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ABSTRACT

We analyze localized textural consistencies in high-resolution Micro CT scans of coronary arteries to identify the
appearance of diagnostically relevant changes in tissue. For the efficient and accurate processing of CT volume
data, we use fast algorithms associated with three-dimensional so-called isotropic multiresolution wavelets that
implement a redundant, frame-based image encoding without directional preference. Our algorithm identifies
textural consistencies by correlating coefficients in the wavelet representation.

Keywords: non-separable multiresolution analysis, wavelets, frames, random fields, segmentation

The general objective of this paper is to introduce texture-based image analysis for the processing of high-
resolution CT scans. Our test data was obtained from scanning coronary artery specimens with a General
Electric RS-9 Micro CT scanner providing images with cubic voxels of sidelength 27�m. The motivation for our
work is the need to distinguish various types of diagnostically relevant tissue in atherosclerotic plaque found in
coronary arteries. It has been suggested that the presence of lipid-rich, lightly calcified lesions close to the arterial
lumen is associated with an increased risk of plaque rupture and subsequent acute myocardial infarction.1,2 The
main concern in this paper is the identification of such lesions within the surrounding fibromuscular tissue. The
presence of noise makes this task difficult to achieve with usual threshold-based methods. On the other hand,
suppressing noise by smoothing obscures the difference between intensity fluctuations characteristic of speckled
calcific deposits embedded in lipid and intensity patterns caused by natural variations in fibromuscular tissue.
The application of our algorithm to Micro CT data demonstrates the detection of significant changes in textural
consistency that reflect deviations in the structure of tissue.

The concept implemented in our algorithm addresses three main challenges: 1. The image analysis should
be applied to the entire, three-dimensional volume of data obtained from CT, instead of separately treating two-
dimensional slices. To achieve the computational efficiency desired for the proposed texture identification, we
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encode the CT images with a so-called fast isotropic wavelet transform. The wavelet transform separates features
and textures of different scales in the image, the proportions of which indicate different types of tissue. 2. Features
and textures should be identified regardless of their orientation. Unlike traditional fast wavelet transforms that
rely on tensor product constructions, our encoding does not introduce any artificial directional bias in the
separation of scales. 3. Information should be extracted in a reliable, unambiguous way. The encoded images
are analyzed for textural consistencies in order to infer the tissue character with a localized version of statistical
hypothesis testing.

This paper explains the mathematical structure of our image processing algorithm and demonstrates its
application to a Micro CT scan of a human coronary artery. Section 1 contains the details of the Multiresolution
Analysis underlying our Fast Isotropic Wavelet Transform. Section 2 describes the statistical analysis of images
in the wavelet representation. Finally, Section 3 demonstrates the wavelet-based texture segmentation algorithm
applied to Micro CT data and compares an example of image segmentation to tissue characterization by histology.

1. IMAGE ENCODING BY A FAST ISOTROPIC WAVELET TRANSFORM

With the help of wavelet analysis, the information contained in a digital image is separated into features and
textures of different scales, i.e. fine-grained vs. coarse-grained levels of detail.

In order to process the large volumes of data generated by CT scans, we use fast algorithms associated
with novel isotropic, three-dimensional wavelets. Unlike traditional, directionally biased wavelets, the isotropic
wavelets developed by Papadakis and co-workers3 show the same sensitivity for features and textures, regardless
of their orientation with respect to any fixed Cartesian coordinate system. The use of a redundant encoding
based on frame theory is the key feature allowing us to avoid directional bias.

1.1. Theoretical Background

For the purposes of this paper, an image constitutes a square-integrable function on n-dimensional Euclidean
space R

n, or a square-summable set of coefficients indexed by an n-dimensional grid Z
n. In the latter case, we say

the image is in the digital domain, and identify the values of the coefficients with those of voxels in n dimensions.

Definition 1.1. A finite or countable subset ffk W k 2 Kg of a Hilbert space H is a frame of H if there exist
constants c1; c2 > 0 such that for every f in H , we have the norm equivalence c1 kf k2 � P

k2K
jhf; fkij2 �

c2 kf k2.4–8 If c1 D c2 D 1 we call ffk W k 2 Kg a Parseval frame of H .

If ffk W k 2 Kg is a Parseval frame, then the identity f D P
k2K

hf; fkifk holds for every f 2 H . A
generalization of this identity is true for every frame. Parseval frames behave very similar to orthonormal bases,
but they may not be minimal sets with a dense span in H .

Allowing frames instead of orthonormal bases gives rise to a structure of multiresolution analysis theory that
generalizes the classical one.

Let the translations fTkgk2Zn be given by Tkf .x/ D f .x � k/, and the dyadic dilation operator D by
Df .x/ D 2n=2f .2x/, with f 2 L2.Rn/.

