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Abstract

The two-parameter family of Hermite Distributed Approximating Func-
tionals (HDAFs) is shown to possess all properties that are essential require-
ments in filter design. When properly scaled, HDAFs provide an arbitrarily
sharp high-frequency cut-off while retaining their smoothness. More pre-
cisely, bounds on the Fourier transform of the HDAF integral kernel show
that it converges almost-uniformly to the ideal window, and that the pass
and transition bands can be tuned independently to any width while pre-
serving Gaussian decay in both time and frequency domains. The effective
length of the HDAF filter in both domains is controlled by an estimate of
the Heisenberg uncertainty product. In addition, a new asymptotic rela-
tionship between the HDAF and a windowed sinc function is obtained. In
all calculations, we have aimed at precise error estimates that may assist
numerical implementations.
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1 Introduction

Optimizing the design of band-pass filters constitutes a major field of study in
signal processing [1–3]. Depending on the specifics of an application, such as
the numerical solution of linear and non-linear ordinary and partial differential
equations [4], data compression [5], imaging [6], or pattern recognition [7], the
goals of filter design may vary from plain frequency selectivity to localization in
the time domain or to other, more specific requirements. Compared to filters in
the analog domain, where causality imposes a severe restriction, there is more
freedom in digital signal processing that can be exploited to attain these specific
goals. Here, we restrict ourselves to discussing the context of the basic low-
pass filter defined on the entire real line, because once this is constructed, a
wide variety of related filters and computational tools can be obtained. In the
Conclusion we will give an idea how such a basic low-pass filter can be used for
purposes of digital signal processing.

The contemporary view of filter design emphasizes the role of the time-
frequency domain [1]. From this perspective, it is intuitively clear what general
conditions must be satisfied in order to produce a robust low-pass filter. These
conditions are: 1) the filter must be able to approach the so-called “ideal window”
in a practicable and efficient way; 2) the filter must show a strong type of decay in
both the time and frequency domains or equivalently, a high degree of regularity
including smoothness in both domains; and 3) the Heisenberg uncertainty prod-
uct of the filter should grow slowly as the frequency selectivity increases. These
conditions are at the moment rather vague, but we will make them more precise
later on. For now, we mention that the first condition guarantees arbitrarily ac-
curate separation of the desired and undesired frequency bands. Band-pass and
band-stop filters are easily designed starting with the basic low-pass filter. The
second condition prevents that the filter itself introduces uncontrolled aliasing
and Gibbs’ oscillations. This is important for the stability of numerical imple-
mentation of various operations. The third condition ensures that the effective
length of the filter is small in both the time and frequency domains, in the spirit
of filter design in the time-frequency domain. As far as we are aware, up to
now, no filter has been shown to satisfy all three conditions in a mathematically
rigorous fashion.

The purpose of this paper is to show that such a class of filters has, in
fact, been created, by demonstrating that there is a precise sense in which all
three conditions can be satisfied. This class of filters is called the Distributed
Approximating Functionals (DAFs) [8], and the particular DAF which is shown
to satisfy all the conditions is known as the Hermite DAF (HDAF). For the sake
of space, we will simply posit the HDAF, but detailed derivations from a variety
of viewpoints have been given elsewhere [8]. This paper is organized as follows:
In Section 2, we introduce the notion of filters. We show how to understand
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convolution with the HDAF integral kernels as the implementation of low-pass
filters that approximate the identity operator. In Section 3, we obtain an integral
expression for the HDAF in time and frequency domains, which is needed to
characterize its behavior. We analyze the detailed behavior of the HDAF in
order to prove that, when properly scaled, it provides a smooth, arbitrarily
close approximation to the ideal window. We also discuss the Gaussian decay of
HDAFs in time and frequency domains and estimate the Heisenberg uncertainty
product for the HDAFs. Finally, we summarize our results and point out further
developments in Section 4.

2 Definitions and Notation

Definition 2.1. In this work, we understand a filter M as a bounded operator
defined on the space L2(R) of square-integrable functions on R such that M
commutes with the family of unitary shift operators {Ta}a∈R given by Taf(x) =
f(x − a) for all f ∈ L2(R). Consequently, M acts by multiplication with an
essentially bounded function M̂ in the frequency domain. When speaking about
a filter M , we often identify it and its properties with those of the associated
function M̂ . For the Fourier transform, we adopt the convention

f̂(k) :=
∫ ∞

−∞
f(x)e−ikx dx (1)

when f ∈ L1(R)∩L2(R), and as usual extend f 7→ f̂ to a bounded map (unitary
up to a normalization factor 1

2π ) on all of L2(R).

Example 2.2. The ideal low-pass filter X is associated with the characteristic
function of an interval centered at k = 0, so X̂(k) = χ[−κ/2,κ/2](k). The length
κ > 0 of the interval is called the pass-bandwidth of X. A more general low-pass
filter M is given by a complex-valued, bounded function M̂ that has the limits
limk→0 M̂(k) = 1 and limk→±∞ M̂(k) = 0.

Definition 2.3. The family of Hermite Distributed Approximating Functional
(HDAF) filters in one dimension is given by operators {Dn,σ} indexed by order
and length-scale parameters n ∈ N0 and σ > 0. Each Dn,σ acts on f ∈ L2(R) by
convolution with an integral kernel, Dn,σf(x) =

∫∞
−∞Dn(x, x′;σ)f(x′) dx′. The

HDAF integral kernel [8] is defined as

Dn(x, x′;σ) :=
1√
2πσ

e−
1

2σ2 (x−x′)2
n∑

j=0

(−1)j

22jj!
H2j

(
x− x′√

2σ

)
, (2)

where x, x′ ∈ R and the m-th Hermite polynomial is denoted as Hm(x) = (−1)m

ex2 dm

dxm e−x2
for any m ∈ N0.
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Remarks 2.4. The quantity Dn(x, x′;σ) has the property that it approaches
the Dirac distribution δ(x− x′) in either of the limits σ → 0 or n →∞, see the
following paragraph. In a joint limit where n, σ →∞ and n/σ2 is kept constant,
it has been claimed [9], but not proved, that convolving with HDAF kernels
implements an ideal filter to arbitrary, controllable accuracy.

