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ABSTRACT

In this paper, we propose a novel one-class classification
method to segment neurons. First, a new criterion to select
a training set consisting of background voxels is proposed.
Then, a discriminant function is learned from the training
set that allows determining how similar an unlabeled voxel
is to the voxels in the background class. Finally, foreground
voxels are assigned as those unlabeled voxels that are not
classified as background. Our method was qualitatively and
quantitatively evaluated on several dataset to demonstrate its
ability to accurately and robustly segment neurons.

1. INTRODUCTION

Neurons are the main part of the nervous system. They allow
processing and transmission of information. Thus, in order to
understand the neuronal process at the cellular level, it is nec-
essary to develop mathematical models allowing simulation
of the neuronal function. The first step of this process is the
segmentation of the neuron from the background in imaging
data. Manual segmentation requires an excessive amount of
effort due to the large amount of data and is likely to suffer
from human errors. Therefore, it is necessary to develop au-
tomatic methods for the segmentation of neurons. The main
challenges to address when developing a neuron segmenta-
tion algorithm are: (i) irregular cross sections (i.e., not semi-
elliptical cross sections such as those of vessels) of dendrites
due to structures attached to the dendrites (spines); (ii) vari-
ability in the size of the dendrites to be segmented; (iii) the
radius of thin dendrites can be as small as one voxel (depend-
ing on the voxel size); (iv) thin dendrites usually have low
contrast; (v) contrast variation across different dataset due to
different acquisition modalities; and (vi) noise.

Many approaches have been proposed to solve this seg-
mentation problem including machine learning algorithms.
Santamaria et al. [1] used the eigenvalues of the Hessian ma-
trix as features to train a support vector machine (SVM) clas-
sifier where positive samples correspond to dendrites while
background corresponds to negative samples. Gonzalez et al.
[2] used 3D steerable filters to create feature vectors to train
an SVM classifier. Recently, Jimenez et al. [3] proposed to

use isotropic low pass, high pass and Laplacian filters to com-
pute a set of features which are trained with an SVM classifier
to segment neurons. The main limitation of these approaches
is the assumption that the training and testing samples follow
the same distribution, which may not be true due to the large
variety in dataset (there are three different imaging technolo-
gies and preparations with various resolutions and labeling
methods [4]). Hence, these methods require re-training when
the assumptions are not satisfied. Furthermore, due to the
variability in the size of the dendrites, these approaches usu-
ally have difficulties in segmenting thin dendrites. For a com-
plete review of neuron segmentation algorithms see [5, 6].

We propose a one-class classification method for the seg-
mentation of dendrites and axons. First, a Laplacian filter
is used to detect a training set consisting of voxels belong-
ing to the background. These voxels are used to train a dis-
criminant function which allows determining how similar an
unlabeled voxel is to the voxels in the background class. Fi-
nally, the voxels that are rejected as background are labeled
as foreground. Our contributions are: (i) a novel one-class
classification approach to segment the background. To the
best of our knowledge, this is the first attempt to segment the
neuron by using one-class classification in confocal, multi-
photon, and bright-field microscopy images; (ii) a novel cri-
terion to easily select a training set of background voxels by
using an isotropic Laplacian filter. Laplacian filters are mostly
used for edge or interface surface detection. We demonstrate
with our results that background detection is more accurate in
this type of image. (iii) a novel implicit discriminant function
that allows the enhancement of the background using a single
scale. Previous approaches [7] used the feature vector to cre-
ate explicit functions which were analyzed at multiple scales
to enhance tubular structures.

The remainder of the paper is organized as follows: in
Sec. 2 we describe the method for neuron segmentation, Sec.
3 presents results in real dataset, and we present our conclu-
sions in Sec. 4.

2. METHODS

Algorithm 1 describes the proposed method One-Class Clas-
sification for SEgmentation of Neurons (OCCSEN). In this



section, each step of our approach is explained in detail.

