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Abstract

In this work, we study analog-to-digital conversion and reconstruction out-

side of the strict r�egime of the sampling theorem for band-limited functions.

We consider signals that are only essentially band-limited, and allow analy-

sis and synthesis �lters to be approximations of ideal �lters. Our estimates

for the reconstruction error are directly calculated from properties of the

analysis and synthesis �lters, such as the pass-band and stop-band ripples,

the oversampling rate, and the decay properties of the two �lters.
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1 Introduction

The conversion between analog and digital signals is often associated with the
classical sampling theorem for band-limited functions ([31, 13, 30]). However,
practical implementations of these conversions realize the sampling theorem only
in an approximate sense: signals with �nite duration are not strictly bandlimited
(see, e.g. [8]), and the �lters used for analysis and reconstruction are usually only
approximations of ideal �lters ([27]); see also [22, Chapter 3] and [17, Section 4.4].
The main purpose of this work is to provide a measure for the reconstruction
error in a variety of practical applications. The function space we use to model
analog signals is the Sobolev space Hs(R), s > 1=2, because in many practical
situations one may wish to achieve a good accuracy for approximating both a
function and its derivatives. This is important for the discretization of numerical
solutions of ordinary or partial di�erential equations (see e.g. [31, 23, 11]).

In this work, we study the error resulting from the inversion of an analog-
to-digital conversion of a signal without imposing strict band-limitedness. The
sampling theory of non-bandlimited functions has a rather long history starting
with [21], (see e.g. [29, 8]). Large parts of multiresolution theory and approxi-
mations by shift-invariant subspaces can be placed in this context (e.g. [30, 10]).
When a function belongs to a shift-invariant space, it may under certain condi-
tions be reconstructed exactly from its samples (e.g. [3, 15, 16, 7, 1]). If exact
reconstruction is not guaranteed, then the best approximation of a given function
is obtained by orthogonally projecting to the shift-invariant subspace generated
by the sampling kernel. In many applications, the conversion between analog
and digital is implemented with �lters that do not provide the best approxima-
tion. For example, the reconstruction may simply interpolate the sample values
of a function by means of (linear) �ltering with an interpolating or a quasi-
interpolating kernel (e.g [5, 26]). Here, we have calculated estimates for the
Sobolev norm of the reconstruction error directly from properties of the analysis
and synthesis �lters, such as the passband and stop-band ripples, the oversam-
pling rate, and the decay properties of the two �lters. These quantities usually
appear in engineering applications ([22, Chapter 3], [18, Chapter 6]). The re-
sults in this paper contain estimates for the maximal reconstruction error in the
Sobolev norm and also a lower bound for the error of the worst-case scenario.
Apart from numerical constants, the form of the upper and lower bounds for the
maximal reconstruction error are identical, which shows how the properties of
the analysis and synthesis �lters relate to the quality of reconstruction.

The conversion from analog to digital is accomplished by means of a �lter
Ka 2 Hs(R), s > 1=2, to which we refer as the analysis �lter. The digital-
to-analog conversion is accomplished by means of another �lter, K 2 Hs(R),
s > 1=2, for which we use the term synthesis �lter.

To describe the �lter speci�cations, we use the normalized Fourier transform
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de�ned on L1(R) by ĥ(�) :=
R
R
h(x)e�2�ix�dx for all � 2 R. After selecting a

pass-band/stop-band ripple 0 < r � 1
2 , we require that the analysis �lter satis�es

the inequalities

j1� bKa(�)j � r if j�j � 
� Æ1 (1)

j bKa(�)j � r if j�j � 
 (2)

for some 
 > 0 and 0 � Æ1 � 

2 . Commonly, 
 is referred to as the cut-

o� frequency, which is related to another concept in our analysis, the essential
frequency band-limit, 
�Æ1. The intervals f
�Æ1 � j�j � 
g form the transition
band of the analysis �lter.

The digitization process is mathematically modeled by the evaluation of the
samples of the convolution

~f := f � ~Ka

obtained on the points of a regular grid, where ~Ka := ( bKa)
_. The associated

analysis or sampling operator is de�ned by

f 7!
n
~f
� m
2


�o
m2Z

:

The latter sequence is square-summable. We will discuss this issue and the
boundedness of the sampling operator in the next section. We remark that this
sampling rate is higher than the one corresponding to the essential frequency
band [�
+ Æ1;
� Æ1].

To convert a digital signal to an analog one, we use a synthesis �lter K 2
Hs(R). As before, we require a maximal ripple in pass and stop bands,

j1� K̂(�)j � r if j�j � 
0 (3)

jK̂(�)j � r if j�j � 
0 + Æ2 ; (4)

for some 
0 > 0 and Æ2 � 0. The ripple of the synthesis �lter does not need to
be the same as that of the analysis �lter. However, for the sake of simplicity,
whenever we impose the ripple conditions throughout the rest of the paper, we
assume that the ripples of both �lters are equal. We use the terms transition
band and cut-o� frequency for the synthesis �lter in a similar fashion as we do
for the analysis �lter. We also assume that for any �lter (analysis or synthesis)
K 2 Hs(R) there exist M; c > 0, and a > 1

2 , such that

jK̂(�)j �M j�j�s�a ; for every j�j � c. (5)

This condition ensures that the tails in the frequency domain of both analysis
and synthesis �lters decay suÆciently fast for our estimates.