By Dn(x, x′;σ) = Dn(x − x′, 0;σ) = Dn(x′ − x, 0;σ), one may verify that
each HDAF filter Dn,σ is self-adjoint and indeed commutes with translations.
Consequently,∫ ∞

−∞
e−ikxDn,σf(x) dx = D̂n(k;σ)

∫ ∞

−∞
e−ikxf(x) dx (3)

for all f ∈ L2(R) ∩ L1(R) and k ∈ R with a real-valued function that is seen to
be

D̂n(k;σ) = exp
(
−k2σ2

2

)
en

(
k2σ2

2

)
, (4)

containing the exponential, locally compensated by the truncated exponential
series

en(y) :=
n∑

j=0

yj

j!
. (5)

For each fixed pair n ∈ N0 and σ > 0 the value D̂n(k;σ) is non-negative, bounded
above by D̂n(k;σ) ≤ D̂n(0;σ) = 1 and decays faster than any polynomial in
k. Consequently, Dn,σ is a low-pass filter. As either n → ∞ or σ → 0, we
have D̂n(k;σ)↗ 1 monotonically and thus the operator Dn,σ approximates the
identity on L2(R) from below.

3 Bounds on HDAFs with Relevance for Filtering

In this section we investigate certain properties of HDAFs that demonstrate
their usefulness for separating desired and undesired frequency bands in a signal,
their regularity properties, and the behavior of their Heisenberg uncertainty
products. In addition, we derive an asymptotic approximation formula for the
HDAF integral kernel that shows its relation to a windowed sinc function, also
known as Gaussian sinc-DAF [10].

3.1 An Integral Representation for HDAFs

The following lemma provides integral representations for the Fourier transform
D̂n(k;σ) and for the HDAF integral kernel itself. In view of Dn(x, x′;σ) =
Dn(x − x′, 0;σ), we can assume x′ = 0 and simplify notation. The integral
representations will be instrumental in the derivation of various estimates that
control the properties of HDAF filters.
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Lemma 3.1. For any n ∈ N0, k ∈ R and x ∈ R,

D̂n(k;σ) =
Γ(n + 1, k2σ2

2 )
n!

≡ 1
n!

∫ ∞

k2σ2

2

λne−λ dλ (6)

and

Dn(x, 0;σ) =
2

πn!x

∫ ∞

0
sin
(√2x

σ
t
)
t2n+1e−t2 dt . (7)

Proof. The representation for D̂n(k;σ) is seen to be true by taking the derivative

d

dk
D̂n(k;σ) = −kσ2

n!

(
k2σ2

2

)n

exp
(
−k2σ2

2

)
(8)

of Eq. (4) and integrating it again, while adjusting the constant of integration
to obtain the value D̂n(0;σ) = 1 at k = 0. Eq. (8) follows from Eq. (4) by the
telescoping derivatives e′n(y) = en−1(y) for n ∈ N.

We recover the integral representation of the HDAF integral kernel by the
inverse Fourier transform of (6),

Dn(x, 0;σ) =
1

2πn!

∫ ∞

−∞
eikx

∫ ∞

k2σ2

2

ξne−ξdξ dk . (9)

Writing this result as an integral over positive values of k and switching the
order of integration, we obtain

Dn(x, 0;σ) =
1

πn!

∫ ∞

0

∫ √
2ξ
σ

0
cos(kx)ξne−ξdk dξ

=
1

πn!x

∫ ∞

0
sin
(√2ξ

σ
x
)
ξne−ξ dξ (10)

=
2

πn!x
In(x;σ) ,

where In(x;σ) is defined by

In(x;σ) :=
∫ ∞

0
sin
(√2x

σ
t
)
t2n+1e−t2 dt . (11)

Remarks 3.2. It is possible to bypass the Fourier transform in an alterna-
tive derivation of the integral representation for Dn(x, 0;σ). The summation of
Eq. (2) with the Christoffel-Darboux formula [14, p. 307] is the first step in this
derivation, yielding

Dn(x, 0;σ) =
(−1)n

22n+1n!
√

π

H2n+1( x√
2σ

)

x
e−

1
2σ2 x2

. (12)
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for n ∈ N0. Inserting the known integral representation [11, 22.10.15] for Hermite
polynomials,

Hm(x) = ex2 2m+1

√
π

∫ ∞

0
cos
(
2tx− mπ

2
)
tme−t2 dt (13)

valid for all m ∈ N0, results in Eq. (10). The virtue of the approach via the
frequency domain is that it painlessly generalizes to non-integral values of n ≥ 0,
whereas Eq. (12) requires an additional effort to interpolate (−1)n.

Using integration by parts the integrals In(x;σ) of Eq. (11) are seen to obey
a recursion relation that is equivalent to the standard one between even order
Hermite polynomials. Specifically,

In(x;σ) =
1
4

[(
8n− 2x2

σ2
− 2
)
In−1(x;σ)− (2n− 1)(2n− 2)In−2(x;σ)

]
, (14)

which simplifies the calculation of the HDAF kernel, since then one only needs
In(x;σ) for n ∈ {0, 1} to obtain its value for any n ∈ N0.

3.2 Bounds on the Width of the Transition Bands

While the ideal low-pass filter is characterized solely by its bandwidth, our
HDAF approximation is controlled by two parameters n and σ. Next to the
width of the pass band, the second scale parameter implicit in our approxima-
tion is the width of the transition bands. In this subsection we illustrate how
tuning n and σ controls these bandwidths, enabling a high-frequency cut-off that
is arbitrarily sharp and tuned to any given frequency.