Definition 1.2. A GFMRA9 of L2.Rn/ is an increasing family of closed subspaces fVjgj2Z satisfying the
following properties:

� The subspaces observe Vj D Dj .V0/ for every j 2 Z.

� The intersection of subspaces is \j2ZVj D f0g and the union [j2ZVj is dense in L2.Rn/.

� There exists a finite or countably infinite set of functions f�i , i D 1; 2; : : :g belonging to V0, such that
the translates fTk�i W k 2 Z; i D 1; 2; : : :g form a frame of V0. We refer to the set f�ig as frame scaling
functions. A finite or countably infinite set of frame wavelets (or simply wavelets) associated with fVjgj2Z is
a set of functions f p W p D 1; 2; : : :g such that fTk p W k 2 Z

n;p D 1; 2; : : :g is a frame of W0 WD V ?
0

\ V1.



The general structure of GFMRA theory allows frames for the core subspaces to be generated with abelian
“translation” groups other than fTkg.9 Moreover, GFMRAs may be constructed with a variety of dilation oper-
ators, thereby providing a lot of design freedom. Here, we have exploited this freedom to obtain good symmetry
properties for scaling functions and wavelets.

For the separation of detail-levels we use a Fast Wavelet Algorithm based on a new type of Multiresolution
Analysis (MRA) called First Generation Isotropic MRA,3 which we will show is an example of a GFMRA. Our
implementation augments this structure with additional oversampling and asymmetric filters to achieve better
localization properties. For simplicity, we first explain the underlying concept without additional oversampling.

Definition 1.3. A First Generation Isotropic MRA of L2.Rn/ is an increasing family of closed subspaces
fVjgj2Z such that each Vj contains all functions in L2.Rn/ whose Fourier transforms vanish outside 2j

B, with
the closed ball B WD f� 2 R

n W j�j � b0g of radius 1=4 < b0 < 1=2. The Fourier transform we use is defined for
f 2 L1.Rn/ by Of .�/ WD R

Rn f .x/e
�2�ix��dx; � 2 R

n and as usual extended to f 2 L2.Rn/. We also adopt the
notations T

n WD Œ�1=2; 1=2/n and ek.�/ WD e�2�i.��k/, � 2 R
n and k 2 Z

n.

In order to show that this defines an example of a GFMRA, we recall a well-known fact concerning the
construction of Parseval frames.

Lemma 1.4.10 Let H be a Hilbert space and P be an orthogonal projection defined on H . If f�i W i 2 I g is an
orthonormal subset of H , or a Parseval frame of H , then fP�i W i 2 I g is a Parseval frame of P .H/.

The linear mapping on L2.Rn/ defined by multiplication with the characteristic function O� D �B is an
orthogonal projection. Then, Lemma 1.4 implies that fek�B W k 2 Z

ng is a Parseval frame for the closed subspace
it generates. Applying the inverse Fourier transform, we obtain that fTk� W k 2 Z

ng is a Parseval frame for
the closed subspace it generates, which is V0. One may then easily check that the sequence fVjgj2Z satisfies all
the remaining properties of a GFMRA of L2.Rn/. In particular, the function � is a frame scaling function for
fVjgj2Z. The frame scaling function � is radial, i.e. invariant under all rotations about the origin. We call a
function that is a translate of a radial function isotropic. A similar symmetry property holds for the spaces fVj g
and fWjg.
Proposition 1.5. Each Vj is invariant under any rotation about any center x 2 R

n. The same is true for each
detail space Wj D VjC1 \ V ?

j , j 2 Z.

Proof. To see this, we note that any such rotation is a rotation about the origin, conjugated with a translation
that moves x to the origin. Translating the point x to the origin amounts to a modulation in the frequency
domain, which leaves the support unchanged and thus Vj invariant. By definition, Vj is also invariant under
rotations about the origin. The detail space Wj D V ?

j \ VjC1 contains all functions whose Fourier transforms
vanish outside the spherical shell 2j

S with inner radius 2jb0 and outer radius 2jC1b0, so the same argument
applies.

Several sets of frame wavelets f p W p D 1; 2; : : :g are associated with fVj gj , in the sense that fTk p W k 2
Z

n;p D 1; 2; : : :g is a frame of W0. We are interested in one particular set of isotropic ones, the integer translates
of which form a Parseval frame of W0:

O i .�/ D 2�n=2eqi
.�=2/�S.�/ � 2 R

n ;

where fqi W i D 0; 1; 2; : : : ; 2n � 1g are the representatives of the quotient group Z
n=2.Zn/. If, for example, n D 2,

one may choose q0 D .0; 0/, q1 D .1; 0/, q2 D .0; 1/ and, q3 D .1; 1/.