324 B. G. BODMANN, A. MELAS, M. PAPADAKIS AND TH. STAVROPOULOS

The conversion of a digital signal to an analog one can be viewed as \recon-
structing the original signal from its samples." This procedure is implemented
by the linear mapping f ~f( m2
 )gm2Z 7! frec, where

frec(x) :=
X
m2Z

~f
� m
2


�
K
�
x�

m

2


�
: (6)

When the sequence of sample values f ~f
�
m
2


�
gm2Z is square-summable, using

Minkowski's inequality shows that the above series converges with respect to
the Sobolev norm k�ks;2. The operator de�ned by

famgm2Z 7!
X
m2Z

amK(� �
m

2

) ;

with
P

m2Z jamj
2, is called the synthesis operator. For the purposes of this

paper, we also refer to this operator as the reconstruction operator, especially
when am = ~f( m2
).

We now summarize the properties required of analysis and synthesis �lters.

De�nition 1.1. An analysis �lter Ka is a function that belongs to Hs(R),
s > 1=2, its Fourier transform is bounded and satis�es (5), and there exist

 > 0 and 0 � Æ1 <



2 so that bKa satis�es (1) and (2) with some r � 1=2.

A synthesis �lter K is a function that belongs to Hs(R), s > 1=2, its Fourier
transform is bounded, satis�es (5), and there is 
0 > 0 and 0 � Æ2 such that K̂
satis�es (3) and (4) with some r � 1=2.

Examples 1.2. Besides the sinc function, which is adjusted for bandwidth 2
,
sinc
(x) :=

sin(2�
x)
�x , x 2 R, there are many classes of functions that qualify for

analysis and synthesis �lters, e.g., splines ([2, 27, 9]), fractional splines ([28]),
Chebyshev �lters ([18]), etc. Apparently, according to (1) and (3), both �lters
are low pass �lters. Pairs of �lters for analysis and reconstruction have also
been used in frame theory ([19, 20]). We may also use the Gaussian g
(x) :=p

�
2
e

��2
2x2=2, x 2 R for digitization. Note that the inection points of the
Fourier transform of this Gaussian �lter are at � = �
=2. This motivates us to
choose the cut-o� frequency to be equal to 
 and Æ1 = 
=2 for r = 1

2 . Then, we
could pick g2
 as a synthesis �lter, where again we take r = 1=2, 
0 = 
 and
Æ2 = 
=2. We remark that the practical length in the spatial domain of this
Gaussian synthesis �lter, that is (

R
R
g2
(x)

2x2dx)1=2, is smaller than that of the
analysis �lter, g
.

The above-de�ned requirements for analysis and synthesis �lters are suÆ-
ciently general to accomodate typical limitations in the design of acquisition and
reconstruction devices. For example, due to the inertia of a sampling apparatus,
it may acquire localized averages rather than point values ([27]). In addition,
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signal acquisition is in practice time/space-limited, and thus analog signals can
only be approximately band-limited. For the same reason, real-world analog
�lters are not ideal, and so aliasing errors must be addressed as part of signal
acquisition and reconstruction.

The requirements in the design of analysis and synthesis �lters may be even
more stringent than the ones in our de�nition. An additional, common assump-
tion is that of rapid decay of both �lters in the spatial domain. One motivation
for the use of short synthesis �lters is the need to avoid visual artifacts, such
as ringing in image applications ([24]). Another reason is that, in real-world
applications, one can never use in�nitely many samples for signal reconstruction
as in Equation (6). Filters with good spatial decay help suppress the error due
to truncation of the sampling sequence f ~f

�
m
2


�
gm2Z (see e.g. [25]).

To achieve good spatial decay of a �lter while retaining frequency speci-
�cations, one might wish to select analysis and synthesis �lters as compactly
supported Cb (with b 2 Z+ or b =1) functions in the frequency domain. As b
increases, the spatial localization of these �lters improves; for b =1 they belong
to the Schwartz space. It is also possible to construct such �lters for arbitrarily
small values of Æ1 or Æ2, thus enhancing their frequency selectivity at the cost of
an increase in �lter length.

The trade-o� between �lter length and transition bandwidth motivated the
study of the mathematical properties of a class of �lters introduced in [14]. These
functions are called Hermite Distributed Approximating Functionals (HDAFs)
and have Gaussian decay in both domains ([6]). Furthermore, they have very
good time-frequency localization for a given frequency selectivity, as their Hei-
senberg uncertainty product is asymptotically proportional to r�1=2, where r
is the pass-band ripple as well as stop-band attenuation, and the order of the
HDAF is chosen so that the transition bandwidth is proportional to r. With
the general error estimates derived here, we want to provide a tool that helps in
evaluating the performance of these and other approximations of the ideal �lter
for realistic sampling and reconstruction applications.