Definition 3.3. The pass band associated with a low-pass filter M and an
error ε1 > 0 is the set {k ∈ R : |M̂(k) − 1| ≤ ε1}. The stop or attenuation
band associated with M and an error ε2 > 0 is the set {k ∈ R : |M̂(k)| ≤ ε2}.
Given M and errors ε1,2, the so-called transition band is what is contained in
neither pass nor stop band. Typically, these bands are given by intervals or by
finite unions thereof. If the transition band is given by two intervals, we speak
of them separately as of two transition bands.

Now we investigate the properties implicit in the integral representation for
the Fourier transform of the HDAF kernel. In Eq. (6), D̂n(k;σ) is a manifestly
even function, thus we can restrict ourselves to investigating the behavior of
D̂n(k;σ) for positive values of k. We begin with a heuristic consideration.

Remark 3.4. Intuitively, the region of rapid transition in k ≥ 0 can be under-
stood as the interval between the points, denoted as k±t , at which d2

dk2 D̂n(k;σ)
is an extremum. Taking further derivatives of Eq. (8), we obtain

d2

dk2
D̂n(k;σ) = −kσ2

n!
(k2σ2

2
)n exp

(
−k2σ2

2
)
[
2n + 1

k
− kσ2]
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and

d3

dk3
D̂n(k;σ) =

kσ2

n!
(
k2σ2

2
)n exp(−k2σ2

2
)
{2n + 1

k2
+ σ2 − [

2n + 1
k

− kσ2]2
}

.

By setting d3

dk3 D̂n(k;σ) to zero we find

k±t =
1
σ

√
(4n + 3)±

√
16n + 9

2
.

Moreover, setting Eq. (15) equal to zero, we find that the only inflection point
in R+, (in our case this is, in fact, the point where the slope d

dk D̂n(k;σ) has a
global minimum) is given by

ksl =
√

2n + 1/σ (15)

Hence, this inflection point lies within the heuristically defined transition region.
If we fix the position of the inflection point by scaling σ with

√
2n + 1 then

we expect that the width of the transition region decreases to leading order as
k+

t −k−t ∼ n−1/2σ−1. The qualitative characteristics of D̂n(k;
√

2n + 1σ) are such
that for small values of k, it has a value close to one; and over a controllably short
frequency range in the vicinity of k = 1

σ , it falls rapidly and monotonically to
zero. This behavior makes it appropriate for a low-pass filter that approximates
the ideal filter. In Fig. 1 we show D̂n(k;

√
2n + 1σ) as a function of k and n,

to illustrate that we can obtain a function that is arbitrarily close to the ideal
window.

The remaining part of this section is a rigorous verification of the above-
described intuitive claims. As before, let k > 0. We begin by rewriting Eq. (6)
as

D̂n(k;σ) =
2(n + 1

2)n+1

n!

∫ ∞

kσ/
√

2n+1
t2n+1e−(n+ 1

2
)t2 dt (16)

such that the maximum e−(n+ 1
2
) of the integrand occurs at t = 1, independently

of n. By scaling σ with
√

2n + 1 we also eliminate the dependence of the lower
limit of integration on n. In the following, we want to compare the integrand
with Gaussians to control the n →∞ asymptotics.

Lemma 3.5. Given 0 < x ≤ 1 ≤ y ≤ ∞, we claim the upper bound

t2n+1e−(n+ 1
2
)t2 ≤ e−(n+ 1

2
)e
−(n+ 1

2
)(1+ 1

y2 )(t−1)2 (17)

for all 0 ≤ t ≤ y and the lower bound

e−(n+ 1
2
)e−(n+ 1

2
)(1+ 1

x2 )(t−1)2 ≤ t2n+1e−(n+ 1
2
)t2 (18)
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Figure 1: HDAF low-pass filter as function of k and n with ksl = 1 fixed accord-
ing to Eq. (15).

for all t ≥ x, with equality in either case only when t = 1. In addition, we have
a complementary upper bound

t2n+1e−(n+ 1
2
)t2 ≤ y2n+1e

(n+ 1
2
)( 1

y2−2)
e
−(n+ 1

2
)(t− 1

y
)2 (19)

for t ≥ y and correspondingly

t2n+1e−(n+ 1
2
)t2 ≤ x2n+1e

−(n+ 1
2
)[(1+ 1

x2 )(t− 2x
1+x2 )2− 4

1+x2 +3] (20)

when 0 ≤ t ≤ x.

Proof. To show the various estimates, we define g(t) := (2n + 1) ln t− (n + 1
2)t2

for all t > 0 and use that in an interval (x, y) with 0 < x ≤ 1 ≤ y ≤ ∞,
−(2n+1)(1+ 1

x2 ) ≤ g′′(t) ≤ −(2n+1)(1+ 1
y2 ). Integrating this inequality twice

starting from t = 1 and using the monotonicity of the exponential function yields
the first pair of upper and lower bounds. In addition, integrating the inequality
for g′′ twice starting at y ≥ 1 gives the improved upper bound for t ≥ y and
similarly, starting at x ≤ 1, for 0 ≤ t ≤ x.

Once the integrand is bounded by suitable Gaussians, we use an estimate of
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the complementary error function

e−x2

x +
√

x2 + 2
<

∫ ∞

x
e−t2 dt ≤ e−x2

x +
√

x2 + 4
π

, (21)

valid whenever x ≥ 0 [15, 16]. The remaining ingredient in the derivation of
upper and lower bounds is the Stirling-Robbins [17] estimate for the factorial,

√
2πnn+ 1

2 e−n+ 1
12n+1 < n! <

√
2πnn+ 1

2 e−n+ 1
12n . (22)

Now we derive an upper bound on D̂(k;σ) in case k2σ2 ≥ 1 and a lower
bound in case k2σ2 ≤ 1. For simplicity, we again consider only k > 0.

