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Abstract

A two-level method proposed for quasielliptic problems is adapted in this paper to the simulation of unsteady incom-
pressible Navier—Stokes flows. The method requires a solution of a nonlinear problem on a coarse grid and a solution of
linear symmetric problem on a fine grid, the scaling between these two grids is superlinear. Approximation, stability, and
convergence aspects of a fully discrete scheme are considered. Stability properties of the two-level scheme are compared
with those for a commonly used semi-implicit scheme, some new estimates are also proved for the latter. € 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Numerical simulation of unsteady incompressible viscous flow is a fundamental problem both of
numerical analyses and fluid dynamics. The governing equations are the incompressible Navier—
Stokes ones:

%’ti —vaAu+(u-Viu+Vp=f,
in Q@ x (0,T], (L)
diva =0,

with a given force field f, kinematic viscosity v > 0, Q@ CR", n=2,3. The velocity vector function
u and pressure scalar function p to be found are subject to some boundary conditions, which we
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assume to be Dirichlet and homogeneous for the velocity:

u=0 ondQRx[0,T] (1.2)
and initial condition at ¢t = 0:

u=uy(x) in Q. (1.3)

Another common assumption is [, p(x,t)dx = 0 for the pressure p(x,t) for all + € (0,7]. For
a detailed consideration of mechanical, mathematical, and computational aspects associated with
Navier—Stokes problem we refer to, among others, [9,12,13,25].

Belonging of a weak solution of (1.1)—(1.3) to a space of solenoidal functions and domination
of nonlinear convection terms in the momentum equation for moderate and high Reynolds numbers
(small v and/or high velocities) are commonly considered to be the main difficulties in numerical and
computational theory of Navier—Stokes equations. The objective of this paper is to apply two-level
mesh reduction method to the treatment of convection phenomenon in unsteady numerical simula-
tions. The method is closely related to the nonlinear Galerkin method [1,18-20] and was developed
in [28,3,14-16].

Using numerous solution schemes for (1.1)—(1.3) with #— p coupling (see, e.g., [5,11]) or operator
splitting [6], one has to choose between a fully implicit treatment of nonlinear terms in (1.1) or some
of their linearization using, e.g. extrapolation in time. In the first case one faces the necessity of
solving nonlinear problem of the Burgers or Navier—Stokes type on each time step, otherwise linear
and even symmetric problems can be obtained on each time step. However, the latter approach
may cause stability problems, i.e. time step T becomes subject to some conditions involving spatial
discretization and/or Reynolds number. We refer to [25] for theoretical considerations and [27] for
experimental comparison of various schemes.

The method presented and studied here can be roughly described as follows. For numerical solution
of (1.1)-(1.3) choose some spatial finite element or finite difference discretization and two meshes:
the coarse one with the step H and the fine one with the step 4 such that 2z ~ H*, a> 1. For temporal
integration on [#y,#, + 7] with time step t > 0 make fully implicit step on the coarse grid and obtain
uy, py for ¢, + 7 via solution of nonlinear problem on the coarse grid. Then extrapolate uy on the
fine grid. Using linearization of convective terms about u;, make semi-implicit integration step on
the fine grid and obtain u;, p, for #, + t solving linear symmetric problem on the fine grid.

Compared to the recent studies [1,20] for unsteady problems, the primary innovations in this paper
are the treatment of fully discrete (both in time and space) case of the method. Hence the stability
results are quite important. We also avoid the use of any intermediate finite element subspaces.
Therefore well established solvers can be readily applied to the auxiliary finite element problems.

In Section 2 of the paper we introduce necessary notations and preliminary results. The algorithm to
be studied is described in Section 3. Where possible we compare results obtained for the constructed
algorithm with appropriate ones for commonly used algorithm based on a fully explicit treatment
of the nonlinearity via extrapolation in time. For this purpose some results on stability of the latest
algorithm are also proved.

In Section 4 some approximation results are proved. In particular, it follows that in the case
of linear velocity — constant pressure finite elements the scaling & ~ H* gives the same order of
spatial discretization error as the usual Galerkin method with mesh size 4. We note that this relation
between coarse and fine grids is somewhat less impressive than the one recovered in the framework
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of Newton-type methods (see [2,28], and references cited therein). However, application of the latter
techniques for the problem considered requires highly nonsymmetrical problems to be solved on
each time step. Moreover, it causes the appearance of undesirable reactive term in the linearized
equation (see also [16]).

The stability of the schemes is studied in Section 5. It is proved that while usual semi-implicit
scheme requires time step to be small enough to guarantee the stability, the two-level scheme (at
least theoretically) requires the spatial step to be small enough to ensure stability. Moreover, if
the problem is regular enough, the use of high order finite elements weakens the condition on A.
In Section 6 we consider convergence of the two-level scheme. The appropriate convergence for
velocity is proved in two dimensions.

