
Isotropic Multiresolution Analysis for 3D-Textures and
Applications in Cardiovascular Imaging

Simon K. Alexander, Robert Azencott, Manos Papadakis
Department of Mathematics, University of Houston, 651 Phillip G. Hoffman Hall, Houston,

TX 77204-3008

ABSTRACT

The main goal of this paper is to introduce formally the concept of texture segmentation/identification in three
dimensional images. A major problem in texture texture segmentation/identification is the lack of robustness to
both translations and rotations. This problem is more difficult to overcome in 3D-images, such as those generated
by modalities such as x-ray CT and MRI. To facilitate 3D-texture segmentation/identification which is robust to
3D rigid motions we formally introduce the concept of steerable feature maps and of appropriate metrics in the
feature space. We also introduce a new multiscale representation giving rise to a steerable feature map used in
our exploratory project in cardiovascular imaging and we propose a 3D-texture segmentation algorithm utilizing
this steerable feature map.

1 Introduction

In the recent years diagnostic techniques in medicine have been employing an increasing number of imaging
modalities. This generates an enormous amount of data that radiologists and technicians have to process. Often
critical diagnostic decisions must be made in areas where the quality of a medical image does not allow an
unambiguous diagnosis. This is true despite the number of modalities and significant improvements in resolution
and overall image quality.

Healthcare practice is increasingly emphasizing early diagnosis in hopes earlier treatment is more effective.
This trend motivates the development of assistive diagnostic tools that will allow physicians to spot more easily
regions of images indicating future risk to the patient’s health. However, such regions are often not large enough
to allow easy detection of may be even latent in an image cluttered by various types of noise that are difficult to
model (and thus remove) in a post-acquisition stage.

Even when a region of interest is easily detectable, it’s boundaries may not be well defined. To illustrate
this concept we refer to the case of lipid concentrations inside arterial walls. We can locate such concentrations
but the decision to treat each one of them depends primarily on the fibrous cap that seals such a lesion from
the lumen. Once this cap is less than 150µm, then an acute myocardial infarction may be imminent. This
demonstrates the necessity for an accurate circumcision of the lipid pool from its sealing fibrous cap. This is,
however, a difficult problem since the 150µm length is very close to the resolution of intravascular ultrasound
probes (IVUS) and much less than the resolution of other relevant modalities used in current clinical practice.
In addition to this problem, removal of noise from the image is a risky approach since noise models are not clear
for some modalities, e.g. ultrasound, and a prior knowledge of the true image is not available. For these reasons
post-acquisition noise removal is not trusted by many medical practitioners. Overall the goal is to detect as
accurately as possible various tissue types of diagnostic relevance. Particularly relevant methods to address this
problem are texture segmentation/identification. Examples of data sets are given in Figure 1.

The biomedical images we are interested in are three-dimensional since they are generated by modalities
such as x-ray CT, MRI and IVUS. Post-processing them in their original dimensionality increases the sensitivity
of the texture segmentation/identification since (2D) slice by slice processing decorrelates the information in
adjacent slices. The particular problem we are addressing with in this paper is 3D-texture segmentation. The
identification problem is significantly more complicated and perhaps less attractive for a medical application,
since the final diagnosis will come from a physician and not from a machine. Segmenting different tissue types in
their native dimensionality and circumscribing as accurately as possible their boundary surfaces assists diagnostic
imaging especially when latent tissues are picked up by this process. This segmentation process must have the
flexibility to account for the wide natural variation that may occur in tissues of the same type and for the often
unknown variability due to noise, motion and other factors affecting the image acquisition.



(a) slice from µCT (b) data from IVUS

Figure 1: Examples of medical data.