Lemma 3.6. Let n ∈ N0 and k, σ > 0. If kσ ≥ 1 then

D̂n(k;
√

2n + 1σ) <

√
2

πn
en+ 1

2
(kσ)2n+1e−(n+ 1

2
)k2σ2

kσ − 1
kσ +

√
(kσ − 1

kσ )2 + 4
π(n+ 1

2
)

. (23)

and if 0 < kσ ≤ 1 then

D̂n(k;
√

2n + 1σ) > 1−
√

2
πn

en+ 1
2

1
kσ + 1

kσ

× (kσ)2n+1e−(n+ 1
2
)k2σ2

2
1+k2σ2 − 1 +

√(
2

1+k2σ2 − 1
)2

+ 4
π(n+ 1

2
)(1+k2σ2)

.

(24)

Proof. We use first the upper bound Ineq. (19) for the integrand of Eq. (16) and
then Eqs. (21)-(22) to obtain

D̂n(k;
√

2n + 1σ) <
2(n + 1

2)n+1

√
2πnn+ 1

2

en− 1
12n+1 e(n+ 1

2
)( 1

k2σ2−2)

× (kσ)2n+1

∫ ∞

kσ
e−(n+ 1

2
)(t− 1

kσ
)2 dt

<
√

2
πn

(
1 + 1

2n

)n
e−

1
2
− 1

12n+1 e(n+ 1
2
)( 1

k2σ2−1)

× (kσ)2n+1 e−(n+ 1
2
)(kσ− 1

kσ
)2

kσ − 1
kσ +

√
(kσ − 1

kσ )2 + 4
π(n+ 1

2
)

(25)

To obtain Ineq. (23), the simple inequality (1 + y
n)n < ey for all y, n > 0 is

applied and the marginal correction term e−
1

12n+1 is dropped.
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If 0 < kσ ≤ 1, we use the normalization D̂(0, σ) = 1 and the upper bound
Ineq. (20) for the integrand Eq. (16) in the interval [0, kσ] and then extend the
domain of integration to (−∞, kσ], combined with the estimate Ineq. (21),

D̂n(k;
√

2n + 1σ) > 1−
2(n + 1

2)n+1

n!

∫ kσ

0
t2n+1e−(n+ 1

2
)t2dt (26)

> 1−
2(n + 1

2)n+1

n!
(kσ)2n+1e

(n+ 1
2
)[ 4

1+k2σ2−3]

×
∫ kσ

−∞
e
−(n+ 1

2
)(1+ 1

k2σ2 )(t− 2kσ
1+k2σ2 )2

dt (27)

> 1−
2(n + 1

2)n+1

n!
(kσ)2n+1e

(n+ 1
2
)[ 4

1+k2σ2−3] 1
(n + 1

2)(1 + 1
k2σ2 )

× e
−(n+ 1

2
)(1+k2σ2)(1− 2

1+k2σ2 )2

2kσ
1+k2σ2 − kσ +

√
( 2kσ
1+k2σ2 − kσ)2 + 4

π(n+ 1
2
)(1+ 1

k2σ2 )

(28)

which simplifies to Ineq. (24) after applying Ineq. (22), the elementary estimate
(1 + y

n)n < ey for y, n > 0, and some cancellations in the exponent.

The upper and lower bounds on the Fourier transform of the HDAF integral
kernel are illustrated in Fig. 2 and Fig. 3 for various values of n.

The properties of the locally compensated exponential series appearing in
Eq. (4) have been discussed in [12]. From these properties one can deduce the
uniform convergence of D̂n(k;

√
2n + 1σ) to the ideal filter on compact sets in

R that do not include the points k = ± 1
σ . A result from [13] extends this

result to certain subsets of the complex plane. Here, we restrict ourselves to
real arguments, but derive a uniform convergence result that allows to shrink
the excluded neighborhoods of k = ± 1

σ as n increases.

Theorem 3.7. In the limit n →∞, the scaled HDAF low-pass filter approaches
the ideal filter with band-width 2/σ

lim
n→∞

D̂n(k;
√

2n + 1σ) =


1, k ∈ (− 1

σ , 1
σ )

1
2 , k = ± 1

σ

0, else

. (29)

The convergence is uniform at an asymptotic rate of n−1/2 outside of two tran-
sition bands centered at k = ± 1

σ , the widths of which decay asymptotically at
least as 1

σ

√
lnn/n. More precisely, we have

lim
n→∞

max
{√

n(1− D̂n(k;
√

2n + 1σ)) : 0 ≤ k ≤ 1
σ
− 1

2σ

√
lnn

n + 1
2

}
= 0 (30)
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Figure 2: Upper bounds on the HDAF low-pass filter as function of k and n
with ksl = 1 fixed according to Eq. (15).

and

lim
n→∞

max
{√

nD̂n(k;
√

2n + 1σ) : k ≥ 1
σ

+
1
2σ

√
lnn

n + 1
2

}
= 0 . (31)

Proof. From Ineq. (24) we obtain

lim inf
n→∞

D̂n

( 1
σ
− c√

n + 1
2σ

;
√

2n + 1σ
)
≥ 1− 1√

2π

e−2c2

c +
√

c2 + 2
π

(32)

for any constant c > 0. Replacing this constant with any sequence {cn}n≥0 that
satisfies cn → ∞ gives a limit inferior of one. Together with the simple bound
D̂n(k;σ) ≤ 1 this establishes the limit

lim
n→∞

min
{

D̂n(k;
√

2n + 1σ) : 0 ≤ k ≤ 1
σ
− cn√

n + 1
2σ

}
= 1 . (33)

The growth of {cn} can be arbitrarily slow, but of course it determines how
quickly the limit is approached. Using l’Hôpital’s rule Ineq. (24) shows that
to obtain the convergence rate of n−1/2 as described in Eq. (30), it suffices to

choose cn =
√

1
4 lnn.
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Figure 3: Lower bounds on the HDAF low-pass filter as function of k and n with
ksl = 1 fixed.