The main goal of our work is to establish �lter properties that are useful
to a practicioner and that provide a bound for the reconstruction error in the
form kf � freck

2
s;2 � Akfk2s;2 + B�2 whenever f 2 H2(R) satis�es the condi-

tion
R
[�
+Æ1;
�Æ1]c

jf̂(�)j2(1 + �2)sd� < �2 for its essential frequency support.
Moreover, we investigate how the pass and stop band ripples, the transition
bandwidth, and the error due to the tails of the �lters a�ect the constants A
and B.

This paper is organized as follows. The statements of all our main results
are contained in Section 2, together with a discussion of their signi�cance. The
proofs of our results have been collected in Section 3.
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2 Main results

The speci�c goals of this work are: First, to obtain an upper bound for the
Sobolev-norm of the di�erence f � frec referred to as the reconstruction error
of f ; second, to show that this upper bound cannot be improved apart from
changing constant factors when considering �lters that are useful for practical
purposes; third, to show how this upper bound can be made small by tuning
certain parameters that determine the performance of a �lter in engineering
applications.

To state our main result, we need some auxiliary functions. Let 
 = 
0.

Given f 2 Hs(R) and an analysis �lter Ka 2 Hs(R), we denote

A(�) :=
X
m 6=0

f̂(� + 2m
)cKa(� + 2m
); A0(�) := A(�) + f̂(�)cKa(�) : (7)

For any � � s, we write

C�;a(�) :=
X
m6=0

jcKa(� + 2m
)j2(1 + j� + 2m
j2)�;

C0;�;a(�) := C�;a(�) + jcKa(�)j
2(1 + j�j2)� :

Similarly, we de�ne C� and C0;� for a synthesis �lter K 2 Hs(R) in place of
Ka. We remark that all these series converge absolutely a.e. on R, due to the
hypothesis that both �lters and the original function belong to the Sobolev space
Hs. In addition, we denote

G(�) := 4j bKa(�)j
2 Cs(�)

(1 + j�j2)s
+ 2j1� bKa(�)K̂(�)j2 :

We recall from De�nition 1.1 that 0 � Æ1 �


2 and 0 � Æ2. Depending on

the value of Æ2, we divide the frequency domain in several regions: If Æ2 � 
, we
de�ne I0 := f� : j�j � minf
 � Æ2;
 � Æ1gg, I1 := f� : minf
 � Æ2;
 � Æ1g �
j�j � maxf
 � Æ2;
 � Æ1gg and I2 := f� : maxf
 � Æ2;
 � Æ1g � j�j � 
g.
Otherwise, if Æ2 > 
, we set I0 = f0g, I1 := f� : 0 � j�j � 
 � Æ1g, and
I2 := f� : 
� Æ1 � j�j � 
g.

For f 2 Hs(R), we adopt the notation y20, y
2
1, y

2
2 , y

2
3 for the integrals of the

restrictions jf̂(�)j2(1+j�j2)s on each one of the regions I0, I1, I2, and f� : j�j � 
g,
respectively.

2.1 Upper bounds for the reconstruction error

Theorem 2.1. Let Ka and K be analysis and synthesis �lters in Hs(R), with
some s > 1=2. Assume 
 = 
0, 0 � Æ1 � 


2 and 0 � Æ2. Then, for every
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f 2 Hs(R) the series expression (6) for frec converges in the Sobolev norm, and
the reconstruction error is bounded by the following inequality:

kf � freck
2
s;2 �

Z 


�

G(�)jf̂ (�)j2(1 + j�j2)sd�

+ 2

�
1 + 3 sup

j�j�

C�s;a(�) sup

j�j�

C0;s(�)

�
y23: (8)

In particular, we have

kf � freck
2
s;2 � sup

I0

G(�)y20 + sup
I1

G(�)y21 + sup
I2

G(�)y22

+2

�
1 + 3 sup

j�j�

C�s;a(�) sup

j�j�

C0;s(�)

�
y23 : (9)

Corollary 2.2. Assume that Ka and K are analysis and synthesis �lters as in
the preceding theorem and satisfy inequalities (1), (2), (3), and (4) for some
ripple r � 1=2, 0 � Æ1 �



2 , and 0 � Æ2 < 
. If f 2 Hs(R) satis�esZ
Ic0

jf(�)j2(1 + j�j2)sd� < �2 ; (10)

then

kf � freck
2
s;2 � A kfk2s;2 +B�2 (11)

with

A = 2

�
r2(2� r)2 + 2(1 + r)2 sup

I0

Cs(�)

(1 + j�j2)s

�
B = 2

�
1 + sup

I1[I2

j1� bKa(�)K̂(�)j2 + 2
 bKa

2
1

sup
I1[I2

Cs(�)

(1 + j�j2)s

+ 3 sup
j�j�


C�s;a(�) sup
j�j�


C0;s(�)

�
:

Proof. The assumption (10) implies that y21 + y22 + y23 � �2. The asserted in-
equality now follows from separately estimating G(�) in each term of the right

hand side of (9). For arguments � 2 I0 we have used j1� K̂a(�)K̂(�)j � (2� r)r,
whereas for � 2 Ic0, we have simply taken suprema in each interval.