2 3D Texture segmentation

In this work we are particularly interested in the segmentation of tissue types in three dimensional medical image
data (MRI, x-ray CT, IVUS, etc). Texture segmentation is a large area with a rich literature, particularly in
the 2D case. While some very general approaches to clustering and segmentation are known, state-of-the-art
performance in applications is reached by tailoring each method to the particulars of the data representation
and segmentation task. We will broadly constrain ourselves to discussing approaches that have been successfully
applied in applications similar to our own — there are a very large number of segmentation algorithms in the
literature, not all of which are applicable.

3D segmentation is significantly less developed that its 2D counterpart. Part of this is due to the reduced
complexity of the 2D problem (which remains very difficult to do well), and also the computational demands
of 3D processing. Perhaps another reason is that only more recently have 3D volumes become so important to
clinical medical practice – demanding improvements in all aspects of handling and processing 3D data sets.

There have been several different approaches applied effectively to particular 3D segmentation problems.
Without attempting any sort of complete categorization of the approaches, we will mention different broad
classes of important algorithms.

Active contour/deformable models have become a popular way of asserting (typically physics based) mod-
els with constrained shape, e.g. smoothness constraints. Snakes1 became very popular for both 2D and 3D
applications, and a building block for many other approaches including hybrid approaches.2, 3

Stochastic segmentation methods enjoyed broad popularity after the seminal paper of Geman and Geman
introducing the idea of Markov Random Fields to the imaging community.4 Since that time, a myriad of related
Random Field approaches have been tried, typically through relaxation of a Bayesian model with various priors
asserting things like boundary smoothness.5, 6 Much of this literature particularly in 3D is concerned with
addressing the computational challenges of stochastic relaxation.

Another influential direction introduced in 1988 were approaches based on isosurfaces, the level sets method
of Osher and Sethian.7 Here isosurfaces serve as an alternative to parametrized models, and level-sets are
(numerical) techniques to track evolution of interfaces of an implicit surface model with the measurements. Such
methods have been further developed8, 9 and applied to three dimensional segmentation problems.

Other approaches include ones based on optical flow,10 graph based approaches,11, 12 morphological meth-
ods,13, 14 and learning algorithms.



Each of these methods has strengths and challenges, particularly when applied to large, three dimensional
data sets. For our applications of interest, we have identified the following issues as key:

• Robustness to changes in orientation of the data.

• Ability to discriminate subtly different tissues (textures) with random local orientation.

• Able to utilize high dynamic range medical data, even in the presence of significant noise.

• Computationally reasonable on volumetric data of at least 512× 512× 512 voxels.

There is another issue, that of data representation. Some of the approaches mentioned above operate on
the data as measured (or perhaps pretreated in some way), such as (typically) morphological approaches or
deformable models . Others are applied in a feature vector space. The division may be somewhat ambiguous
— for example an MRF method may use both data and an ‘edge map’. It is possible for the same information
to be stored as a feature or computed locally (e.g. local variance), in which case the information content is the
same. In this way the segmentation algorithm and the representation may trade complexity. This noted, we may
address them as separate, but related, concerns.

We believe that the best approach for the particular segmentation problems described here is to address it on
two fronts. First, a multiscale analysis that will produce a data representation that embodies the robustness to
changing orientations, and captures all of the relevant tissue information. This (redundant) space will become the
so-called feature vectors that allow discrimination of texture (with a suitable metric). Secondly, an algorithm in
the spirit of MRF approaches will optimize the segmentation of these vectors. Preliminary results are promising.

3 Data representations and types of textures

An image in its modern digital realization is an approximation of what we perceive as the original image. A
widely accepted model for images postulates that an image is a function defined on a continuum, e.g. R2 or R3,
has finite energy and bounded support (spatial extent). In the digitization process we create a finite array (e.g.
5122 or 5123) of numerical values to represent each image. Therefore, a digitized image is a function with a finite
set of values defined on R2 or R3 with compact support, which is constant on a square/cube (voxel) with side
length 1 centered at each point of the sampling lattice Z2 or Z3. This model has been well-established in the
literature, see.15 Since we are interested only in 3D-images we henceforth fix the dimension of the domain of
images and of the sampling lattice to three. In this sense images can be considered as functions in L2(R3). Our
goal is to develop a theory for texture segmentation of 3D-images that is invariant under Euclidean rigid motions
and is based on multiscale representations. We choose multiscale representation because textural properties
manifest across scales.