Together with the non-negativity of D̂n(k;σ), the upper bound Ineq. (23)
results analogously in

lim sup
n→∞

D̂n

( 1
σ

+
c√

n + 1
2σ

;
√

2n + 1σ
)
≤
√

2
π

e−2c2

2(c +
√

c2 + 1
π )

(34)

and

lim
n→∞

max
{

D̂n(k;
√

2n + 1σ) : k ≥ 1
σ

+
cn√

n + 1
2σ

}
= 0 (35)

for any sequence {cn}, cn →∞. Inspecting Ineq. (23) and using l’Hôpital’s rule

shows we can choose again cn =
√

1
4 lnn to ensure a convergence rate of n−1/2

as in Eq. (31).

Finally, we verify the convergence D̂n( 1
σ ;
√

2n + 1σ) = 1
2 by the limit of the

lower bound Ineq. (24) for kσ = 1 as n → ∞ and a corresponding sharp upper
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bound. This is achieved via

D̂n(
1
σ

;
√

2n + 1σ) =
2(n + 1

2)n+1

n!

∫ 1+ cn√
n+1

2

1
t2n+1e−(n+ 1

2
)t2 dt

+ D̂n(
1
σ

+
1
σ

cn√
n + 1

2

;
√

2n + 1σ) (36)

with any sequence {cn}n∈N satisfying cn →∞. Using the previously established
convergence of D̂n( 1

σ + 1
σ

cnq
n+ 1

2

;
√

2n + 1σ) → 0 and the upper bound Ineq. (17)

for the integrand between the limits x = 1 and yn := 1 + cnq
n+ 1

2

results in

lim sup
n→∞

D(
1
σ

;
√

2n + 1σ) ≤
2(n + 1

2)n+1

n!
e−(n+ 1

2
)

∫ yn

1
e
−(n+ 1

2
)(1+ 1

y2
n

)(t−1)2

dt

=
2(n + 1

2)n+ 1
2

n!
e−(n+ 1

2
)

∫ cn

0
e
−(1+ 1

y2
n

)t2

dt . (37)

Now dominated convergence applies and again with Ineq. (22)

lim sup
n→∞

D̂n(
1
σ

;
√

2n + 1σ) ≤ 1
2

(38)

follows, which finishes the proof.

3.3 Gaussian decay of the HDAF kernel and of its Fourier trans-
form

The upper bound Ineq. (23) on D̂n(k;
√

2n + 1σ) serves two purposes: The first
one is in the separation of frequency bands as described above; the second one
concerns regularity properties of the HDAF kernel. Ineq. (23) shows Gaussian
decay of its Fourier transform. This has computational relevance because it
implies that when a function is convolved with the HDAF kernel, the result is
smooth, and we may then even apply a large class of pseudo-differential operators
without spoiling this property.

Theorem 3.8. The scaled HDAF integral kernel of order n ∈ N is for any x ∈ R
bounded by

|Dn(x, 0;
√

2n + 1σ)| ≤
(1 + 1

2n)1/2

πσ
. (39)
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For |x| > (2n + 1)σ, it exhibits Gaussian decay,

|Dn(x, 0;
√

2n + 1σ)| ≤ 1√
n + 1

2πn!

[(
x2

(4n + 2)σ2

)n+ 1
2

e
− x2

(4n+2)σ2

+
1
2

(
x2

(2n+1)σ2

)n+ 1
2
e
− x2

(2n+1)σ2

|x|2
(2n+1)σ − (2n + 1)σ +

√( |x|2
(2n+1)σ − (2n + 1)σ

)2 + 4|x|2
π(n+ 1

2
)

]
. (40)

Proof. For the bounds on Dn(x, 0;
√

2n + 1σ) we distinguish several cases, de-
pending on the choice of n and x. In the simplest one, we have |x| ≤ σ and
apply | sin(s)| ≤ |s| to the integrand of Eq. (11) resulting in

|In(x;
√

2n + 1σ)| ≤ |x|√
n + 1

2σ

∫ ∞

0
t2n+2e−t2 dt . (41)

Inserted in Eq. (10), this shows that D(x, 0;
√

2n + 1σ) is bounded by

|Dn(x, 0;
√

2n + 1σ)| ≤
Γ(n + 3

2)

πn!
√

n + 1
2σ

≤
(1 + 1

2n)1/2

πσ
(42)

with the gamma function Γ(m + 1) that extends the factorial m! to real argu-
ments. The last estimate is again obtained from Ineq. (22) and only serves to
illustrate the asymptotic behavior for large n.

The next case we consider is σ < |x| ≤ (2n + 1)σ. This time, we estimate
| sin(s)| ≤ 1 in Eq. (11) and obtain algebraic decay,

|Dn(x, 0;
√

2n + 1σ)| ≤ 1
π|x|

. (43)

The last case is the main part and establishes Gaussian decay of the HDAF
kernel. It is in the domain given by |x| > (2n + 1)σ. The estimate starts from
the expression in Eqs. (10)-(11), written as

Dn(x, 0;
√

2n + 1σ) = −i
(n + 1

2)n+1

πn!x

∫ ∞

−∞
t2n+1eixt/σ−(n+ 1

2
)t2 dt . (44)

As a first step, we complete the square in the exponent. Since the integrand
extends to a holomorphic function that exhibits Gaussian decay along the direc-
tion of the real axis, we can shift the line of integration from R to R− i x