The use of frames is a major difference to traditional, so-called separable MRA constructions in multidi-
mensions, i.e. those derived from tensor products of one-dimensional MRAs. To remedy the directional bias in
those, non-separable MRAs have been proposed, e.g. Refs 11–24 or other approaches where additional directional
preference is incorporated, e.g. Refs. 25–33. None of these approaches give MRAs that are invariant under all
rotations and not all of them lead to fast algorithms similar to those associated with separable MRAs.

Observing that the ball B is contained in T
n, a classical sampling theorem applies

Theorem 1.6.3 Let f be in V0, then
f D

X

k2Zn

f .k/Tk� ; (1)



where the right-hand side of the previous equation converges in the L2-norm and uniformly if f 2 V0 is contin-
uous.

This theorem shows that the input of the fast wavelet algorithms resulting from the Isotropic MRA fVjgj2Z

consists of the samples of the input analog signal obtained on the usual cubic sampling grid Z
n.

1.2. Implementation with Ideal Filters

The next task is to derive the low and high pass filters resulting from the First Generation IMRA. Although the
coefficients f˛k D hD��;Tk�igk2Zn are not the unique solution for the two-scale equation

D�� D
X

k2Zn

˛kTk� ; (2)

we adopt the convention that the low pass filter is the Z
n-periodic function

m0 WD
X

k2Z

hD��; Tk�iek :

Applying the Fourier transform to both sides of (2), we obtain

O�.2�/ D 2�n=2m0.�/ O�.�/ a.e. ;

as in the case of orthonormal scaling functions. In fact, by our convention the support of m0 is contained in that of
O�, and therefore the two-scale equation determines the function m0 uniquely. Following our convention, m0.�/ D
2n=2�B=2.�/ a.e. in T

n. The same argument gives the form of the the high pass filters hi.�/ D eqi
.�/�S=2.�/,

where � 2 T
n and i D 0; 1; : : : ; 2n � 1.

Since the map f ‘ P
khf;Tk�iek is an isometry, T2kD� D D�Tk, fD�Tk� W k 2 Z

ng is a Parseval frame
of V�1, and fek�S=2 W k 2 Z

ng is a Parseval frame of W�1, we obtain that fe2km0 W k 2 Z
ng [ fek�S=2 W k 2 Z

ng
is a Parseval frame of the space f� 2 L2.Tn/ W �.�/ D 0 a.e. in B

cg. This observation gives rise to a new fast
wavelet transform which we refer to as the First Generation Fast Isotropic Wavelet Transform.34 This wavelet
transform has the structure of a traditional MRA-based Fast Wavelet Transform (FWT).

Remark 1.7. We note that the set fek�S=2 W k 2 Z
ng is equal to [2n�1

iD0
fe2khi W k 2 Z

ng. The latter union
would yield 2n high pass channels with decimation. In our implementation, all these channels are combined to
an undecimated one using the filter h.

Accordingly, in our implementation the low-pass filtering is followed by decimation by a factor of two, while
the high pass filtered signal stays undecimated.

In contrast to the usual tensor-product constructions, both filters (low and high pass) are isotropic. However,
they are discontinous in the frequency domain, which leads to ringing artifacts and bad localization properties of
the decomposition. To rectify this problem we use smooth approximations for the ideal filters m0 and h combined
with so-called radial oversampling.

1.3. Smooth Filters and Radial Oversampling

Let 1=8 < b2 < b1 < b0=2 < 1=4. We begin with the analysis low-pass filter, a C 1-smooth, Z
n-periodic function

Qma satisfying the following three properties:

1. The support of Qma inside T
n is the set B=2.

2. The restriction QmajB is radial.

3. The filter assumes the value Qma.�/ D 2n=2 for all j�j < b1.



To approximate the ideal high pass filter �S=2 on B, we define the analysis high pass filter

Qha WD 1 � Qma

2n=2
:

By definition, the two analysis filters overlap in the spherical shell with radii b1 and b0=2.

We use upper case characters to denote each filter in the spatial domain. Using this notation, the analysis
filters produce analysis operators Ma and Ha given by

Ma� WD D. QMa � �/ and Ha� D QHa � � ; � 2 `2.Zn/;

where D denotes downsampling by a factor of 2,

.D�/^.�/ D 1

2n

2n�1X

lD0

O�
�

�

2
C � l

�

;

and f� l W l D 0; 1; � � � ; 2n � 1g is a set of solutions of the equation 2� � 0 mod Z
n with � 2 T

n and �0 D 0. The
range space of the operator � ‘ QMa � � is the subspace of all signals whose Fourier transforms vanish outside
the ball f� W j�j � b0=2g. Likewise, the range of QHa contains all signals whose Fourier transforms vanish inside
the ball f� W j� j < b1g. Both signals QMa � � and QHa � � are oversampled, because the frequency support of the
functions in the range of QMa or QHa is not the entire torus T

n. In analogy with one-dimensional oversampling,
we now use synthesis filters for the reconstruction with a bandwidth slightly greater than the bandwidth of the
analysis filters. So, we select the synthesis low pass filter Qms as the C 1-smooth Z

n-periodic function with the
properties:

1. The support of Qms inside T
n is the set f� 2 T

n W j�j � 1
4
g.