Throughout the paper we deal with saddle point formulations of the corresponding finite element
problems (discrete velocity is not solenoidal in general). This causes some extra complications but
corresponds to real-life situations.

2. Preliminaries

Throughout the paper we assume 2 to be a bounded domain in R? or R* with sufficiently smooth
boundary, or a convex polygon (polyhedron).
Later on we need the following functional spaces:

H; = {uc W) (Q): u=0on 0Q},
V={uecH,;: divu=0in Q}

with energy scalar product (u,v), = (Va, Vv), u,v € H},
L' ={uclyQ) divu=0in Q, u-n=0 on 4Q},
L,/R = {p € L,(2): /dex = 0}

with L,-scalar product. Let H~' be a dual, with respect to L,-duality, space to H| with the corre-
sponding norm:

S U -
1= swp L2 e
0#ucH, [ ]
We also use Sobolev spaces of a real exponent s: H(Q) with a norm || - ||,.

The following forms are associated with the Navier—Stokes problem:

a(u,v) = (u,v),, u,ve H,

a.(w,v) = (u,v) + vi(u,v);, wu,v< H}, 1>0,
b(p,u)=(p,divu), pe€ LR, uc H,,

N(u;vo,w) = %[((u- Vio,w)— (u-Vw,v)l, auv,wec H,.

The weak formulation of (1.1)—(1.3) is to find
u€Ly0,T; H))NL(0,T;L°) and p € Ly(0,T;Ly/R)
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satisfying for given f € L,(0,7; H™') in the sense of distributions on (0, 7]

(%v) T va(u, ) + N(u; u,0) — b(p,0) = (1),

b(q.u)=0 Y{v,q} € H; x Ly/R,
u(0,x) =up(x) in Q,

or, alternatively, to find
ueL(0,T; V)NL,(0,T; L
satisfying
d
;%) +va@ )+ Nwu,v) = (fv) VvelV,
u(0,x) = up(x) inQ,

De Rham theorem connects both formulations (cf. [9,25]).

It is worth mentioning that a weak solution defined above exists and for n=2 is unique; moreover,
some extra assumptions on f, df/d¢t, and u, provide u € L,(0,T; H*(Q)*) (cf. [17]).

Further, we shall use the following estimates due to [12,25]:

b(p,u)< || p llofl =, Vp € L/R, u € H;,

(< |1 f =il VfeH', ucHy,

(- Vyv,w)| <c lullllollilwll. Vu,o,we Hy, @
IN G, v,w)| <c |lul|lo]:]|wl Vu,v,w € Hy, '
IN(u, v, w)| <c [[u|l]|vllsfwll Vu,v,w € Hy,

[N, v, w)| <c |lullo]l o]l w]is Vu,v € Hy, we HynH'™.

From now on we agree to consider s as an arbitrary number from (0, 1] for two-dimensional problem
and s € [%, 1] for three-dimensional problem, if it is not stated otherwise. We also need

lulf, <V2lalolul VYueH;, QeR,
lulf, <2 llull*ll=l}* vaecHy, QeR, (22)
lally <c lully™llali  VueHy, s€(O1).

Here and later on we denote by c(£),c,co,cy,... some constants independent of both spatial and
temporal discretization parameters (% and 7) and v, otherwise we shall use, for example, c(v) for a
constant depending possibly on v.

So called €-inequality:

1 €
<—lal? + = 2 €
|ab| 2€|a| + 2|b| , Ya,beR, €>0,
will be also used throughout the paper.

Let us denote by 4 a mesh size parameter, and denote by H, a finite element subspace of Hj and
by O, a finite element subspace of L,/R. Assume that for some real hy > 0, positive integers k, k>,
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and & € (0, h¢] the following hypotheses hold. Examples of such finite element spaces can be found
in [5,9,11].

(H1) Approximation hypothesis

(a) For all u € H} N HY(Q)", with integer d > 0

inf u~vil <ch'|uls ©=min(k,d—1).

(b) For all p € L,/R N H*(Q), with integer d > 0
inf || p~qllo <ch' | plls I=min(k,d).
q€0n

(H2) Inverse hypothesis
For all ¥ € H,

Iy <sh™ Jla o -
(H3) Stability hypothesis. There exists some real constant ¢, > 0 independent on 4 such that

b
sup (p,u)

zco |l plls Yp € Oh
0#ucH, “u “1

The above hypotheses give the following standard result concerning Stokes problem.

Lemma 2.1. For any given {u, p} € H} x L,/R, there exist unique u, € H, and p, € Q, such that
a(u — uy,®) — b(p — py,v) =0,
b(q,u — ll},) =0, V{v,q} € H, x Qh-

Moreover,
=l + 1 2= o <c(@( jng lw=o I+ ing | =g 1),
ot —wy flo <c(Dh inf [lu—v ;.