Corollary 2.3. If Ka = sinc
 and the synthesis �lter K is as in the preceding
corollary, then for every f 2 Hs(R) satisfying (10) the inequality stated in
Corollary 2.2 can be simpli�ed by replacing B with

B = 2

�
1 + r2 +

2

(1 + (
� Æ2)2)s
sup
I1

Cs(�)

�
:
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Proof. Since bKa(�) = 1 for all � 2 [�
;
] and bKa vanishes outside [�
;
]
we have that I2 = f
g, supI1 j1 �

bKa(�)K̂(�)j � r and C�s;a(�) = 0 for all
� 2 [�
;
]. Now, using j�j � 
� Æ2 in I1 gives the desired estimate.

Remarks 2.4.
(i) We briey comment on the special case when the transition band for the

synthesis �lter is large. In case Æ2 � 
, we have I0 = f0g and thus y0 = 0. While
the bound in Theorem 2.1 is still meaningful, including this case in the stated
corollaries would require the signal norm to be small according to kfks;2 < �,
which is not of interest for practical purposes.

(ii) The choice of analysis and synthesis �lters in Corollary 2.3 has been
used in signal processing since it allows to �rst truncate the Fourier transform
of a signal, then sample it, and then reconstruct an approximation of the signal
using a synthesis �lter with a smooth Fourier transform, thus with good spatial
localization. In [27] splines, which are compactly supported in the spatial do-
main, have been proposed for synthesis �lters. For a result similar to Corollary
2.2, see [4]. Linear combinations of modulated Gaussians have also been pro-
posed as synthesis �lters ([25]) for reconstructing band-limited signals f from
their samples. Strohmer and Tanner ([25]) prove that with synthesis �lters of
this kind, using only a �nite number of samples of f to approximate frec gives
a pointwise reconstruction error that has fractional exponential decay in the
number of samples.

(iii) Specializing further, if f belongs to the Paley-Wiener space W
 :=
ff 2 L2(R) : f̂(�) = 0 for a.e. j�j � 
g, then we can choose � = 0. Selecting
Ka = K = sinc
 = (�[�
;
])

_ gives Æ2 = Æ1 = 0, r = 0 and Cs(�) = 0 for
� 2 [�
;
]. One can then immediately verify that frec is the exact reconstruc-
tion provided by the Classical Sampling Theorem ([12, Section 6.1]).

We now investigate how the value of the ripple r enters in the estimate
of the reconstruction error kf � frecks;2 when we use analysis and synthesis
�lters for which (1), (2), (3), and (4) hold. To formulate this result, we de�ne

c(
; s; a) := ( 2sM2


(2a�1) + 5s 2

) and p := 2a�1

a+s , where a >
1
2 .

Theorem 2.5. Let f be an arbitrary function in Hs(R), � > 0, 
 > 0 and
0 < Æ � 
=2 such that Z

j�j�
�Æ
jf(�)j2(1 + j�j2)sd� < �2 : (12)

Now, we assume that the following conditions hold:
(1) The analysis and synthesis �lters Ka and K satisfy (1), (2), (3), and (4)

with 
 = 
0 and some Æ1; Æ2 > 0 such that maxfÆ1; Æ2g = Æ.
(2) There exists a � s+ 1 such that jK̂(�)j � j�j�(a+s) for all j�j � 
 + Æ2.

In addition, we assume r < (2
)�(a+s).
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Then,

kf � freck
2
s;2 � Ar kfk2s;2 +B�2 ; (13)

where A and B are positive constants depending only on a, 
, s,
 bKa


1
, andK̂

1
. More precisely, we can choose

A = r(2� r)2 + 4(1 + r)2c(
; s; a)rp�1

and

B =2
�
1 + 2kKak

2
1

4s[3(1 + 9
2)skK̂k21 + c(
; s; a)]

[4 + 
2]s

+ 3
2r2



[3(1 + 9
2)skK̂k21 + c(
; s; a)rp] + (1 + (1 + r)kKak1)2

�
:

Remark 2.6. The hypotheses in the previous theorem may seem technical,
but in fact each of them relates to the digitization process. The maximum
allowable reconstruction error (in terms of the Sobolev norm) is prescribed. In
most cases the bandwidth 
 is also predetermined, e.g., in digital scanners or
audio streaming devices. What we actually propose is not to sample the original
signal at the critical rate, but rather to sample it at a higher rate according to
inequality (12). The merit of this oversampling technique will be discussed in
Remark 2.8(ii), because it requires the statement of Theorem 2.7. Inequality (13)
can be used to determine the requirements that the analysis and synthesis �lters
must meet, so that for an original analog signal satisfying (12) the reconstruction
error will not exceed the maximum allowable level.

2.2 Lower bound for the error of the worst case scenario

The last result we present shows that under certain additional mild conditions,
namely supj�j�
C�s;a(�) C0;s(�) < 1=4 and piecewise continuity of bKa and K̂,
the conclusion of Theorem 2.1 provides an upper bound of the reconstruction
error that cannot be improved, apart from changing constant factors. The addi-
tional conditions imply that the analysis and synthesis �lters generally provide
a good reconstruction of f . For the purposes of this, study a function h de�ned
on R is piecewise continuous, if there exist t1 < t2 < � � � < tq, so that the restric-
tions of h in the subintervals (�1; t1), (ti; ti+1) and (tq;1), where 2 � i � q�1,
are continuous, the one-sided limits of h exist and are �nite at every ti, and h
is right or left continuous at every ti. The most classical representative of the
class of �lters whose Fourier transforms are piecewise continuous but not con-
tinuous is the ideal �lter or sinc function. We remark that �lters with such
Fourier transforms are hardly useful to implementations due to their length in
the spatial/time domain. Therefore, the piecewise continuity assumption for K̂
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does not practically reduce the scope of the following result. As the reader can
directly verify from the proof of this theorem, its conclusion is still valid with
essential suprema of G replacing the suprema of G on the intervals I0, I1, and
I2, respectively, if the hypothesis of the piecewise continuity of K̂ is dropped.