2. The restriction Qms jB is radial.

3. The value Qms.�/ D 2n=2 is assumed whenever � 2 T
n such that j�j � b0=2.

Similarly, we select Qhs to be C 1 with the properties:

1. It assumes the value Qhs.�/ D 1 for all � 2 T
n such that j�j � b1.

2. The restriction Qhs jB is radial.

3. The filter Qhs vanishes if j�j < b2.

The operators Ms� WD QMs�.U�/ and Hs� WD QHs�� are the low and high pass synthesis operators respectively,
where � 2 `2.Zn/ and U is the upsampling by a factor of two operator, .U�/^.�/ D O�.2�/.

Theorem 1.8. With the low and high pass filters defined above, any digital signal � 2 `2.Zn/ can be reconstructed
exactly,

� D MsMa� C HsHa� : (3)

Proof. Eq. (3) is true if the operators Ma, Ms, Ha and Hs are defined with the low and high pass filters
m0 and h only, because fe2km0 W k 2 Z

ng [ fekh W k 2 Z
ng is a Parseval frame of the space OV0 D fq 2 L2.Tn/ W

q.�/ D 0 a.e. in B
cg. The use of the smooth filters Qma, Qha, Qms and Qhs is possible by “radial” oversampling.

Let � 2 `2.Zn/. Then .HsHa�/
^ D Qhs

Qha O� D Qha O� , because Qhs D 1 on the entire support of Qha.

From the definition of D and U , we infer .UMa�/
^ is a Z

n

2
-periodic function. Since Qms and Qma vanish outside

the n-torus T
n=2 and the ball B=2 respectively, we obtain .MsMa�/

^ D 1
2n Qms Qma O� D 1

2n=2 Qma O� . The exactness
of reconstruction is verified once we observe Qma

2n=2 C Qha D 1.



While giving perfect reconstruction, the low and high subband outputs of the above variant of the Fast
Isotropic Wavelet Transform only approximately represent the decomposition V0 D V�1 ˚ W�1 of the theoretical
prototype associated with the filters m0 and h. We could stay arbitrarily close to the decomposition V0 D
V�1 ˚ W�1 by choosing the difference b0=2 � b1 small, but need smoothed filters to avoid ringing and bad
localization. For a quantitative discussion of this trade-off between frequency selectivity and filter length, see
Ref. 35.

1.4. Specifics of Implementation

In our implementation we do not use the filters Qma;s or Qha;s described above but instead we use finite-length
approximations. In order to guarantee perfect reconstruction, we define the (undecimated) high subband output
of the input signal � 2 `2.Zn/ as � � MsMa� . The filter length we used was optimized for a combination of
speed and frequency selectivity.35 The analysis low-pass filter has 9 � 9 � 9 filter taps and the synthesis uses a
15 � 15 � 15 filter size.

2. STATISTICAL IMAGE ANALYSIS

It is our experience that various tissue types appear with characteristic, fluctuating components in each resolution
level. To recognize the occurrence of these components, we use statistical methods in our tissue classification
scheme. Another reason why such methods are necessary is the lack of an a priori method to distinguish intensity
fluctuations due to density variations in tissue and those due to noise in our images.

2.1. A statistical model for tissue in CT images

Our model for digital CT images is based on the following hypotheses: There are finitely many types of tissue
(e.g.: lumen, calcified, lipid, fibrous, muscle cells) and an image is composed of segments containing these tissues.
Each tissue type is represented by a random configuration of intensity values in an image. This randomness may
consist of typical density fluctuations in the tissue and additive noise. Unlike more conventional approaches
that characterize tissue by an average voxel value, our characterization scheme uses the correlations between all
voxels belonging to a given tissue sample. Moreover, our model of tissue includes multiple levels of resolution.

Tissue of one type is modeled by a wide-sense homogeneous, isotropic discrete random field with the property
that its first and second moments can be obtained by averaging a tissue sample over all shifts. In the following
precise definition of a tissue type, we have suppressed the dependence of random variables on the outcome ! 2 ˝
in our probability space. Accordingly, the convolution of a random field � W Z

n �˝ ! R with a digital filter G

is denoted by .G � �/k WD P
l2Zn Gk�l�l .