(2n+1)σ
and obtain

Dn(x, 0;
√

2n + 1σ) = −i
(n + 1

2)n+1

πn!x
e
− x2

(4n+2)σ2

∫ ∞

−∞
t2n+1e

−(n+ 1
2
)(t−i x

(2n+1)σ
)2

dt

= −i
(n + 1

2)n+1

πn!x
e
− x2

(4n+2)σ2

∫ ∞

−∞

(
t + i

x

(2n + 1)σ

)2n+1
e−(n+ 1

2
)t2 dt . (45)
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This integral can be estimated by replacing the integrand with its absolute value
and by splitting the domain of integration into lower and higher frequency parts,∫ ∞

−∞

(
t2 +

x2

(2n + 1)2σ2

)n+ 1
2
e−(n+ 1

2
)t2 dt

≤ 2
∫ |x|

(2n+1)σ

0

(
t2 +

x2

(2n + 1)2σ2

)n+ 1
2
e−(n+ 1

2
)t2 dt (46)

+ 2
∫ ∞

|x|
(2n+1)σ

t2n+1
(
1 +

x2

(2n + 1)2σ2t2

)n+ 1
2
e−(n+ 1

2
)t2 dt .

The first integral in Eq. (46) is bounded by replacing the exponential in the
integrand with a larger, algebraic expression,

(t2 +
x2

(2n + 1)2σ2
)n+ 1

2 e−(n+ 1
2
)t2 ≤ (t2 +

x2

(2n + 1)2σ2
)n+ 1

2 (1 + t2)−(n+ 1
2
)

≤

1 +
x2

(2n+1)2σ2 − 1

1 + t2

n+ 1
2

≤
(

x2

(2n + 1)2σ2

)n+ 1
2

. (47)

To bound the second integral in Eq. (46), we use x2

(2n+1)2σ2t2
≤ 1 and again

Ineq. (19), analogous to the derivation of Eq. (23). Together, the two integrals
are thus estimated by∫ ∞

−∞
(t2 +

x2

(2n + 1)2σ2
)n+ 1

2 e−(n+ 1
2
)t2 dt

≤
( x2

(2n + 1)2σ2

)n+ 1
2 |x|
(n + 1

2)σ
(48)

+

|x|2n+1

2n− 1
2 (n+ 1

2
)2n+2σ2n+1

e
− x2

(4n+2)σ2

|x|
(2n+1)σ −

(2n+1)σ
|x| +

√( |x|
(2n+1)σ −

(2n+1)σ
|x|

)2 + 4
π(n+ 1

2
)

.

Collecting all terms, we have

|Dn(x, 0;
√

2n + 1σ)| ≤
(n + 1

2)n+1

πn!|x|
e
− x2

(4n+2)σ2

[( x2

(2n + 1)2σ2

)n+ 1
2 |x|
(n + 1

2)σ

+

|x|2n+1

2n− 1
2 (n+ 1

2
)2n+2σ2n+1

e
− x2

(4n+2)σ2

|x|
(2n+1)σ −

(2n+1)σ
|x| +

√( |x|
(2n+1)σ −

(2n+1)σ
|x|

)2 + 4
π(n+ 1

2
)

]
(49)

which simplifies to the claimed Ineq. (40).
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Remark 3.9. We are grateful for Mark Arnold’s suggestion to consider non-
integral values of n. It is interesting to note that for such n, the Gaussian bounds
in the frequency domain generalize painlessly, whereas in the time domain there
is only algebraic decay. The reason is that D̂n(k;σ) is for non-integral n only
finitely often continuously differentiable, see Eq. (8).

3.4 Heisenberg Uncertainty Product for HDAFs

In this section we study the behavior of the Heisenberg uncertainty product
for the HDAFs and show that it grows, up to logarithmic corrections, inverse
proportionally to the square-root of the transition bandwidth.

Definition 3.10. The Heisenberg uncertainty product ∆x∆k of a function f ∈
L2(R) is a non-negative, possibly infinite quantity given by

∆x∆k := inf
a,b∈R

(∫∞
−∞(x− a)2|f(x)|2dx

∫∞
−∞(k − b)2|f̂(k)|2 dk

2π

)1/2

∫∞
−∞ |f(x)|2dx

. (50)

Theorem 3.11. The uncertainty product of the HDAF integral kernel Dn(x,
0; σ) is independent of the choice of σ > 0 and will be denoted by (∆x)n(∆k)n.
Asymptotically, its growth is bounded by n1/4. More explicitly, given any ε > 0,
there is N ∈ N0 such that (∆x)n(∆k)n is for all n ≥ N bounded by

(∆x)n(∆k)n =

(∫∞
−∞ x2|Dn(x, 0;σ)|2dx

∫∞
−∞ k2|D̂n(k;σ)|2 dk

2π

)1/2

∫∞
−∞ |Dn(x, 0;σ)|2dx

≤ (1 + ε)
1√

3π1/4
(n + 1

2)1/4 . (51)

Proof. In Eq. (51), we can omit the infimization over the shift parameters a
and b in Eq. (50), because the HDAF kernel and its Fourier transform are
even functions. From the functional form of the HDAF integral kernel given
in Eq. (2) or Eq. (12) and its Fourier transform Eq. (4), we conclude that the
uncertainty product is independent of the length parameter σ. Therefore, we
can set σ =

√
2n + 1 and use that D̂n(k;

√
2n + 1) is a sequence of uniformly

bounded functions that converges almost uniformly to the ideal window with
bandwidth 2. Consequently, by the unitarity of the Fourier transform and by
dominated convergence using the bound given in Eq. (23), we obtain

lim
n→∞

∫ ∞

−∞
|Dn(x, 0;

√
2n + 1)|2dx = lim

n→∞

∫ ∞

−∞
|D̂n(k;

√
2n + 1)|2 dk

2π
=

1
π

(52)

and
lim

n→∞

∫ ∞

−∞
k2|D̂n(k;

√
2n + 1)|2 dk

2π
=

1
3π

. (53)
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With the scaling of σ used here, the only factor in the uncertainty product that
contributes to its asymptotic growth with n is∫ ∞

−∞
x2|Dn(x, 0;

√
2n + 1)|2 =

∫ ∞

−∞

∣∣∣ d

dk
D̂n(k;

√
2n + 1)

∣∣∣2 dk

2π
(54)

=
2(n + 1

2)2n+2

π(n!)2(2n + 1)2n+ 3
2

Γ
(
2n + 3

2

)
(55)

≤ 1
π3/2n2n+1

(
n + 1

2

)2n+ 3
2 e−

1
2 e

1
24n+6 ≤ 1

π3/2

√
n + 1

2e
1

24n+6 . (56)

As usual, we have used simple inequality (1+ y
n)n < ey for y > 1 and Eq. (22) in

the last two steps. The last inequality, together with the convergence of Eq. (52)
and Eq. (53) as well as that of the marginal correction term e

1
24n+6 → 1 prove

Ineq. (51).