Texture segmentation/identification algorithms may rely first on (often multi-scale) filtering techniques, which
to every image f in L2(R3) and each pixel z ∈ R3 associate a ‘feature’ vector belonging to a fixed finite dimensional
space V , endowed with a norm arising form an inner product ‖·‖ on V . The vector space of all V -valued functions
h defined on R3 such that ‖h(·)‖ is square integrable on R3 is denoted by H. Thus, ‖h‖ =

(∫
R3 ‖h(z)‖2dz

)1/2.
To create features for each image f we use a linear transformation A associating to each f the V -valued function
Af defined on R3. This linear transformation must be bounded. The values Af(z) are the feature vectors
corresponding to f . Thus, V is also referred to as the feature vector space and A as the feature map. The
boundedness hypothesis corresponds to a robustness property of the feature map A: small perturbations of pixel
intensities for the image f generate small perturbations of the features Af .

We want to construct texture identification and associated segmentation algorithms which remain invariant
under rigid motions of the image. Let GL(V ) be the group of invertible linear maps of the finite-dimensional
space V into itself. The group G of rigid motions R of R3 is generated by translations and rotations and acts
naturally on images f by Rf(z) = f(Rz). For translations we shall note Taf(z) := f(z − a), for a ∈ R3.

Definition 3.1. Consider a bounded linear feature mapping A as above, generating for each image f and each
voxel z in R3 a feature vector Af(z) in the Euclidean space V . We shall say that A is a steerable feature mapping



if there is a mapping U from the group G of rigid motions into the general linear group GL(V ) of V such that
for each rigid motion R of R3, the invertible transformation U(R) verifies

A[Rf ](z) = U(R) [Af (R(z))] z ∈ R3.

It can easily be shown that the mapping U must be a group homomorphism of the rigid motion group G into
GL(V ), i.e. U(R1R2) = U(R1)U(R2) for all rigid motions R1 and R2 . However, U(G) is not abelian.

A very interesting class of steerable feature maps will arise from the constraint U(R) = IV , the identity on
V , whenever R is a translation. In this case the feature mapping A can be called translation-invariant. There
are many examples of feature maps that are translation-invariant but most of them fail to be steerable: Suppose
that the images f we consider have N3 values. If W := [− 1

2 ,
1
2 ]3 we define the feature map in the following way:

Af(z) :=
∫

R3
f(z − s)χW (s)ds , z ∈ R3, (1)

where χW is the indicator (characteristic) function of W . Obviously

Af(z) =< f, TzχW >=
∫

R3
f̂(ξ)χ̂W (ξ)e−2πξzdξ.

This together with the fact that f̂
(
χ̂W

)
∈ L1 ∩ L2 show that A is a bounded operator. Obviously A is the

feature map ‘intensity values’ and V is 1-dimensional. A is translation-invariant, but it is not steerable: Take the
image χW and rotate it by π/4 keeping the z-axis fixed. Then, it is not hard to check that there is no non-zero
number uπ/4 satisfying

A[Rπ/4f ](z) = uπ/4

[
Af

(
Rπ/4(z)

)]
for all z ∈ R3

as Definition 3.1 demands. The feature map defined in (1) can be defined instead of χW for any square integrable,
symmetric with respect to all three axes, window function, whose Fourier transform is bounded. In the light
of the preceding discussion, an interesting mathematical problem is to characterize the translation-invariant
steerable feature maps. The representation U defined according to Definition 3.1 is completely defined by its
restriction to the Euclidean rotations centered at the origin. Specific examples of steerable multiscale families of
wavelets have been given and used in image analysis. However, to the best of our knowledge no mathematical
definition like 3.1 appears in the literature.