Theorem 2.7. Assume that Ka andK are analysis and synthesis �lters, respec-
tively, satisfying the hypotheses of Theorem 2.1 and supj�j�
C�s;a(�)C0;s(�) <

1=4. Furthemore, assume that bKa and K̂ are piecewise continuous. Then, for
every selection of yi 2 R, i = 1; 2; 3; 4 and 0 < � < 1, there exists a real valued
f 2 Hs(R) with

y20 =

Z
I0

jf̂(�)j2(1 + j�j2)sd� y21 =

Z
I1

jf̂(�)j2(1 + j�j2)sd�

y22 =

Z
I2

jf̂(�)j2(1 + j�j2)sd� y23 =

Z
j�j�


jf̂(�)j2(1 + j�j2)sd� (14)

such that its reconstruction error is bounded below by

kf � freck
2
s;2 �

1� �

8

�
sup
I0

G(�)y20 + sup
I1

G(�)y21 + sup
I2

G(�)y22 + 2y23

�
: (15)

The previous theorem gives rise to some observations on how the properties
of the analysis and synthesis �lters a�ect the magnitude of the reconstruction
error.

Remarks 2.8.

(i) Comparing (15) in the previous theorem with (9) and in particular
with (11) we conclude that the e�ectiveness of the reconstruction of a func-
tion f 2 Hs(R) depends on the coeÆcients of y2i , i = 1; 2; 3; 4, provided, ac-
cording to Inequality (22), that a small enough ripple is selected to ensure that
supj�j�
C�s;a(�)C0;s(�) < 1=4 holds. Then, for a given tolerance � > 0, choosingP4

i=2 y
2
i < �2, we can obtain a small reconstruction error only if supI0 G(�) is

small. The reader may recall that we called I0 the e�ective frequency band of
f . To minimize supI0 G(�), both

bKa and K̂ must have a \plateau" very close to
1 throughout I0; this \plateau" yields the term r2(r+2)2 in the right hand side
of (11), demonstrating how important it is to keep the ripple small. However,
this is not enough: supI0 Cs(�) must be small as well. The latter quantity has a
bound that is proportional to rp. In conclusion, the factors that determine the
magnitude of the reconstruction error are the level of the tolerance � > 0 and the
size of the ripple r. With 
 = 
0, condition (3) implies that K̂'s \plateau" must
at least extend from �
 to 
. In fact, the same condition suggests that K̂'s
\plateau" may extend further out than [�
;
]. Choosing a large Æ1 decreases
the e�ective bandwidth for functions; on the other hand, large values of Æ1 and
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Æ2 allow to improve the decay of both the analysis and synthesis �lters in the
spatial domain.

(ii) So far we used the term \oversampling" when we referred to Inequality
(12). Now we need to clarify why sampling at a rate of 1

2
 when (12), or more
generally (10), are satis�ed amounts to oversampling. Consider an analysis �lter
Ka whose Fourier transform vanishes outside [�
;
]. Then, (9) and (15) imply
that, for every f 2 Hs(R)

kf � freck
2
s;2 � sup

I0

G(�)y20 + sup
I1

G(�)y21 + sup
I2

G(�)y22 + 2y23

but for some f0 2 Hs(R)

kf0 � (f0)reck
2
s;2 �

1

16
(sup
I1

G(�)y21 + sup
I2

G(�)y22) :

Unless we suppress the frequency content in I1 and I2, we address the worst-
case estimate giving rise to the lower bound of kf � frecks;2. On the other

hand, if we require that
R
Ic0
jf̂(�)j2(1 + j�j2)sd� < �2, then according to (13) the

reconstruction error can be made as small as we wish because it is bounded by
terms linear in r and in �2. This is the motivation for sampling the function at
a rate which is higher than that corresponding to the e�ective frequency band
I0.