Algorithm 1 OCCSEN
Input: A 3D image stack I and a radius σ
Output: Label 0 for background and 1 for neurons

Step 1: Select a training set of background voxels
Step 2: Extract local shape information (features)
Step 3: Estimate discriminant function
Step 4: Segment neurons
Step 5: Post-process the segmentation result

Step 1: The Laplacian operator has been widely used to
extract edges by detecting zero crossings. In this paper, the
isotropic windowed Laplacian operator is used to identify
voxels belonging to the background of the 3D image stack
I . First, the Laplacian filter is constructed in the frequency
domain as:

F̂Ln,k(ξ) = −‖ξ‖2F̂L(c2n,k‖ξ‖2), (1)

where F̂L(x) = Pn(x) exp
−x, x > 0 is a low pass filter

(Ozcan et al. [8]), Pn(x) =
∑n
i=0 x

i/i! is the nth or-
der Taylor polynomial for the exponential function and
cn,k =

√
2n+ 1/(

√
2kπ) is a constant that controls the

transition band and the cut-off frequency of the filter. The
parameters n and k play an important role in the design of
the filter; n controls the transition band with large values cor-
responding to small transitions and k determines the cut-off
frequency. Thus, the Laplacian LIn,k of the 3D image stack I
is given by:

LIn,k = F−1{F̂Ln,k(ξ) · Î(ξ)}, (2)

where F−1 is the inverse Fourier transform and Î is the
Fourier transform of the 3D image stack I .

We assume that a cross section profile of a dendrite nor-
mal to the orientation of the centerline reaches its maximum
intensity value in the center of the dendrite and the intensity
decreases from the center to the boundary. Note that a typical
3D image stack of a neuron usually satisfies these assump-
tions. Then, the Laplacian of the 3D image stack (Eq. (2))
has the following properties (Ozcan et al. [8]): (i) its val-
ues are close to zero at the boundary of the neuron; (ii) it is
negative inside the neuron; (iii) it is positive near the exterior
of the neuron; and (iv) it produces oscillations between posi-
tive and negative values on the exterior of the neuron. From
properties (ii) and (iv), any voxel with positive response to the
Laplacian operator belongs to the exterior of the neuron. In
addition, from properties (i) and (iii), there are positive values
close to the boundary of the neuron which is important to have
a representative training set of background voxels. From the
previous observations, a training set B of background vox-
els is selected by using two different scales k1 and k2 for the
Laplacian filter:

B = {v |
(
LIn,k1(v) > 0

)
∨
(
LIn,k2 > 0

)
}, (3)

where v is a voxel in I . The frequency content of thick den-
drites predominantly resides in low frequencies while thin
dendrites occupy more high frequencies. Hence, we cus-
tomize the filters to suit the anticipated sizes of dendrites
by adjusting their cut-off frequency: by selecting a small
factor k ∈ (0, 0.2), we focus only on low frequencies and
thus capture thick dendrites. Increasing the value of k allows
detection of thinner structures. Note that two scales are used
to accurately detect thin and thick neurons. Selecting the
appropriate value for k is important to obtain a good training
set of background voxels.
Step 2: Local shape information from the 3D image stack
is captured by using the eigenvalues (|λ1| ≤ |λ2| ≤ |λ3|)
of the Hessian matrix Hσ