Definition 2.1. A tissue type � at resolution level j is a family of real-valued random variables f� .j/

k
gk2Zn over

some probability space .˝;P;F/ with the following properties:

1. For each k 2 Z
n, � .j/

k
2 L2.P/. The expected value EŒ�

.j/

k
� D � .j/ is independent of k, and the covariance

matrix C .j/ with entries C
.j/

k;k0 WD EŒ.�
.j/

k
� � .j//.�

.j/

k0 � � .j//� is a bounded operator on `2.Zn/. Moreover,

the entries C
.j/

k;k0 depend only on the distance jk � k0j of k;k0 2 Z
n.

2. For each k 2 Z
n and each filter G with (absolutely) summable taps, the spatial average of .G � � .j//k

converges almost surely,

lim
V%Zn

1

jVj
X

l2V

.G � � .j//kCl D � .j/
X

k

Gk

as the finite set V grows and eventually contains any given finite set of indices.

3. For each k 2 Z
n and each finite subset V 	 Z

n, we abbreviate the local average � .j/

k
.V/ D 1

jVj
P

l �
.j/

kCl
and

define an approximate, random covariance matrix C .j/.V/ with entries

C
.j/

k;k0.V/ D 1

jVj
X

l2V

.�
.j/

kCl
� � .j/

k
.V//.�

.j/

k 0Cl
� � .j/

k0 .V// :



In this matrix notation, we require that for each k;k0 2 Z
n and every summable filter G, almost surely

lim
V%Zn

.G�C .j/.V/G/k ;k0 D .G�C .j/G/k;k0 :

Remarks 2.2. The first property states homogeneity and isotropy and ensures that the quantities appearing
in the subsequent properties are well-defined. The remaining two properties specify how expectation value and
covariance matrix arise from spatial averaging. Birkhoff’s ergodic theorem concludes that these two properties
are satisfied by all locally square-integrable ergodic random fields.36

A simple example for a tissue type at some resolution level, say j D 0, could consist of independent, identically
distributed (i.i.d.) square-integrable random variables for the voxel values f� .0/

k
g. The averaging properties are

then a consequence of the ergodicity of the joint distribution of the i.i.d. variables with respect to the translation
group Z

n.36

The following theorem shows that applying a summable filter preserves the properties required of a tissue
type. Consequently, convolving a random field of independent, identically distributed square-integrable voxel
values with a summable filter gives a tissue type with voxels that are generally no longer independent. Finally,
a convex combination of such random fields with different underlying individual distributions and filters allows
to recreate an intuitive picture of tissue, containing objects of a range of intensities and sizes.

Theorem 2.3. The properties of a tissue type at resolution level j are preserved when convolving it with a
summable filter G.

Proof. We need to show that under convolution with G,
P

k2Zn jGkj < 1, the properties of a tissue type at
resolution level j are preserved. The first property is true because filtering and expectation can be interchanged.
Next, the covariance matrix of the filtered random field is the previous covariance matrix conjugated with G.
Due to its summability, the filter is a bounded operator on `2.Zn/, the norm of the operator G�C .j/G is finite.
Properties 2 and 3 ensure by definition that they remain valid when the field � .j/ is replaced with G � � .j/.

Thus, applying a summable low pass filter to a tissue type � at resolution level j , followed by downsampling,
produces a corresponding tissue type at resolution level j � 1. This ensures the consistency of our definition with
the approximate implementation of a multiresolution structure described in the previous section on smoothed
filters.

2.2. Tissue segmentation

Our procedure for the identification of tissue types is based on analyzing the statistics of wavelet coefficients
belonging to a given tissue sample. We compare these statistics with reference statistics that are derived from
known tissue types. When significant deviations from reference statistics occur (wavelet coefficients violate
bounds that are observed with a high probability given a specific tissue type), we infer that we have identified
tissue that is different from the reference type.

Definition 2.4. A tissue segment f� .j/

k
gk2V at resolution level j is specified by selecting a tissue type � .j/ and

an index set V 	 Z
n. A digital image at a resolution level j that contains various tissues is the union of segments

of different tissue types at this resolution level.

In order to separate tissue types with statistically different behavior, our algorithm proceeds in two steps.

Training step. At first, we pick a segment that is assumed to contain only one type of tissue, henceforth called
reference tissue, as a training set.

a) Customization of prediction filters for each subband. The idea for this prediction filter is that each voxel
gets replaced by a linear prediction based on its neighbors. The filter is chosen so that it best estimates each
voxel in the least squares sense when averaged over the segment of reference tissue. The theorem contained
in the remainder of this section states how, in the limit of arbitrarily large training sets, this becomes a least
squares estimator with respect to the probability measure governing the reference tissue. Selecting a confidence
interval for the difference between predicted and actual voxel values is therefore a statistically reliable way to
decide whether the values of a voxel and its neighbors belong to tissue of reference type.