3 Proofs of the main results

3.1 Upper bounds for the reconstruction error

Proof of Theorem 2.1. The 2
-periodization of f̂ bKa is A0, which belongs to
L1(R). So taking the samples of ~f at the points m

2
 is a meaningful process.
Furthermore, using the Cauchy Schwarz inequality gives

jA0(�)j =

�����X
m2Z

f̂(� + 2m
)(1 + j� + 2m
j2)s=2
cKa(� + 2m
)

(1 + j� + 2m
j2)s=2

�����
�

 X
m2Z

jf̂(� + 2m
)j2(1 + j� + 2m
j2)s

!1=2

(C0;�s;a(�))
1=2 :

Since bKa is bounded and s > 1=2 we obtain that C0;�s;a is uniformly bounded.
Therefore, A0 belongs to L

2([�
;
]) andZ 


�

jA0(�)j

2d� � sup
�2[�
;
]

C0;�s;a(�)kfks;2 ;
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so the sequence f ~f( m2
)gm2Z is square-summable. Consequently, the series

frec =
X
m2Z

~f(
m

2

)K(� �

m

2

)

converges in the norm k�ks;2.
Applying the Fourier transform on both sides of Equation (6) and periodizing

gives

f̂rec(�) =

"X
m2Z

~f
� m
2


�
e�2�i m

2

�

#
K̂(�) =

"X
m2Z

(f̂cKa)
_
� m
2


�
e�2�i m

2

�

#
K̂(�)

=
X
m2Z

f̂(� + 2m
)cKa(� + 2m
)K̂(�) = A0(�)K̂(�) a.e. in R :

The key observation for the calculation of the reconstruction error is given
by the following equation:

kf � freck
2
s;2 =

Z 


�

jf̂(�)�A0(�)K̂(�)j2(1 + j�j2)sd� (16)

+
X
l 6=0

Z 


�

jf̂(� + 2l
)�A0(�)K̂(� + 2l
)j2(1 + j� + 2l
j2)sd�:

Since 
 is the cut-o� frequency, we can view the second sum in the right
hand side of (16) as the overall aliasing error due to the conversion of f from
an analog to a digital signal and the inversion of this process.

Next, we obtain upper estimates for each one of the terms in the right hand
side of the previous equation. Observe that

A0(�)K̂(�) = A(�)K̂(�) + f̂(�) bKa(�)K̂(�) a.e.

Combining the previous identity with ja� bj2 � 2jaj2 + 2jbj2, for every a; b 2 C ,
we infer the following upper bound for the �rst summand of the right hand side
of (16):Z 


�

jf̂(�)�A0(�)K̂(�)j2(1 + j�j2)sd� � (17)

2

Z 


�

jf̂(�)j2j1� bKa(�)K̂(�)j2(1 + j�j2)sd� + 2

Z 


�

jA(�)K̂(�)j2(1 + j�j2)sd� :

Using the Cauchy-Schwarz inequality we obtain

jA(�)j2 � C�s;a(�)
X
l 6=0

���f̂(� + 2l
)
���2 �1 + j� + 2l
j2

�s
j�j � 
 a.e. (18)
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With (18) and jK̂(�)j2(1 + j�j2)s � supfC0;s(�) : j�j � 
g we haveZ 


�

jA(�)K̂(�)j2(1 + j�j2)sd� � sup

j�j�

C�s;a(�) sup

j�j�

C0;s(�)y

2
3 : (19)

Now we estimate the second term in the right hand side of (16):
The periodicity of A0 implies that this term is bounded above by the sum

2
X
l 6=0

Z 


�


�
jf̂(� + 2l
)j2(1 + j� + 2l
j2)s

+ jA0(�)j
2jK̂(� + 2l
)j2(1 + j� + 2l
j2)s

�
d� � 2y23 + 2

R 

�
 jA0(�)j

2Cs(�)d� :

(20)

However,Z 


�

jA0(�)j

2Cs(�)d� � 2

Z 


�

jf̂(�)j2j bKa(�)j

2Cs(�)d� + 2

Z 


�

jA(�)j2Cs(�)d� �

2

Z 


�

j bKa(�)j

2 Cs(�)

(1 + j�j2)s
jf̂(�)j2(1 + j�j2)sd� + 2

Z 


�

jA(�)j2Cs(�)d� : (21)

Using (18) again in estimating the second integral in (21), (19), and (20),
the de�nition of G, and (16) we deduce

kf � freck
2
s;2 �

Z
I0

G(�)jf̂(�)j2(1 + j�j2)sd� +

Z
I1

G(�)jf̂ (�)j2(1 + j�j2)sd�

+

Z
I2

G(�)jf̂(�)j2(1 + j�j2)sd� + 2 sup
j�j�


C�s;a(�) sup
j�j�


C0;s(�)y
2
3

+ 2

 
1 + 2 sup

j�j�

C�s;a(�) sup

j�j�

Cs(�)

!
y23

which immediately implies (8) and (9).

Next we investigate how the decay properties of bKa and K̂, the ripple r, and
the cut-o� frequency 
 of the analysis �lter impact the bounds for C�s;a and
Cs.

Proof of Theorem 2.5. First observe that (2) implies that for every j�j � 
 we
have

C�s;a(�) � r2
X
l 6=0

(1 + j� + 2l
j2)�s �
r2

2


Z
juj�


(1 + (� + u)2)�sdu

�
r2




Z 1

0
(1 + u2)�1du <

2r2



: (22)
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We now turn to Cs. We begin with � 2 I0. For these � and l 6= 0 we have
j� + 2l
j � 
 + Æ2. Due to (5), there exists a c;M > 0 such that jK̂(�)j �
M j�j�s�a, for every j�j � c, with a > 1=2. Without any loss of generality we
can assume c = 
+ Æ2, for if c > 
+ Æ2; then we can choose a constant M to be
greater than rca+s and have (5) valid for all j�j � 
+ Æ2. Thus, for all N 2 Z