3.5 Large-Order Behavior of the Scaled HDAF Kernel

To estimate the scaled HDAF kernel Dn(x, 0;
√

2n + 1σ) for large n, we follow
ideas of asymptotic analysis in the evaluation of the integral in Eq. (11).

Theorem 3.12. The n →∞ asymptotics of the HDAF kernel are given by

Dn(x, 0;
√

2n + 1σ) =

√
2
π

(n + 1
2)n+ 1

2

n!
e−(n+ 1

2
) sin(x/σ)

x
e
− x2

(8n+4)σ2 + Fn(x;σ) ,

(57)
with an error term Fn that is bounded such that for every ε > 0 there is an
N ∈ N0 satisfying

|Fn(x;σ)| ≤ 1 + ε

π|x|
min{|x|

σ
, 1}

√
lnn√
n + 1

2

(58)

for every n ≥ N .

Proof. After a change of variables, we have

In(x;
√

2n + 1σ) = (n + 1
2)n+1

∫ ∞

0
sin(

tx

σ
)t2n+1e−(n+ 1

2
)t2 dt (59)

= (n + 1
2)n+1e−(n+ 1

2
)

∫ ∞

−∞
sin(

tx

σ
)e−(2n+1)(t−1)2 dt + En(x;σ) , (60)

with an error term that is bounded by the sum of three contributions

|En(x;σ)| ≤ (n + 1
2)n+1

[
∆1(x;σ) + ∆2(x;σ) + ∆3(x;σ)

]
(61)
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that arise by splitting the correction in integrals over three separate domains,

∆1(x;σ) =
∫ 1−τ

−∞
e−(n+ 1

2
)e−(2n+1)(t−1)2 dt (62)

∆2(x;σ) =
∫ 1+τ

1−τ
| sin(

tx

σ
)|
∣∣t2n+1e−(n+ 1

2
)t2 − e−(n+ 1

2
)e−(2n+1)(t−1)2

∣∣ dt (63)

∆3(x;σ) =
∫ ∞

1+τ
t2n+1e−(n+ 1

2
)t2 dt (64)

with an as yet unspecified split point at distance 0 < τ < 1 from the center of
the Gaussian in the integrand. The first error term can be estimated directly
with Ineq. (21) and gives

∆1(x;σ) =
e−(n+ 1

2
)e−(2n+1)τ2

(2n + 1)
(
τ +

√
τ2 + 4

π(2n+1)

) . (65)

The second one involves Ineq. (17) and Ineq. (18) with x = 1− τ and y = 1 + τ ,
followed by extending the domain of integration to the entire real line,

∆2(x;σ) ≤ max
1−τ≤t≤1+τ

{
| sin(

tx

σ
)|
}∫ 1+τ

1−τ
e−(n+ 1

2
)

(
e
−(n+ 1

2
)(1+ 1

(1+τ)2
)(t−1)2

−e
−(n+ 1

2
)(1+ 1

(1−τ)2
)(t−1)2

)
dt (66)

≤ max
1−τ≤t≤1+τ

{
| sin(

tx

σ
)|
}√ π

n + 1
2

e−(n+ 1
2
)

(
1√

1 + 1
(1+τ)2

− 1√
1 + 1

(1−τ)2

)
.

To bound the third error term, we use again Ineq. (19) and Ineq. (21), resulting
in

∆3(x;σ) ≤ (1 + τ)2n+1e
(n+ 1

2
)
(

1
(1+τ)2

−2
) ∫ ∞

1+τ
e−(n+ 1

2
)(t− 1

1+τ
)2 dt

≤ (1 + τ)2n+1

n + 1
2

e
(n+ 1

2
)
(

1
(1+τ)2

−2
)

e−(n+ 1
2
)(1+τ− 1

1+τ
)2

1 + τ − 1
1+τ +

√
(1 + τ − 1

1+τ )2 + 4
π(n+ 1

2
)

.

(67)
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Collecting the terms,

|En(x;σ)| ≤ (n +
1
2
)n+ 1

2 e−(n+ 1
2
)

(
1√

4n + 2
e−(2n+1)τ2

τ +
√

τ2 + 4
π(2n+1)

+
√

π(1 + τ) min{|x
σ
|, 1}

(
1√

1 + 1
(1+τ)2

− 1√
1 + 1

(1−τ)2

)

+
1√

n + 1
2

(1 + τ)2n+1e
(n+ 1

2
)( 1

(1+τ)2
−1)

× e−(n+ 1
2
)(1+τ− 1

1+τ
)2

1 + τ − 1
1+τ +

√
(1 + τ − 1

1+τ )2 + 4
π(n+ 1

2
)

)
. (68)

Choosing τ = cq
n+ 1

2

≡ c
rn

with some fixed c > 0 and the abbreviation rn :=√
n + 1

2 , we can further estimate

|En(x;σ)| ≤ (n +
1
2
)n+ 1

2 e−(n+ 1
2
)

(
e−2c2

2(c +
√

c2 + 2
π )