For practical purposes, it is enough to consider finite-length prediction filters with bounded filter taps. This
is reflected in our definition of prediction filters. In order to avoid introducing an artificial directional bias in the
prediction, we require that the filter observes the same isotropy condition as the covariance matrix of the tissue,
see Property 1 in Definition 2.1.

Definition 2.5. A finite-length prediction filter P .j/ for the resolution level j 2 Z is given by a 2j
Z

n-periodic
trigonometric polynomial p.j/.�/ D Pjkj��

k¤0
P

.j/

k
ek.�=2j / in the frequency domain, such that the filter taps

fP .j/

k
g depend only on the magnitude jkj of the index k 2 Z

n, jkj � �. We denote the space of prediction
filters of maximal length �, maximal `2-norm 	 and resolution level j as P.j/

�;�
WD fP .j/ W P

.j/

0
D 0;P

.j/

k
D

P
.j/

k0 whenever jkj D jk0j;Pjkj�� jP .j/

k
j2 � 	2g.

Definition 2.6. Given a tissue of type � at a resolution level j , and a prediction filter P .j/, we define its
mean-square error to be

Q.P .j/ � I / WD EŒ..P .j/ � I / � .� .j/ � � .j///2k � D ..P .j/ � I /�C .j/.P .j/ � I //k;k ;

where k 2 Z
n is arbitrary, and I denotes the digital all-pass filter corresponding to the constant function 
.�/ D 1

in the frequency domain. We say that the locally averaged square error at k 2 Z
n is

QV;k.P
.j/ � I / WD ..P .j/ � I /�C .j/.V/.P .j/ � I //k;k :

Theorem 2.7. Let � be a tissue at resolution level j , and fix a maximal length � 2 N and norm 	 > 0 for all
prediction filters under consideration. Let P .j/ be a prediction filter that minimizes Q.P .j/ � I / in P.j/

�;�
. Fix

k 2 Z
n and choose for each V 	 Z

n a prediction filter P .j/.V/ 2 P.j/
�;�

such that QV;k.P
.j/.V/� I / is minimized.

Then we obtain almost surely
lim

V%Zn
Q.P .j/.V/ � I / D Q.P .j/ � I / : (4)

Proof. To establish this equality, we consider the space of filters of length � as a finite-dimensional vector
space denoted by V�, which is equipped with the `2-norm on the filter taps. The first step to prove the claimed
equality is to show uniform convergence of QV;k on compact sets in the space V�. To this end, we note that
only finitely many coefficients of either C .j/ or C .j/.V/ are relevant for evaluating Q.G/ or QV;k.G/ for G 2 V�.
Since the entries of the matrix C .j/.V/ converge almost surely to the corresponding entries of C .j/, we have
uniform convergence of the finite-dimensional restrictions of those matrices. Therefore, for any arbitrarily small
� > 0, there exists a sufficiently big index set V0 such that almost surely for all V 
 V0 and all G 2 V�, we have
jQ.G/ � QV;k.G/j � �kGk2. Moreover, if G is in the compact set P.j/

�;�
, we conclude

jQV;k.G � I /� Q.G � I /j � �.	C 1/2 :

To begin with the estimates needed for the proof, we observe Q.P .j/ � I / � lim infV Q.P .j/.V/� I /, because
P .j/ is a minimizer for Q. We can further estimate that for any given � > 0, when V is sufficiently large,
Q.P .j/�I / � lim sup

V
Q.P .j/.V/�I / � lim sup

V
QV;k.P

.j/.V/�I /C�.	C1/2. Using that P .j/.V/ is a minimizer
for QV;k, we further increase QV;k when replacing P .j/.V/ with P .j/. By uniform convergence, Q.P .j/ � I / �
lim infV Q.P .j/.V/� I / � lim supV Q.P .j/.V/� I / � limV QV;k.P

.j/ � I /C �.	C 1/2 D Q.P .j/ � I /C �.	C 1/2,
and since � can be chosen arbitrarily small, the claimed equality follows.

Corollary 2.8. We can repeat the above theorem by replacing the field variables f�kg with f.G � �/kg, where
G is a summable filter such as a smooth filter used to obtain the low or high subband output.