+

we have

Cs(�) �
X
l 6=0

minfr2;M2j� + 2l
j�2s�2ag(1 + j� + 2l
j2)s

�
X

1�jlj�N

minfr2;M2j� + 2l
j�2s�2ag(1 + j� + 2l
j2)s

+
X

jlj�N+1

minfr2;M2j� + 2l
j�2s�2ag(1 + j� + 2l
j2)s: (23)

We want to �nd N such that minfr2; M2j�+2l
j�2s�2ag =M2j�+2l
j�2s�2a

for all � 2 I0, provided jlj � N + 1. Choosing N bigger than that would
unnecessarily increase the �rst of the two sums in the right hand side of (23).
So we conclude that for every N with the property prescribed above we haveX

1�l�N

minfr2;M2j� + 2l
j�2s�2ag(1 + j� + 2l
j2)s

�
X

1�jlj�N

r2(1 + j� + 2l
j2)s � 2Nr2(1 + [(2N + 1)
]2)s:

These inequalities show that the only way to control the growth of the �rst term
in the right hand side of (23) is to choose r suÆciently small. On the other
hand, t 7! t�2s�2a(1 + t2)s is decreasing, so we can obtain an integral estimate
for the second sum in (23). Thus,X
jlj�N+1

minfr2;M2j� + 2l
j�2s�2ag(1 + j� + 2l
j2)s

�M2
X

jlj�N+1

j� + 2l
j�2s�2a(1 + j� + 2l
j2)s

� M2

2


hR
juj�(2N+1)
 juj

�2s�2a(1 + juj2)sdu
i
� M2




hR1
(2N+1)
 u

�2a
�
1 + 1

u2

�s
du
i

� M2




hR1
(2N+1)
 u

�2a
�
1 + 1

u2

�s
du
i
� 2sM2




hR1
(2N+1)
 u

�2adu
i

� 2sM2


(2a�1) ((2N + 1)
)1�2a (24)

Let us assume that things worked so that a suÆciently large N with the
prescribed properties is selected also satisfying (2N + 1)
 > 1. Since a > 1=2
the second of the two terms in the right hand side of (23) is bounded above by
a quantity, which decreases as N increases. At this point the reader must recall
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that our goal is to �nd a suÆciently small upper bound for CsjI0 . This can be
accomplished if both summands in the right hand side of (23) are small. To this

e�ect we choose r < (2
)�(a+s), equivalently 2
 < r�
1

a+s . Then,

1

2
�

1

2

 
r�

1
a+s



� 1

!
Now, de�ne

N :=

$"
1

2

 
r�

1
a+s



� 1

!#
+ 1

%
:

Thus, (2N � 1)
 � r�
1

a+s which gives

(2N + 1)
 < r�
1

a+s + 2
 < 2r�
1

a+s :

This inequality allows us to derive upper bounds for both terms of (23). The
�rst of these two terms is bounded above by

2Nr2(1 + [(2N + 1)
]2)s �
1



(2N + 1)
r2(1 + [(2N + 1)
]2)s

�
1



2r�

1
a+s r2(1 + [(2N + 1)
]2)s :

Now, recall, r � 1
2 < 1, so 1 < r�

2
a+s . Then,

2Nr2(1 + [(2N + 1)
]2)s �
2



5sr

2a�1
a+s : (25)

Also
2sM2


(2a� 1)
((2N + 1)
)1�2a �

2sM2


(2a� 1)
r
2a�1
a+s :

The last inequality, (23), (24), and (25) yield

Cs(�) �

�
2sM2


(2a� 1)
+ 5s

2




�
r
2a�1
a+s : (26)

Our next goal is to �nd an upper estimate of C0;s(�) for all j�j � 
. Notice
that

C0;s(�) =
X

l=�1;0

jK̂(�+2l
)j2(1+j�+2l
j2)s+
X
jlj�2

jK̂(�+2l
)j2(1+j�+2l
j2)s :

To estimate the second we use the upper bound we obtained for CsjI0 . We ob-
serve that this estimate is valid for all � such that jK̂(�)j � minfr2;M2j�j�2s�2ag.
But the latter inequality is valid for all j�j � 2
. Therefore,X

jlj�2

jK̂(� + 2l
)j2(1 + j� + 2l
j2)s �

�
2sM2


(2a� 1)
+ 5s

2




�
r
2a�1
a+s :
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On the other hand,X
l=�1;0

jK̂(� + 2l
)j2(1 + j� + 2l
j2)s � 3(1 + 9
2)skK̂k21;

so

C0;s(�) � 3(1 + 9
2)skK̂k21 +

�
2sM2


(2a� 1)
+ 5s

2




�
r
2a�1
a+s : (27)