+
√

π(1 +
c

rn
) min{|x|

σ
, 1}1

4

( 1
(1− c

rn
)2
− 1

(1 + c
rn

)2
)

+
(1 + c

rn
)2n+1e−2crn(1+ c

rn
)−3

e
−c2(1+ 1

(1+ c
rn

)2
)2

c(1 + 1
(1+ c

rn
)2

) +
√

c2(1 + 1
(1+ c

rn
)2

)2 + 4
π

)
. (69)

The middle term comes from the inequality√
1 + y −

√
1 + x ≤ y − x

2
√

1 + x
(70)

with y = (1 − c
rn

)−2 and x = (1 + c
rn

)−2 applied to the numerator and some
elementary estimates in the denominator; the last term comes from

1 + τ − 1
1 + τ

≥ τ
(
1 +

1
(1 + τ)2

)
. (71)

To adjust the leading order of the three error contributions, we replace the
constant c by the sequence cn =

√
1
2 ln(nσ

|x| ) for |x|
σ < 1 and otherwise cn =√

1
2 lnn.
Inserting this in Ineq. (69) shows that independently of x and σ, the first

and third term decay faster than the middle term. Consequently, for every ε > 0
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there is an N > 0 such that for each n ≥ N we have

|En(x;σ)| ≤ (1 + ε) min{|x|
σ

, 1}
√

π

√
1
2 lnn√
n + 1

2

(n +
1
2
)n+ 1

2 e−(n+ 1
2
) . (72)

To obtain this bound from Ineq. (69), we have again estimated the middle term
using 1

(1−τ)2
− 1

(1+τ)2
≤ 4 τ

(1−τ)3
and bounded the denominator by a constant for

sufficiently large n.
Now we perform the Fourier integral in Eq. (60) and obtain

Dn(x, 0;
√

2n + 1σ) =

√
2
π

(n + 1
2)n+ 1

2

n!
e−(n+ 1

2
) sin(x/σ)

x
e
− x2

(8n+4)σ2 + Fn(x;σ) ,

with the final error bound

|Fn(x;σ)| = 2
πn!|x|

|En(x;σ)| ≤ 1 + ε

π|x|
min{|x|

σ
, 1}

√
lnn√
n + 1

2

(73)

that is valid for any given ε > 0 after a sufficiently large order n is reached.

Remark 3.13. The windowed sinc function appearing in Eq. (57) differs from
the so-called Gaussian-sinc-DAF [10] only by a constant factor that can be shown
to be arbitrarily close to one using the Stirling-Robbins estimates Ineq. (22). In
the limit n →∞, Fn vanishes and Eq. (57) converges to the well known Fourier
transform of the ideal low-pass filter

lim
n→∞

Dn(x, 0;
√

2n + 1σ) =
sin(x/σ)

πx
(74)

with a cut-off frequency of 1/σ. If error bounds are not desired, we can derive
this limit by applying a slightly different scaling of σ with

√
2n to Eq. (12) in

combination with the scaling limit [11, 22.15.4] of Hermite polynomials.

4 Conclusion

In this paper, we have analytically verified previous, numerical evidence that
suggests the use of HDAFs as arbitrarily controllable band-pass filters. The
properties we demonstrated were that 1) by proper scaling, HDAFs of order n
approximate the so-called “ideal window”, pointwise bounds show the conver-
gence is uniform at a rate of n−1/2, up to a transition region that asymptotically
decays in width at least as 1

σ

√
lnn/n; 2) HDAFs exhibit a high degree of reg-

ularity including Gaussian decay in both time and frequency domains; and 3)
the growth of the Heisenberg uncertainty product for HDAFs is asymptotically
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bounded by a constant times n1/4. Although there was substantial computa-
tional evidence to support the conjecture that the HDAFs did, indeed, satisfy
these conditions, an analytical demonstration was lacking [9]. At the same time,
we were lacking a simple prescription for choosing the parameters to control the
behavior of HDAF band-pass filter. The strategy we followed in the present
paper was to examine the HDAF in the frequency domain in order to obtain
quantitative conditions governing the choice of the parameters n and σ.

In addition, we have obtained an asymptotic relation between the HDAF
integral kernel and a windowed sinc function that has proved highly useful in nu-
merical applications and is known as the Gaussian-sinc-DAF [10], a sinc function
windowed by a Gaussian envelope. Such a relationship has long been suspected,
and the present result explains how it comes about.

Finally, HDAFs can be used for converting a signal from analog to digital in
a customary two-step process of filtering and sampling. Instead of applying a
simple high-frequency cut-off to an analog signal, we convolve it with an HDAF
integral kernel and thus effectively truncate it in the frequency domain. While
there remains an unwanted, higher frequency component, we can suppress its
contribution to achieve any desired level of attenuation. The benefit of this
procedure is the numerical robustness guaranteed by the Gaussian decay of
HDAFs in both domains. For such HDAF-filtered signals, the results obtained
here can be combined with an approximate sampling theorem [19, 20], which is
anticipated to have a wide range of applications, in particular in the numerical
solution of linear and non-linear ordinary and partial differential equations.
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Yûsaku Komatu, Rep. Statist. Appl. Res. Un. Jap. Sci. Engrs., 4, 110,
1956.

[17] H. Robbins, A remark on Stirling’s formula, Amer. Math. Monthly, 62, 26,
1955.

[18] C. Chandler and A.G. Gibson, Uniform approximation of functions with
discrete approximation functionals, J. Approx. Theory, 100, 233–250, 1999.

[19] L. Qian, On the regularized Whittaker-Kotel’nikov-Shannon sampling for-
mula, Proc. Amer. Math. Soc., 131, 1169–1176, 2002.

[20] B. G. Bodmann, A. Melas, M. Papadakis, Th. Stavropoulos, Analog to
digital, revisited: Controlling the accuracy of reconstruction, Samp. Theory
Signal Image Process., to appear, 2006.


