., Maday, Y.: Generalized inf-sup conditions for Chebyshev spectral
approximation of the Stokes problem. SIAM Journal on Numerical Analysis 25(6), 1237–1271
(1988)

[7] Bocquet, L., Barrat, J.L.: Flow boundary conditions from nano-to micro-scales. Soft matter
3(6), 685–693 (2007)

[8] Bogovskii, M.E.: Solution of the first boundary value problem for the equation of continuity
of an incompressible medium. In: Doklady Akademii Nauk, vol. 248, pp. 1037–1040. Russian
Academy of Sciences (1979)

[9] Bolton, T., Zanna, L.: Applications of deep learning to ocean data inference and sub-
grid parameterisation. Journal of Advances in Modeling Earth Systems 11 (2019). DOI
10.1029/2018MS001472

[10] Bootland, N., Bentley, A., Kees, C., Wathen, A.: Preconditioners for two-phase incompress-
ible Navier –Stokes flow. SIAM Journal on Scientific Computing 41(4), B843–B869 (2019)

[11] Bordas, S., Burman, E., Larson, M., M. A. Olshanskii, e.: Geometrically Unfitted Finite
Element Methods and Applications, vol. Lecture Notes in Computational Science and Engi-
neering 121. Springer, Berlin (2018)

[12] Brenner, S.C.: Korn’s inequalities for piecewise H1 vector fields. Mathematics of Computation
pp. 1067–1087 (2004)

[13] Brunton, S.L., Kutz, J.N.: Data-Driven Science and Engineering: Machine Learning, Dynam-
ical Systems, and Control. Cambridge University Press (2019). DOI 10.1017/9781108380690

109



[14] Burman, E.: Ghost penalty. C. R. Math. Acad. Sci. Paris 348(21-22), 1217–1220 (2010).
URL https://doi.org/10.1016/j.crma.2010.10.006

[15] Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: Cutfem: Discretizing ge-
ometry and partial differential equations. International Journal for Numerical Methods in
Engineering 104(7), 472–501 (2015)

[16] Burman, E., Delay, G., Ern, A.: An unfitted hybrid high-order method for the Stokes interface
problem. hal-02519896v3 (2020)
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[90] Salbreux, G., Jülicher, F.: Mechanics of active surfaces. Physical Review E 96(3), 032,404
(2017)

[91] Sauerland, H., Fries, T.P.: The stable XFEM for two-phase flows. Computers & Flu-
ids 87, 41 – 49 (2013). DOI https://doi.org/10.1016/j.compfluid.2012.10.017. URL
http://www.sciencedirect.com/science/article/pii/S0045793012004148. USNCCM Moving
Boundaries

[92] Scher, S., Messori, G.: Generalization properties of feed-forward neural networks trained on
lorenz systems. Nonlinear Processes in Geophysics 26, 381–399 (2019). DOI 10.5194/npg-
26-381-2019

[93] Schneider, T., Lan, S., Stuart, A., Teixeira, J.: Earth system modeling 2.0: A blueprint for
models that learn from observations and targeted high-resolution simulations. Geophysical
Research Letters 44(24), 12,396–12,417 (2017). DOI https://doi.org/10.1002/2017GL076101.
URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL076101

[94] Shen, J., Yang, X.: Numerical approximations of allen-cahn and cahn-hilliard equations.
Discrete & Continuous Dynamical Systems 28(4), 1669–1691 (2010)

[95] Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387, 569–72 (1997).
DOI 10.1038/42408

115



[96] Stein, E.M.: Singular integrals and differentiability properties of functions, vol. 2. Princeton
university press (1970)

[97] Sussman, M., Smereka, P., Osher, S.: A level set approach for computing
solutions to incompressible two-phase flow. Journal of Computational Physics
114(1), 146 – 159 (1994). DOI https://doi.org/10.1006/jcph.1994.1155. URL
http://www.sciencedirect.com/science/article/pii/S0021999184711557

[98] Tanaka, G., Yamane, T., Héroux, J.B., Nakane, R., Kanazawa, N., Takeda, S., Numata,
H., Nakano, D., Hirose, A.: Recent advances in physical reservoir computing: A review.
Neural Networks 115, 100–123 (2019). DOI https://doi.org/10.1016/j.neunet.2019.03.005.
URL https://www.sciencedirect.com/science/article/pii/S0893608019300784

[99] Toms, B.A., Kashinath, K., Prabhat, Yang, D.: Deep learning for scientific inference from
geophysical data: The madden-julian oscillation as a test case. arXiv: Atmospheric and
Oceanic Physics (2019)

[100] Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible, multi-
fluid flows. Journal of Computational Physics; (United States) 100 (1992). DOI 10.1016/0021-
9991(92)90307-K

[101] Veatch, S., Keller, S.: Separation of liquid phases in giant vesicles of ternary mixtures of
phospholipids and cholesterol. Biophysical journal 85, 3074–83 (2003). DOI 10.1016/S0006-
3495(03)74726-2

[102] Vlachas, P., Pathak, J., Hunt, B., Sapsis, T., Girvan, M., Ott, E., Koumout-
sakos, P.: Backpropagation algorithms and reservoir computing in recurrent neu-
ral networks for the forecasting of complex spatiotemporal dynamics. Neural Net-
works 126, 191–217 (2020). DOI https://doi.org/10.1016/j.neunet.2020.02.016. URL
https://www.sciencedirect.com/science/article/pii/S0893608020300708

[103] Vlachas, P.R., Byeon, W., Wan, Z.Y., Sapsis, T.P., Koumoutsakos, P.: Data-
driven forecasting of high-dimensional chaotic systems with long short-term memory
networks. Proceedings of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences 474(2213), 20170,844 (2018). DOI 10.1098/rspa.2017.0844. URL
http://dx.doi.org/10.1098/rspa.2017.0844

[104] von Wahl, H., Richter, T., Lehrenfeld, C.: An unfitted Eulerian finite element method for the
time-dependent Stokes problem on moving domains. arXiv preprint arXiv:2002.02352 (2020)

[105] Wang, N., Chen, J.: A nonconforming Nitsche’s extended finite element method for Stokes
interface problems. J Sci Comput 81, 342–374 (2019)

[106] Wang, Q., Chen, J.: A new unfitted stabilized Nitsche’s finite element method
for Stokes interface problems. Computers & Mathematics with Applications
70(5), 820 – 834 (2015). DOI https://doi.org/10.1016/j.camwa.2015.05.024. URL
http://www.sciencedirect.com/science/article/pii/S0898122115002692

116



[107] Wu, J.L., Kashinath, K., Albert, A., Chirila, D., Prabhat, Xiao, H.: Enforcing statistical
constraints in generative adversarial networks for modeling chaotic dynamical systems. Jour-
nal of Computational Physics 406, 109,209 (2020). DOI 10.1016/j.jcp.2019.109209. URL
http://dx.doi.org/10.1016/j.jcp.2019.109209

[108] Yegnanarayana, B.: Artificial neural networks. PHI Learning Pvt. Ltd. (2009)

[109] Yu, R., Zheng, S., Anandkumar, A., Yue, Y.: Long-term forecasting using higher order tensor
rnns (2019)

[110] Yushutin, V., Quaini, A., Majd, S., Olshanskii, M.: A computational study of lateral phase
separation in biological membranes. International Journal for Numerical Methods in Biomed-
ical Engineering 35, e3181 (2019). DOI 10.1002/cnm.3181

[111] Zimmermann, R.S., Parlitz, U.: Observing spatio-temporal dynamics of excitable media using
reservoir computing. Chaos 28 4, 043,118 (2018)

117