We are currently deriving a complete characterization of multiscale steerable feature maps which are also
translation-invariant. Our formal steerability requirement is essential to construct computable discriminating
local characteristics of textures, which will remain invariant when the texture image is arbitrarily rotated or
translated in 3D. The focus of the present paper is tissue segmentation in medical images based on the use
of a multi-scale translation-invariant steerable feature map, constructed by tensor products of Gaussian radial
functions with spherical harmonics. This map is defined in Eq. (2) below.

A precursor of a steerable feature map results from a multiresolution analysis and is thoroughly studied in16

and first proposed in.17, 18 We refer to this structure as First Generation Isotropic Multiresolution Analysis.
Suppose that φ is a refinable function such that φ̂ is smooth and

• vanishes outside the ball centered at the origin with radius r < 1/2

• φ̂(ξ) = 1 for all ξ in the ball B(0, 1
4 )

Define, ψ to be the inverse Fourier transform of φ̂− φ̂(2·) .

The feature map A we used was arrived at by means of a fast (Isotropic) 3D wavelet transform17 at the every
point of a regular N3-lattice. This follows from a multiresolution analysis, thus the use of a refinable function φ



to generate this structure. Using the nomenclature introduced earlier in this section, A0 can be modeled by a
continuous wavelet transform as follows:

Af(z) =
(
< f, 8T4zφ(·/4) >, < f, 23/2T2zψ(·/2) >, < f, Tzψ >

)
z ∈ R3.

Notice that V is three dimensional and that both φ and ψ are radial functions. The first coordinate of Af(z)
corresponds to the LL-subband, while the second corresponds to the HL-subband. The high pass of f is not
downsampled as indicated by the third coordinate of the feature vectors Af(z). The continuity of A follows
easily from the boundedness of φ̂. However, the feature map A is not steerable: steerability fails because the
condition of Definition 3.1 is not satisfied by all translations. On the other hand the same condition is valid for
all rotations because φ and ψ are radial.

The next step is to develop the steerable family we use for tissue segmentation in this paper. Take σj > 0,
j = 1, 2, . . . ,K and the spherical harmonics Ym,n with 0 ≤ m ≤M and n appropriately determined. The index
m determines the degree of the spherical harmonic, with m = 0 allowing only n = 0 and Y0,0 = 1. For every
m > 0, the set {Ym,n : 1 ≤ n ≤ dm}, where dm is equal to 2 in the case of R2 or 2m+ 1 in the case of R3, is an
orthonormal basis for the restrictions to the unit sphere Sd−1 (d = 2, 3) of all homogeneous harmonic polynomials
of degree m (see Chapter 419 or Chapter 920).

Let Gσj be the Gaussian

Gσj (x) = e
− ‖x‖2

σj x ∈ R3

and gσj (x) = Gσj (x)−Gσj (4x). Next, define

hj,m,n(r, ω) = gσj (r)Ym,n(ω) r > 0, ω ∈ Sd−1,

where d = 2, 3. The mapping A defined by

Af(z) := {< f, Tzhj,m,n >: j = 1, 2, . . . ,K, 0 ≤ m ≤M, 1 ≤ n ≤ dm} z ∈ Rd (2)

is the feature map we use to segment medical images in different tissue types in this paper. The feature space
has dimension

∑M
m=0Kdm. First, we must establish that A is bounded. Indeed,

‖Af‖2 =
∑

j,m,n

∫
R3
| < T−zf, hj,m,n > |2dz =

∑
j,m,n

∫
R3

∣∣∣∣∫
R3
f̂(ξ) ĥj,m,n(ξ)e−2πiξzdξ

∣∣∣∣2 dz
=

∑
j,m,n

∫
R3

∣∣∣∣∣
[
f̂ ĥj,m,n

]∧
(z)

∣∣∣∣∣
2

dz =
∑

j,m,n

‖f̂ ĥj,m,n‖2.