Denote also by F, a subspace of discretely divergence-free functions from H, : V, = {u, €
H,: b(q,uh)= 0 Vq € Qh}

3. Two algorithms for the unsteady problem

The common and effective way of numerical treatment of time-dependent problems is separation
of spatial and temporal discretizations. For spatial discretization one can choose finite element, finite
difference, spectral methods, while for the temporal discretization the finite difference method is the
most natural choice. Two schemes described below utilize this idea.

First let us consider one widely used semi-implicit scheme for solving unsteady Navier—
Stokes problem (1.1)—(1.3). For given u} € H, find {&}"', pit'} € H, x Q) for i =0,1,... from
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the relations

i+1

afz(uh > v) - Tib(p;rl’ v) + TiN(u;z; u;z’v) = Ti(fi+1: U) + ("L’v)’

4 G.1)
b(qau;z+l) =0 V{U,Q} € HH X QH‘

where 7; > 0 are steps of temporal discretization, which we assume generally to be variable. In (3.1)
and below we set ' =1,7! f:fdt with ¢, = Ei:o T, 8 =1 — T,

On every time step scheme (3.1) requires solution of the generalized Stokes problem, effective
solution methods for such problem are available [22,8]. With the above assumptions scheme (3.1)
is conditionally stable and the sufficient conditions for stability from [25] are T <c(v, Q,f(¢),u° )",
(2 C R"); moreover, the careful reading of the proof gives ¢ = O(v*), v — 0.

The scheme being proposed works as follows. For given u) € H, find {u,"", p;"'} € H, x Q, for
i=0,1,... from the two-level algorithm:

Find {u}', pii'} € Hy x Oy

ai(u',v) — b pif ! v) + N s ug o) = n(f0) + (g, v),

| (3.2a)
b("gl’q) = 0 v{”:‘]} S HH X QH’
with known {u/', pif'} find {u,"}, pi"'} € H, x O,
ar,(u;z+1’v) - Tib(p;z-H’U) + TiN(uH];ugl’ v) = Ti(fH_ls l)) + (";u’ v)’
(3.2b)

b(";;“:‘]) =0 v{v,Q} € H, X Q.

The above two-level algorithm can be observed simultaneously from two points of view. On
the one hand it can be considered as an improvement of scheme (3.1) by obtaining a qualitative
information (on a coarse grid) about the solution at time (4 + 7;). On the other hand, let us consider
fully implicit unconditionally stable scheme for (1.1)-(1.3) without any spatial discretization: for
given u° € H} find {u™', p'*'} € H} x L,/R for i =0,1,... from

ari(ui+l’v) - ,L.ib(pi+l’v) + TiN(uiJrl;uH—l,v) — ,L_i(fi+l,v) + (ui’v)’
(33)
b(ut',q)=0 V{v,q} € H} x L,/R

then (3.2a) and (3.2b) is a straightforward application of the two-level method from [15] to the
solution of steady nonlinear problem arising on every time step of (3.3). Note that the two-level
algorithm (3.2) requires on every time step solution of the nonlinear problem of Navier-Stokes type
on the coarse grid and solution of the linear symmetric problem of Stokes type on the fine grid.

Remark 3.1. To improve the accuracy and stability of scheme (3.1) such variants of (3.1) as Crank—
Nicolson, fractional-step [21], with high-order extrapolation in time of nonlinear terms, muitistep [4],
with upwinding (see, e.g. [24]) are known and used in practice. We note that all or at least most of
these improvements are quite applicable to (3.2a) and (3.2b) as well as splitting techniques leading
to a class of projection type methods [6,10].
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4. Approximation

Consider the following problem. For given g € H~' find {u, p} € H; x L,/R satisfying

a(u,v) — tb(p,v) + tN(u;u,v) = (g,v),
(4.1)
b(q,u)=0 V{v,q} e H, x L,/R.

Solution of problem (4.1) exists (see, e.g. [25, Lemma IV.4.3]). For the uniqueness it is sufficient
V2 | g ll-. <1"**? for two-dimensional problem and 2v2 || g |-, <t**"* for three-dimensional
problem. If g € L"() then sufficient conditions can be written as || g |[p <v and 2 || g [jo <7372,
respectively. The proof is quite standard, it follows from (2.1), (2.2) and a priori estimates for weak
solutions of (4.1):

2 ullg+ov et <@ gl

s +2ev Fu il < N g llg

and certain relation for the difference w = u — @ between two weak solutions of (4.1) that can be
obtained from (4.1) with v =w.

Two-level method for problem (4.1) means: find sequentially {uy, py} € Hy x Oy and {us, pr} €
H, x g, from

a.(uy,0) — th(pu,v) + TN (U uy,v) = (g,0),
(4.2a)
b(q,uy)=0 Y{v,q} € Hy x Qu

and

at(uhsv) - Tb(phvv) + TN("H;uHav) = (g,v),
(4.2b)
bqu)=0 V{v,q} € H, x Q).