We recall that c(
; s; a) := ( 2sM2


(2a�1) + 5s 2

) and p := 2a�1

a+s . Since Æ =

maxfÆ1; Æ2g inequality (11) applies. Using, (26) it is not hard to see that the
coeÆcient of kfk2s;2 is bounded above by r2(r+2)2+4(1+ r)2c(
; s; a)rp. Since

r � 1=2 and 0 � p� 1 < 1, one can see that rp�1 < 1, if a � s+ 1. This yields
the form of the coeÆcient of kfk2s;2. To see that the coeÆcient of �2 is bounded
by a constant that does not depend on r, �rst observe that the coeÆcient of the
corresponding term in (11) contains a constant term. Furthermore,

sup
j�j�


C�s;a(�) sup
j�j�


C0;s(�) �
2r2



[3(1 + 9
2)skK̂k21 + c(
; s; a)rp] (28)

and

sup
I1[I2

Cs(�)

(1 + j�j2)s
�

supj�j�
C0;s(�)

(1 + j
� Æj2)s
�

4s[3(1 + 9
2)skK̂k21 + c(
; s; a)]

[4 + 
2]s
:

Finally, the remaining contribution to the coeÆcient of �2 in (11) is bounded by

(1 + (1 + r)
 bKa


1
)2.

3.2 Lower bound for the error of the worst case scenario

Proof of Theorem 2.7. Now, let f� 2 Hs(R) be real-valued and such that f̂� is
essentially bounded and equal to zero a.e. outside [�
;
]. We also select f�

satisfying all but the �rst of conditions (14). Then (16) implies

kf� � (f�)reck
2
s;2 =

1

2

Z
j�j�


jcf�(�)j22j1� K̂a(�)K̂(�)j2(1 + j�j2)sd�

+
1

4

Z
j�j�


jcf�(�)j24jK̂a(�)j
2 Cs(�)

(1 + j�j2)s
(1 + j�j2)sd� :

�
1

4

Z
j�j�


jcf�(�)j2G(�)(1 + j�j2)sd�:

The facts that this synthesis �lter satis�es (5), K̂ is piecewise continuous, and
a > 1=2 imply that Cs is piecewise continuous as a function de�ned on the
interval [�
;
]. It also may have a �nite number of discontinuity points in
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[�
;
] with �nite side limits and left or right side continuity at each one of
these points. The same properties are also true for the restriction bKa on [�
;
]
and thus for G. Therefore, G achieves a maximum value at each one of the
intervals I0, I1, and I2. Now, let �0 be a point where G achieves its maximum
in I0. Now, for any given 0 < � < 1, there exists a closed interval A := f� :
G(�) > (1 � �) supI0 G(�)g with positive measure containing �0. Of course, the
same is true for both I1 and I2. So, there exist closed intervals B1 and B2

of I1 and I2, respectively, with positive measure such that Bi := f� : G(�) >
(1� �) supIi G(�)g, with i = 1; 2. Select f� to vanish outside (A [ �A) [ (B1 [
�B1) [ (B2 [ �B2). Denote this particular choice of f� by f�� . Then, taking

into account that jcf�(�)j is even, we obtain
kf�� � (f�� )reck

2
s;2 �

1

4

Z
j�j�


jcf�� (�)j2G(�)(1 + j�j2)sd�

�
1� �

8

�
sup
I0

G(�)y20 + sup
I1

G(�)y21 + sup
I2

G(�)y22

�
: (29)

Now, let f�� 2 Hs(R) be real-valued such that cf�� vanishes a.e. on [�
;
]

and satis�es y23 =
R
j�j�
 j

cf��(�)j2(1 + j�j2)sd�. Also, let A�� be the function A

corresponding to f�� de�ned by (7). Then, using (16) and ja+ bj � 1
2 jaj

2 � jbj2

we have

kf�� � (f��)reck
2
s;2 =

Z 


�

jA��(�)j2jK̂(�)j2(1 + j�j2)sd�

+
X
l 6=0

Z 


�

jcf��(� + 2l
)�A��(�)K̂(� + 2l
)j2(1 + j� + 2l
j2)sd�

�
1

2

X
l 6=0

Z 


�

jcf��(� + 2l
)j2(1 + j� + 2l
j2)sd�

�

Z 


�

jA��(�)j2

X
l 6=0

jK̂(� + 2l
)j2(1 + j� + 2l
j2)sd�

�
1

2
y23 � sup

j�j�

C�s;a(�)C0;s(�)y

2
3 �

1

4
y23

Now, de�ne f1 := f�� �f
�� and f2 := f�� +f��. Both f1 and f2 are real-valued

and belong to Hs(R). Taking in acount that the reconstruction operator is linear
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and using the parallelogram law we obtain

kf1 � (f1)reck
2
s;2+ kf2 � (f2)reck

2
s;2 = 2(kf�� � (f�� )reck

2
s;2 + kf�� � f��reck

2
s;2)

�
1

2
y23 +

1� �

4

�
sup
I0

G(�)y20 + sup
I1

G(�)y21 + sup
I2

G(�)y22

�
�

1� �

4

�
sup
I0

G(�)y20 + sup
I1

G(�)y21 + sup
I2

G(�)y22 + 2y23

�
:

The last inequality implies that at least one of the terms kf1 � (f1)reck
2
s;2 and

kf2 � (f2)reck
2
s;2 must be greater than the sum

1��
8

�
supI0 G(�)y

2
0 +supI1 G(�)y

2
1

+supI2 G(�)y
2
2 +y23

�
. The proof is completed once the reader notices that both

f1 and f2 satisfy conditions (14).
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