Therefore, we can optimize the prediction filter in different subbands separately. This optimization scheme
ignores correlations between different subbands. In our implementation, we have used correlations between
“neighboring” subbands by stacking them to random fields on the space Z

nC1, with the extra dimension denoting
the subband index. In this case, the scheme has to be modified by allowing different expectation values for the



random field in each n-dimensional layer, and by restricting the homogeneity condition to the components of the
covariance matrix within one layer, as well as by requiring an appropriately reduced isotropy of the prediction
filters.

b) Calculate tolerance intervals. Again involving the training set, we then calculate tolerance intervals so
that in each subband Wj , of the given coefficient appearing with reference tissue, only a small fraction $j > 0

is falsely labeled as outliers.

Choosing a small fraction $j of outliers in the training set guarantees, due to the assumed averaging property
of tissue, that each coefficient in a subband Wj has a probability close to $j of being rejected. As a consequence,
setting all coefficients to zero except for the outliers suppresses the overall intensity of the reference tissue by
roughly only a factor 1 � $j . This ensures that reference tissue is minimally affected when we threshold with
respect to deviations from predicted values.

Application step. The next step is the application of our algorithm to an image composed of several tissue
segments. For the reliability of the tissue segmentation, we require that the effect of surfaces between segments
of different tissue types be small.

Definition 2.9. Given a digital filter G of finite length and a subset V 	 Z
n, we call A D fk 2 V W Gk�l ¤

0 for some l 2 Z
n n Vg the filter-induced surface region of this subset. This set contains all indices in V that

are affected by values of the field beyond V when the filter G is applied. The complement of A in V is called the
surface-insensitive interior.

Given a fixed filter length � for the prediction filter in a subband, say W0, and a segment of reference tissue
f�kgk2V, then each coefficient belonging to the surface-insensitive interior has a probability close to $j of being
rejected. As a consequence, if the number of voxels in the surface-insensitive interior of tissue segments is large
compared to those in surface regions, then for a large fraction of voxels (those contained in the surface-insensitive
interior) belonging to reference tissue, the probability that they are classified as outliers converges to $j as the
volume of the training set increases.

In order to identify segments that do not have the statistics of the reference tissue, we use the filters P .j/.V/,
apply them to each subband of the tissue under consideration, keep only those filtered coefficients that deviate
from the original coefficients by more than the tolerance levels in the respective subbands, and reconstruct this
“anomalous” part of the image. In other words, we eliminate the part of the signal that has the statistics of the
reference tissue.

Based on this comparison method, we may use several reference types for classification purposes. If a segment
is rejected by comparing with all types except for one, then it is unambiguously identified as tissue of this type.
If it is rejected by comparison with all but two types, we conclude it is either of those, etc.

The idea of exploiting correlations in multiscale representations of images for denoising and texture detection
has already been investigated, see e.g. Ref. 37. The novelty of the current work is the use of First Generation
Isotropic Multiresolution Analysis for fast image encoding without directional bias. Another difference to previous
results is that we use non-parametric methods in our statistical image analysis. Such methods are feasible within
our rigid framework of homogeneous random fields with moment averaging properties, whereas for applications
in general-purpose image processing one typically has to make the assumption of having parametric distributions
of voxel intensities.37, 38

2.3. Specifics of Implementation

The filter lengths for all P .j/.V/ were chosen to be one (nearest neighbors only). Including the next coarser
and next finer scale in the least-squares optimization of the filter improved performance because of correlations
between subbands of tissue types and also because of the use of the finite-length approximations for the low-pass
analysis and reconstruction filters used in the Fast Isotropic Wavelet Transform.

The training sets we used for extracting tissue statistics were segments of 30 � 30 � 30 voxels at the highest
resolution level, located in positions that by anatomical considerations only contained one tissue type.



3. APPLICATION TO MICRO CT DATA

Our initial studies have found that image processing via these wavelet algorithms permits three-dimensional,
high resolution digital discrimination between calcific deposits, lipid-rich tissue that is lightly calcified, and the
surrounding lipid-poor (fibrous) tissue.

Figure 1. Comparison of unprocessed and processed data obtained from Micro CT scan of a human coronary artery
containing atherosclerotic plaque with a calcium-lipid complex. Left panel shows three-slice view of unprocessed data.
Middle panel shows two slices with superimposed 3D rendering of threshold-based processed data. Right panel shows
two processed slices with fibromuscular tissue in black and a superimposed 3D rendering of anomalous tissue. Lumen
labeled L, arrows indicating calcific deposits with associated lipid-rich tissue. Wavelet-based tissue identification shown
here based on statistical deviation of texture from background of fibromuscular tissue.