Theorem 4.1. For given g € H™' let {u, p} € H) N H'*(Q)" x L,/R, n=2,3 be a solution to
problem (4.1) and let {m,, pi} € H,x O, be a solution to problem (4.2a), (4.2b); then the following
estimate is valid:

s — a3 v w4 i 2 <C@s) (7 + ) jnf [lu—v
(e85 1 p = 5+ e = w N e + = w5~ ) ), 43)
with y, = min(t/v, t%/A?).

Proof. For given {u, p} from (4.1) let {us, ps} € V; x O be a solution to the Stokes problem

(Vllg, Vv) - b(PS,v) = (Vu, Vv) - b(pa v),
b(us,q) =0, V{v,q} € Hy, X O,
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then, by virtue of Lemma 2.1, the following estimates are valid:

s 1 <c(@(jng 1wl +inf | 7=alo).

: (4.4)
lu—us Jo <c(@)hinf u—v]];.

We also choose p; =argmin ., || p—q o -
We choose in (4.1) and (4.2b) v = us — u; and substract (4.2b) from (4.1). Then we obtain

s — wy |5 +ov | ws — wy ||§ =ac(us — u,us — uy)
+1(b(p — prus — w,) — N(uw,u,us — uy) + N(uys uy, us — wy))
=a.(us — u,us — up) +(b(p — prus — wy) — N(u — uy; u,us — u;)
+N(u—uyu—uy,us —uy)) — Nu,u — ug,us — uy))
1
< llw—us |} +3 [lus — w3 +aTv |u—us ||} +3tv |lus —uy |17
+et(l p— prllo+ 1w —uy lloll@ has + 1o —my g™l — wy [[77) [lws — s || . (4.5)
Using Cauchy inequality, we get
ct(l p— prllo + e —uz lloflw Lo + |l& — w1167 00 — g 117 |as — ay ||
<Ev | p— pr 5+ Nlw—w [l (17 + Nl — w5750 =y [I775)

v
by || s — wy |I3, (4.6a)
and

ct(| p— prllo + lw — ug Jlolla |1ss + o — w1671 — s [|17) | ots — way ||

CTK -5 5
<—h”(H p—pi ||+ e — g || || + o= g |lg™ e — wg |]7°) | s — Yo

oK 2 2 2 _ 2-2sy . 2425
Sl p= 2o llo + =y glloe iy + Nlae — e Yo~ N ot =y [7)
+ % H Us — Uy H(z) . (46b)

Now in order to estimate ||u, — u ||, we apply the triangle inequality: |[u, —u || < |lu, —us || +
||us — u ||, estimates (4.4), (4.5), and one of (4.6a) and (4.6b). To estimate || p, — p ||o we use the
following standard arguments (see, e.g. [9]). From (4.1) and (4.2b) we get for all {v,q} € H, x O,

tb(py — q,v) = a.(u — uy,v) + H(p — q,v) + TN (u; u,0) — IN(uy; uy,v).
Thus, similar to (4.5) we obtain for all {v,q} € H, x Oy

(s — 0y <(e+ o) Ay —u 4o [ o)
er(ll p =gl + = ol e+ = 13— 17
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Dividing both sides of the last inequality by ||v||, for 0 # v € H,, taking sup over all such v and
inf over all g € O, and utilizing hypothesis (H3) we get

ot inf || P =g llo <(c+ o) (s — w | +ov 1wy — u [[1)"?

e (inf 1 =g o = ol e = 1 )

Now from the triangle inequality: || ps — p |lo <infyeg, || pr — ¢ llo +infiep, || P — ¢ |lo We get an
estimate on || p, — p [|o. Combining estimates for | u, —u |3 +tv ||y —u ||? and <* | p, — p ||, we
prove the theorem.

Remark 4.2. Estimate (4.3) shows a loss of convergence in pressure for too small time steps 7.
Indeed, the same standard arguments as in the proof of Theorem 4.1 when applied to some finite
element approximation of linear (generalized) Stokes problem

t'u —vAu+ Vp=f,
divue=0, 4.7)
H’QQZO

give the estimate
iy —u |5 +ov lay —w I +7° || oo — p 5

2 . 12 e T
<c@(0 + o) jnf flu—v [+ int | =g 5). (48)

Assumed to be optimal for pressure this estimate recovers the necessity of A2 < tv or 2~V 1 for
pressure finite elements and #“*' <t for velocity finite elements to ensure the convergence of pressure
in L,(£2). These conditions on 4,7, and v force us to use schemes of equal order (k, =k, +1=2)
or high order spacial interpolation (k;>2,%, >2), and implicit schemes, which do not require t to
be too small.