ij(v) = ∂2(I∗Gσ)
∂vi∂vj

(v) where Gσ is
a Gaussian filter at scale σ. Frangi et al. [7] demonstrated
that the eigenvalues of the Hessian matrix are good features
to enhance tubular structures (TS) from other structures. For
example, if |λ1| ≈ 0, |λ1| � |λ2| and λ2 ≈ λ3, indicate an
ideal TS; if λ1 ≈ λ2 ≈ λ3 ≈ 0, a noisy structure is present.
Frangi et al. also demonstrated that the parameter σ is well
suited to detect a TS with radius σ. Specifically, a small scale
σ can detect thin TS while large scales are more suitable for
thick TS. Note that there is a correlation between the param-
eters σ of the Gaussian filter and k of the Laplacian filter for
detecting structures of the same size.
Step 3: By learning the different configurations of eigen-
values, explicit cost functions can be constructed to enhance
TS. Those discriminant functions use the property that for
an ideal tubular structure λ1 is low and λ2, λ3 have large
negative values [7]. In this work, we propose to indirectly
segment dendrites by creating a discriminant function from
the empirical distribution of the training set B of background
voxels which assigns values close to one for voxels in the
background and values close to zero in the foreground. A
three step approach is used to generate the discriminant func-
tion: (i) compute the empirical distribution of the eigenvalues
corresponding to the training set B; (ii) transform the distri-
bution using a monotonic function to create a discriminant
function; and (iii) smooth the discriminant function.
Estimate background distribution: The distribution of the
two eigenvalues1 λ2(v) and λ3(v) from the training set B
provides information on which points should be assigned
with high probability to belong to background. The higher
the value of the distribution, the more likely the point belongs
to the background. Note that there are enough sample points
to accurately approximate the background distribution since
the number of points in the detected training set B is at least
50% of the points in the 3D image stack I . The distribution
of the eigenvalues λ2(v) and λ3(v) of voxels in B is approx-
imated (Eq. (3)) using a 2D histogram. The histogram is

1We use only the two largest eigenvalues since they provide enough shape
information and we avoid the additional computational effort to compute the
3D distribution.



computed as:

P (i, j) = c([b1,i, b1,i+1)× [b2,j , b2,j+1)), (4)

where c(R) represents the number of feature vectors that
belong to the two-dimensional interval R, bs,k = ms +
kMs−ms

N ,N is number of bins for the histogram, andms,Ms

are the minimum and maximum values of the s−feature, re-
spectively.
Transform the background distribution: From the empirical
distribution P of the eigenvalues of the training set, a discrim-
inant function C is created with values in [0,1) by applying
the transformation

C(i, j) =
1− exp−P (i,j)

1 + exp−P (i,j)
. (5)

This transformation assigns values close to one to any bin
with P (i, j) ≥ 6 while value zero to bins with P (i, j) = 0.
Smoothing the discriminant function: A disadvantage of
histograms is that they result in piecewise constant func-
tions. Hence, C is such a function. Those discontinu-
ities are smoothed by convolving C with a Gaussian kernel
Cs = C ∗Gσs .
Step 4: The following function is used to enhance the back-
ground:

EB(v) =

{
1 if v ∈ B

Cs(Q(λ2(v), λ3(v))) otherwise , (6)

where Q(λ2(v), λ3(v)) indicates the bin position of (λ2(v),
λ3(v)). Note that the discriminant function Cs is applied only
to the voxels that were not selected in the training set B (Eq.
(3)). The background is segmented by applying a threshold
as:

SB(v) =

{
1 if EB(v) > T
0 otherwise , (7)

which the user can vary to optimize results. The threshold T
is automatically selected by computing the value Cs for each
voxel in the training set B and selecting the T that correctly
classifies 99% of the training set as background. Finally,
dendrites are detected as those voxels that are rejected as
background (SD = ¬SB).
Step 5: The segmentation SD may still identify false den-
drites which usually have few voxels. They are detected
by identifying connected components using a 26-connected
neighborhood and disregarding components with less than
cm voxels.

3. RESULTS

We qualitatively and quantitatively evaluated the performance
of the proposed approach on numerous dataset. The DIA-
DEM dataset [4] was used to evaluate our algorithm since it is
a representative sample of data. We report results for three out

of six dataset (Neocortical Layer 1 Axons (NL), Neuromus-
cular Projection Fibers (NP) and Olfactory Projection Fibers
(OP)) due to space limitations.