In Figure 1, we compare the unprocessed data obtained from scanning a coronary artery specimen with
results that are based on thresholds or on textural analysis. We show that the wavelet decomposition segments
the image into contiguous parts that have statistically distinct textural consistencies. We find that changes in

Figure 2. Comparison of a slice of processed data from Figure 1 with histology. Left panel shows a two-dimensional
representation of the isotropic wavelet analysis applied to the Micro CT image. Processing identifies calcific deposits
associated with previously undetected lipid rich core (arrows). Right panel shows partially decalcified histologic section
through area depicted on left confirming the presence of calcific deposits within the plaque associated with lipid-rich
pultaceous debris (H&E stain). Lumen labeled L in both images.



textural consistencies identified in the wavelet representation reflect deviations in the structural components of
tissue.

In Figure 2, we validate the tissue identification algorithm by comparison with histological analysis. The
region that has been identified as having a textural consistency which is different from that of fibromuscular tissue
is verified as lipid-rich, lightly calcified lesion. Our laboratory is currently processing a number of specimens to
test the reliability of the correlation between our tissue discrimination algorithm and histology.

ACKNOWLEDGMENTS

This research was partially supported by the following grants: University of Houston TLCC funds, NSF-DMS
0406748, by a subcontract from the University of Texas Health Science Center’s “T5”-grant and by the R.A.
Welch Foundation.

REFERENCES
1. M. Naghavi, P. Libby, E. Falk, S. Casscells, S. Litovsky, J. Rumberger, J. Badimon, C. Stefanadis, and et al,

“From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies:
Part I,” Circulation 108(14), pp. 1664–1672, 2003. Full-text available online to subscribers using PubMed’s
LinkOut feature, http://www.ncbi.nlm.nih.gov/entrez.

2. M. Naghavi, P. Libby, E. Falk, S. Casscells, S. Litovsky, J. Rumberger, J. Badimon, C. Stefanadis, and et al,
“From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies:
Part II,” Circulation 18(15), pp. 1772–1778, 2003.

3. M. Papadakis, G. Gogoshin, I. Kakadiaris, D. Kouri, and D. Hoffman, “Non-separable radial frame mul-
tiresolution analysis in multidimensions,” Numer. Function. Anal. Optimization 24, pp. 907–928, 2003.

4. J. Benedetto and M. Frazier, Wavelets: Mathematics and Applications, CRC Press, Boca Raton, FL, 1994.
Chapters 3,7.

5. K. Grochenig, Foundations of Time-Frequency Analysis, Applied and Numerical Harmonic Analysis,
Birkhauser, Boston, MA, 2001.

6. P. Casazza, “The art of frame theory,” Taiwanese J. Math 4, pp. 129–201, 2000.
7. P. Casazza, “Modern tools for Weyl-Heisenberg frames,” Advances in Imaging and Electron Physics 115,

pp. 1–127, 2001.
8. D. Han and D. Larson, Frames, Bases and Group Representations, vol. 147 of Memoirs, American Mathe-

matical Society, 2000.
9. M. Papadakis, “Generalized frame multiresolution analysis of abstract Hilbert spaces,” in Sampling,

Wavelets, and Tomography, J. Benedetto and A. Zayed, eds., pp. 179–223, Birkhauser, 2003.
10. A. Aldroubi, “Portraits of frames,” Proceedings of the American Mathematical Society 123, pp. 1661–1668,

1995.
11. E. Belogay and Y. Wang, “Arbitrarily smooth orthogonal nonseparable wavelets in R2,” SIAM Journal of

Mathematical Analysis 30, pp. 678–697, 1999.
12. A. Cohen and I. Daubechies, “Nonseparable bidimensional wavelet bases,” Revista Matematica Iberoameri-

cana 9, pp. 51–137, 1993.
13. J. Kovacevic and M. Vetterli, “Nonseparable multidimensional perfect reconstruction filter-banks,” IEEE

Transactions on Information Theory 38, pp. 533–555, 1992.
14. W. He and M. J. Lai, “Examples of bivariate nonseparable compactly supported orthonormal continuous

wavelets,” in Wavelet Applications in Signal and Image Processing IV, M. U. A. Aldroubi, A. Laine, ed.,
Proceedings SPIE 3169, pp. 303–314, 1997.

15. W. Lawton and H. Resnikoff, “Multidimensional wavelet bases,” February 1991. Techn. Rep. AD910130,
Aware Inc., Bedford, MA.

16. K. Grochenig and W. Madych, “Multiresolution analysis, Haar bases and self-similar tilings,” IEEE Trans-
actions on Information Theory 38, pp. 558–568, 1992.

17. A. Ayache, E. Belogay, and Y. Wang, “Orthogonal lifting: constructing new (symmetric) orthogonal scaling
functions.” Personal communication, 2002.



18. A. Ayache, “Construction de bases d’ondelettes orthonormées de L2.R2/ non séparables, à support compact
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