Remark 4.3. Further we shall need an estimate for ||#—uy ||o, where # is a solution to (4.1) and uy
is a solution to (4.2a). To obtain such an estimate assume the solution of (4.1) to be nonsingular.
With our assumptions on Q, problem (4.7) is W}-regular. Hence we use standard arguments from
[9]: duality estimates for problem (4.7) (Theorem I1.1.2), Theorems 1V.3.3, IV.3.5, and IV.4.2,
finally for {u, p} € H} N HY(Q)" x L,/RN H?~'(Q) with integer d > 0 and sufficiently small H we
obtain

=y |5 <C@Qv, 30 |les |l p lle)EZTD + HAD) (4.9)

with 7, = min(k;,d — 1), £, = min(k,,d — 1). This estimate provides us with the choice of scaling
h=O(H'*'""1) to obtain an optimal accuracy O(#*') in (4.3). However, in (4.11) a dependence of
the constant C on v and 7 is implicit.
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Corollary 4.4. Let {u, p} € H) N HY(Q)* x L,/R N H~Y(Q) for some integer d > 0 be a solution
to problem (4.1) and {uy, pu,uy, py} € Hy x Oy x Hy x Oy, be a solution to problem (4.2a), (4.2b)
then for sufficiently small H the following estimates hold.

lan — un |I§ SCQv, 5@ ||rars || p Nl )HPOHD + HX )
with £, =min(k,,d — 1), £, = min(k,,d — 1).

Proof. The inequality
oy — iy |5 <20/ = wy [I§ + || — @ [[5)

together with (4.9), Theorem 4.1, and assumption 4 < H give the result. O

Another estimate on u; — u; without explicitly involving solution of (4.1) is given by the following
theorem.

Theorem 4.5. For given g € H™' let {uy, py} € Hy x Qy and {w,, p,} € H, x Q, be a solution
to problem (4.2a), (4.2b), then the following estimate is valid.
s, — g [+ [, — wyy |3
<C@)((F + ) inf = v [F 4o+ ) inf | o= R (4.10)
Proof. For given {u;, p,} from (4.2a) let {us, ps} € Vy x Qu be a solution to the Stokes problem
(Vius, Vv) — b(ps,v) = (Vi,, Vv) — b( p,, v),

b(qa uS) = 0’ V{”,CI} S HH X QHa
then the following estimates are valid:

s <e(@)( jnf a0+ inf | o). o
[, —us llo <c(H inf flu, —v ||,

Choose also p; =argmin ., || py — ¢ |lo -
Let us take in (4.2a) and (4.2b) v = us — uy and substract (4.2b) from (4.2a), then we obtain

”"s — Uy Hé +v H"s — Uy |ﬁ = a.(us — Uy, us — uy ) + th( py — pr,us — uy)

< Jlas — uy || v s — wy |7 421 || po — pillo s — ay |1 -

(4.12)
Estimate the last term as
2 || pu— pr llollus — s fls <o || pu— pi |5 +v {lus —ay |I7 (4.13a)
and
20 || pi— o llollus —un |li <KPPHT || o — po llg +3 [lws — e |I5 - (4.13b)

Now apply the triangle inequality, estimates (4.11), (4.12) and one of the estimates (4.13a) and
(4.13b) and get (4.10). The theorem is proved.
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5. Stability

We understand the stability of schemes (3.1)-(3.3) as a validation of some a priori estimates for
finite element solutions obtained using these schemes. Week solution # € L(0,7; H} YN L..(0,T; L)
of problem (1.1)-(1.3) satisfies energy estimate

o) 1429 [ uts) |2 ds< o 5 +2 [ |(£6).a)| .
0 0

Further we will deduce some conditions that provide finite element solution with finite analogue of
energy estimate (see also [25,26]).

The following theorem gives condition on t; that ensure (3.1) to be stable. This condition depends
on u), Corollary 5.2 shows that the condition can be strengthened and made depend only on the
given data.

Theorem 5.1. For Q € R*, n=1,2 any natural m=0 and any 1, i =0,...,m satisfying condition

Wy h?
j< i ; N N ':0,1,..., 51
i m‘“(sxz CAE 2K2v) ’ D
the following estimate holds for u, determined from (3.1):
2 « :
o 15+ Z [ — u, |I5 +VZT a1 < o |3 +;Z'5i 17 AR | (5.2)
=0

Proof. Let us take in (3.1) v =2u,", we get the equality
W, 116 = N 15 + [l = w15 +27 " |} = 2N (s ") + 20,0 ™). (5.3)
Right-hand side in (5.3) can be estimated as follows:
—2uN(@u; w,w, ™) + 20,7 w ) = 2N (g wpu) — ) + 24wt

21" i+
<2tich ™ |lay llo Ny Ll — o o +5wv ™ IR+~ [1LF 12,
—n i i I 21:1 | 3
<2 h" Nag |Ig o F +5 o™ — a1 50 a1+ L
From (5.3) and the last estimate we get
1 2 iq2 2If i 2
ety 16 +3 ™ — 15 3w o T ot [ o, 17 < Mo 16 +— 1L/ -
(5.4)
By virtue of condition (5.1), for 7; the following estimates are valid:
S AR S A A T A (AR +1W(H AR Ay
P LA I C A AR A TS AR T AR T B T AR A
Now we get from (5.4)
2t
[, 115 + +3 g = 5 v e < g +““ [ A [ (5.5)
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Taking for i =0,...,m a sum of (5.5), we obtain (5.2) and prove the theorem.