Parameter Settings: There are seven parameters (n, cm,
N , σs, k1, k2, and σ). We choose n = 60 because it provides
a small transition band, cm = (4 ∗ σ)3 to remove connected
components with few voxels, the parameter N depends on
the size of the training set B: the larger the training set, the
smaller the bin size to obtain a good approximation of the
distribution. Hence, we randomly select 1M samples from
B and fix N = 500, we set σs = 5 because it is an ade-
quate value for the size of the histogram, k2 = 1.5k1 because
it allows detection of thicker dendrites and we have experi-
mentally estimated the relationship k1 ≈ 0.5913σ−1 used to
detect structures of the same size between σ and k1. Thus, all
the parameters are fixed except σ. The user has to select the
parameter σ to perform segmentation. The parameter σ al-
lows selection of the sensitivity to the radius to detect. Thus,
if we want to detect dendrites with r voxels radius, we should
select a σ in the range [r − ε, r + ε] where ε is a small value.

We compare our method with the segmentation method of
Jimenez et al. [3] by comparing the extracted centerline. The
parameter settings for the segmentation method of Jimenez et
al. were optimized for each dataset to obtain the best segmen-
tation. Their centerline extraction method depends heavily on
the accuracy of the segmentation. To quantitatively measure
the performance of our method, we use the metrics used in
[3], namely Recall = SC/(SC + Sm) and Miss-Extra-Score
(MES) = (SG−Sm)/(SG+Se), where SC is the total length
of the correct segments by each algorithm, SG is the total
length of the manual reconstruction. The symbols Sm and Se
denote the total length of missing and extra segments in the
automatically traced centerline, respectively. The dendrites
from the OP dataset have small radii between 1 and 4 voxels
and those from the NM dataset have high radii between 3 and
10 voxels. Hence, we use small σ ∈ {1.00, 1.25, 1.50, 1.75}
for OP segmentation and large σ ∈ {3.0, 4.0, 5.0} for NM
segmentation. The σ resulting in the best segmentation re-
sults was used for comparison. Tables 1 and 2 summarize the
performance results for OP and NP dataset. Our segmenta-
tion results improve the average Recall and MES, indicating
that our method provides a more accurate segmentation of the
dendrites than method A. Figure 1 depicts qualitative results
in a 3D image stack from the NL dataset. Figure 1(a) depicts
a volume rendering of the 3D image stack. Note that there is
very low contrast for thin dendrites. Figures 1(b,c) depict the
segmentation for Jimenez et al. and our approach (σ = 2),
respectively. Note that our approach can capture the low con-
trast dendrites while Jimenez et al. fails to segment them.

4. CONCLUSION

In this paper, we presented a novel one-class classification
method to segment neurons. Our qualitative and quantita-
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Fig. 1. (a) Volume rendering of a 3D stack from NL dataset; (b) segmentation of Jimenez et al. [3]; and (c) our segmentation.

Table 1. Performance evaluation on the OP dataset (A:
Jimenez et al. [3], B: OCCSEN.)

Recall MES
Stack\method A B A B

1 0.94 0.96 0.93 0.94
3 0.74 0.92 0.74 0.88
4 0.88 0.91 0.83 0.81
5 0.74 0.84 0.71 0.78
6 0.95 0.98 0.94 0.96
7 0.94 0.95 0.94 0.94
8 0.98 0.99 0.97 0.97
9 0.82 0.91 0.78 0.81

Average 0.87 0.93 0.85 0.89

Table 2. Performance evaluation on 30 volumes from the NP
dataset (A: Jimenez et al. [3], B: OCCSEN.)

Recall MES
Stack\method A B A B

Average 0.94 0.97 0.93 0.95

tive results shows that our method can effectively segment
dendrites. The main advantages of our approach are: (i) it
works for a wide range of acquisition modalities; (ii) it can
accurately segment thick or thin dendrites; (iii) it requires
minimal user intervention; and (iv) the user can easily select
the correct value of σ if the likely size of dendrite is known.
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