Corollary 5.2. There exist some constant ¢ = c(£2,f(t),uy) > 0 such that for any set of t;, i =
0,...,m, satisfying condition

: K
r,.smm(ch"vz, 2x2v)’ i=0,1,..., (5.6)

and u, determined from (3.1) estimate (5.2) holds with any natural m>0.

Proof. Estimate (5.2) for any set of 7; satisfying (5.1) provides || &, ||5 <ci(u,f(#))v™". Setting in
(5.6) c = (8x*c;)”!, we prove the corollary.

Note that Corollary 5.2 recovers asymptotically the same condition on the constant step 7 as
Lemma 5.3 from [25]. However, if in a particular problem || &, || depends on v in some more
advantageous way, then the condition on t can be weakened; this is the situation which we have
sometime in practice (see [23] for calculations of critical (for stability) ¢ for scheme (3.1) in the
case of one substantially nonlinear and unsteady flow).

The following theorem sharpens the estimate on t with respect to v. The theorem requires that
function f satisfies || £(¢) |16y <c < oo for some T >0, G =(0,T) x Q.

Theorem 5.3. For any T > 0 there exist some constant ¢ = c(T,Q,f(t),u’) > 0 such that for any
1T satisfying the condition

2
t<min| ch"v, —h— , i=0,1,..., (5.7)
2K?y

and for any natural m>0 such that mt<T the following estimate holds:.

m

1 o mo :
7t 2 3 = 1 v Yo e <2ew(fm B+ [1£15) 8
=0

=0
with ¢ = mrt.

Proof. Fix T and choose 7 satisfying (5.8) with

1
e =g 2exp(T)({luo 1§ + | f )™ (5.9)

Let us prove by induction with respect to m the following estimate:

1 - m b7 - m —m ~ i
™t 13 +ZZ ag*t — a5+ D g™ 17 <(1-1) (Ilu" s +> il f* H%)-
i=0 i=0 i=0
(5.10)

Consider the case m=0. Indeed from (5.9) and (5.7) we have T<h"v(8x? ||u ||§)" and condition
(5.1) for 7o =t is fulfilled. Similar to the proof of Theorem 5.1 let us estimate right-hand side of
(5.1) with i = 0. However, now we apply the inequality 27(f°,u})<7 ||u; ||§ +t | f° ||§ instead of
20, m) <z |l I +CMT LR
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Finally, we get
atp 115 +5 llay — w1l +ov [l 7 < [l G+ a5+ [ 1S
that implies
oy 115 +5 Nay — w11 +ev g 7 <2 =)'l 15 +2 L0 11F)-

Thus, the “trivial” case of m = 0 is checked.
Suppose now that (5.10) is proved for all m=0,1,...,k. Let us prove it for m =k + 1, assuming
(k+ 1)t <T. From inductive hypothesis we have (5.10) for m =k, hence

s ™ 115 <1 — o F(la 15+ 1| f

and condition (5.1) for 7, = 7 is valid. With the same arguments as in the proof of Theorem 5.1
and another estimate for 2t(f*,ui™') we get

2
Lz(G))

o™ G +5 lar™ — o 16 +ov ™ (1T < lagf 5+ o™ 115+ 1L£* G,
and with inductive hypothesis

ot HS +4 ™ —w flg o [l S
k—1 ' 1 k ) S k
<=0 a =00 (10 + e ) - 3 ek - 2
i=0 i=1 i=1
k
+A =07 A < -7 (lla0 5+ ”3)
i=0

1 & ) k
— >l R Y R
i=1 i=1
Thus, (5.10) is proved for all m:mt<T. Estimate (5.8) follows from (5.10) and obvious relations:

(1-17)""= (1 — %)ﬂm < exp(t)(1 ~ 1) <2expt,

[irB=3c1r1.

i=

The theorem is proved. [

Note that Theorem 5.3 permits the exponential growth of || u, ||; however, this is an admissible
assumption in the stability theory for stiff systems (see, e.g. [7]).
Now we prove a stability result for two-level scheme (3.2) with 1, =17, i =0,1,....

Theorem 5.4. Assume that H = o(h'™?). Then there exists some real positive constant
c\(v, 1, f, u9, T) such that for any real h > 0 satisfying

th](V,'C,f,u(),T), (511)
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the following estimate holds for u),, i = ,m determined from (3.2a) and (3.2b):

i ! 2 1
l™" 1IG + leu“—uh “0+VZT”"+I T <ct+ fluo |l + Zfllf+1 1% (5.12)

=0

with t =(m+ 1)1, t<T and any integer m=0. Moreover

m

STl P I <H Poa(v. Qu.f uo,s, T) (5.13)

=0
with some real positive constant c,(v,2,f,uo,5,T).
Proof. Let us take in (3.2b) v =2u"'. We get the equality
N 15 — e 15+ Nl — g (15 +27v [fa™ [T
= —2tNQ@ s u )y + 20 u). (5.14)
The right-hand side in (5.14) can be estimated as follows:
—2eN(u s ) + 20w

=2tN @ ul — iy — 2N (g — g — gt
+20(f " ) <)t " — g IR
2t
+e)e g —upt [l = ol L e T+ ISR (519)
<e(s)eh™ [luh —uyy" ofl @, Hf

—1—s i i i 27 1 2
L I A A P S A + I

Denote by ¢3(v,7) a positive constant from the estimate

i + 1 2 llo <es(v,7) 1l & llos (5.16)
for solution of (4.1) with given g € L,(Q)*. Let us consider

P 12
a=ci(7) [(cn Jaf I3 +2max 1S 1)+ 1S nm] .
Then from Corollary 4.4 (with ¢, = £, =0) it follows that
c(s)h™* || — u)y o <C(RQ,v,1,a,0)*H (5.17)

with C(Q,v,1, -, - ) from Corollary 4.4.
Further we prove (5.12) by induction with respect to m. Consider the case m = 0. Indeed (5.17)

and relation H = o(h('+‘) 2) provide us with sufficiently small % such that c(s)h™* ||u}, —uy; [lo <v/4
and c(s)h™ > % ||u, — u}, || <v/4. Thus,

c(s)th™ Huh —uy l\oHuh H1 \4” [ u, ”2 (5.18)
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and

e Y~ Il )

<gu(e(s) + 3v fluy, 1D (5.19)

From (5.14), (5.15) with i =0, (5.18), and (5.19) we get (5.12) for m = 0. The case of m =0 is
checked.

Assuming that (5.12) is valid for some m=j — 1, we prove this estimate for m=j ((m+1)t<T)

in the same way as for m = 0: starting with (5.15) for i =; and checking with the help of inductive
hypothesis

o(s)eh™ = ™ = wyf " lla I <

c(s)h™* ||u) — )y |lo <C(R,v,7,a,0)""H. (5.20)
Then in the similar way as (5.18), (5.19) for sufficiently small # it follows
c(syeh™ |lwy ™ —wf ol IF < jevilw I

and

"

e(s)yeh ™' = ™ =l R <Sele(s) + v lal D).

Now we obtain from (5.14)
. ; T )
e 15 + [l — g 15 o [l 1T <er+ [lag flg +27 (1P 112 (5.21)

Taking a sum of (5.21) and (5.12) with m = j — 1 we obtain (5.12) for m = j, hence we complete
the inductive step and prove (5.12) for any m satisfying (m + 1)t < T.
To obtain an estimate on pressure function, let us rewrite (3.2b) as

h(pit,v) = va(ut,v) + (u) —uj,v) + (' 0) + Nl v).

with arbitrary v € H,. Hence the stability hypothesis provides us with estimate

H—I i 2

I 2 115 <e(, V)(llu’+l I+

AR e g Gl ! II?)

and

ZT It s <e(, V)(ZT (AR RS A
i=0 i=0

m 2

T

i=0

H—l _ uh

+c(s)H ™ max(|| HO)ZT a3 ) (5.22)

-1
The first term in estimate (5.22) is bounded due to (5.12), the second depends only on given data.
Estimate 37,7 || v~ '(u,"" — u}) |2, <cH™* is proved similar to Lemma II1.4.6 in [25].

To obtain estimates on u;; let us write down (3.2a) with v =u}]' (note that (5.12) provides us
with estimate on #, but not on uy):

(i ity + va(uly L uif ) =l uly ) + 1. (5.23)
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From (5.23) we readily get for i =0,...,m

‘ i i T i
o' 15 +ov e 1T <l 1l +2 I 2

+1 (|2 1|2 i 12 v’: 1 (|2 ’ C i) (5.24)
o™ Ml +ov llady ™ M0 < Hage llo 4 17 120 208 — w7

in the second inequality, &, should be replaced by u} for i = 0.

The first inequality in (5.24) and (5.12) gives an estimate on K =max; (||u};"' ||2)<c(Q, uo, f,v, T).
To obtain a bound for 37, ¢ ||#f" ||3 in (5.22) let us take a sum of the second inequality in (5.24)
for i=0,...,m:

“ , 1 & A U o
Dol I < N I+ Do IR 2 G — (5.25)
i=0 i=0 i=1

and act as follows. For sufficiently small 4, using (5.20), we obtain

m

>y, — iy, u') < max(|| ]! o) > Ila — ui llo
i=} i=1
<SVKC(Q,v,1,a,0)'? > H<c(Q,u0,f,7,T). (5.26)

i=1
Estimate (5.26) together with (5.25) gives

m

S llug! I <es(Quo.f,v,T.s).
i=0
Thus all the terms in a right-hand side of (5.22) are estimated and the desired inequality (5.13)
follows.

Remark 5.5. The crucial point in the proof of the theorem is obtaining an estimate on ||u, — uy ||.
Corollary 4.4 shows that this estimate improves for equal order interpolation or high-order finite
element schemes, if we assume an extra regularity of the solution obtained. Hence, in this case the
stability conditions could be weakened. However, the lack of information about high-order norms in
our stability estimates does not permit us to state precise results on this matter.

Compare condition (5.6) for scheme (3.1) with condition (5.11) for two-level scheme (3.2).
Scheme (3.1) imposes restriction on 7, while scheme (3.2) imposes restriction on H. Although
extensive calculations are needed to check whether the condition on H is restrictive indeed, the
latest fact is of certain theoretical interest.

Finally we note that scheme (3.3) is unconditionally stable.

6. Convergence

Let us fix some 7 > 0 and for a sequence of u,, i=1,...,m, mt=T defined from any of schemes
(3.1)<(3.3) denoted by u; = u,(¢) : [0, T] — H,, the following function:

u(t)=ul, forte[(i— 1), i)
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For scheme (3.3) function u,(¢) converges to solution # of (1.1)—(1.3) strongly in Ly(G), G =
(0,7) x Q and weakly in Ly(0,7; H}). The same is valid for scheme (3.1) with 1,4 satisfying
stability condition (5.6).

Here we prove

Theorem 6.1. Assume Q € R®. Let u, i =0,...,m, from H, recovered via two-level scheme (3.2)
then

u, — u strongly in L,(G) for h,t — 0,

u, — u weakly in L,(0,T; H,) for h,1 — 0,

if condition (5.11) and assumptions of Theorem 5.4 are satisfied. Here u is a unique weak solution
to problem (1.1)—(1.3).

Proof. The proof is close to those of Temam [25, Theorem III.5.4] for scheme 3.3. And for some
omitted technical details we refer to the [25].

Along with u;, consider
i-1)yx—t ; t—it i1 . .

f ‘ for ¢ — D, it],

G- m T G frreli=Dhral
and w,(¢)=0 for t ¢ [0, T].

Since condition (5.11) is assumed to be satisfied, from estimate (5.12) we get

wi(t) =

l#n lecom:zaem <€ | Wh llzcomiaer) <6,
and for some subsequence still denoted by A, 1(— 0)
u), — u weakly in L,(0, T;Hg ), w, — w weakly in L,(0,T; HO‘) (6.1)
with some u,w € Lo.(0,T; Ly(2)*) N Ly(0, T; Hy ). Moreover [25],
w;, — w strongly in L,(G). (6.2)
Further, from equality

m 12
T ; i
lun — wh ||z =\/; (Z " — w, ”3)
i=0

estimate (5.12), (6.1) and (6.2) we get
u=w, u,— ustrongly in L,(G). (6.3)
Now let us set
uy(ty=u,, forte[(i—1)t,it).
From (4.10) and hypothesis (H1) we get

o — 37 2,6y <) [(H2 + 1) D7 llwj |7+ 7 | PIIG (6.42)
i=0 i=0
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and

= 2oy, <) |2+ 0 S 7 a4 7 23] (6.4b)

i=0 =0
Hence we imply (5.12), (5.13) with sufficiently small s, (6.1), (6.3) and obtain
uy — u strongly in L,(G), wuy — u weakly in L,(0,T; H}). (6.5)
To prove that u is a weak solution of (1.1)—(1.3) it is sufficient to note that (3.2b) provides

%(wh(t), v) + a(u(t),0) + N(uy (1) u (1), 0) = (fi(2),2) Ve eV,

and imply (6.1)(6.3),(6.5) and arguments of Lemma IIL.5.9 from [25] in a straightforward way.
The theorem is proved. [J

Remark 6.2. The difficulty in proving Theorem 6.1 for Q C R’ is caused by the impossibility of
taking sufficiently small s in (5.3). Dependence of constant c¢; in Theorem 5.3 on 7 is generally
unknown. Therefore pressure terms in (6.4a) and (6.4b) failed to be properly estimated.
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