Next we show that A is steerable and translation-invariant. While the latter property is obvious, the steer-
ability with respect to rotations requires some discussion. First notice that rotations can be regarded as elements
of the group SO(d). Spherical harmonics transform to other spherical harmonics of the same degree under rota-
tions. Indeed, if R is a rotation, and p is a homogeneous harmonic polynomial of degree m, then Rp is again a
homogeneous harmonic polynomial of the same degree. On the other hand, if f is a harmonic function, i.e. the
Laplacian ∆ of f vanishes, then Rf is also harmonic (to establish this result calculate ∇(Rf)(x), then use the
fact ∆f(x) = ∇f(x)(∇f(x))T ).

Now it becomes apparent that if R is a rotation acting on Rd, then Ym,n(R·) must be expressed in the terms
of the orthonormal basis {Ym,n : 1 ≤ n ≤ dm}. What is challenging is to find the unique Fourier coefficients of
this expression. Thanks to representation theory these coefficients can be explicitly calculated (see,20 Section
9.4). We will not give any details of this calculation here. We simply conclude that if R is a rotation, and m ≥ 0,
then there exists a unitary dm × dm matrix, say M(m,R) such that the Fourier coefficients of the expansion of
R(Ym,n) with respect to the orthonormal basis {Ym,n : 1 ≤ n ≤ dm} are the elements of the n-th column of the
matrix M(m,R).



Let us see what happens to any one of the coordinates of the feature vector Af(z) if an arbitrary 2D- or
3D-image f is rotated by R and A is the feature map defined in (2):

< Rf, Tzhj,m,n >=< f,R−1TzRR−1(hj,m,n) >=< f, TRzR−1hj,m,n > .

Now,

R−1hj,m,n(r, ω) = gσj (r)Ym,n(Rω) = gσj (r)
dm∑
l=1

M(m,R−1)l,nYm,l(ω) =
dm∑
l=1

M(m,R−1)l,nhj,m,l(r, ω)

for all r > 0 and ω ∈ Sd−1. Thus,

< Rf, Tzhj,m,n >=
dm∑
l=1

M(m,R−1)l,n < f, TRzhj,m,l > for all j.

So, we conclude
A[Rf ](z) = M(m,R−1)Af(Rz) for all z ∈ Rd

which completes the proof of the steerability of this particular feature map.

We will close the present section with an remark: What makes A steerable is its additional redundancy in
translations. However, the capabilities of A in texture segmentation are better than those of A, because locally
the atoms of A (the tensor products of a radial Gaussian with spherical harmonics) can better match oscillating
patterns in the angular variables, whereas A simply ‘locally low-passes’ in the angular variables because its atoms
are locally constant in the angular variables.

4 Segmentations

Consider a steerable feature representation A as described in the previous paragraph. For each image f and
pixel z ∈ R3, the local image features Af(z) is a vector in the euclidean space V .

Definition 4.1. Classically, unsupervised segmentation of an image into N regions Reg1, . . . , RegN is a labeling
L of the image pixels with values 1, . . . , N so that whenever L(z) = j, the pixel z belongs to region Regj. Useful
labellings (segmentations) Lmust satisfy well known qualitative requirements, including an optimal compatibility
with the feature mapping A: this essentially means that for neighboring pixels y and z, the feature vectors Af(z)
and Af(y) must be very similar whenever y and z are in the same region, and must be very different whenever
y and z are not in the same region.

To formalize this requirement we select a ‘texture distance’ D resulting from an inner product with which
we endow the feature space V . Since we want texture segmentation/identification to remain robust to unknown
rigid motions R of the image f , this naturally lead us to pursue the construction of robust texture distances D
on the space V satisfying D(v, w) = D(v, U(R)w) for all rigid motions R in the group G.

Formally we will define a texture type to be any compact subset T of the feature space V . In ‘supervised
segmentation’ tasks, concrete texture types of interest are most often defined by medical experts who use visual
or histological identification of tissue types on specific image patches. This enables the generation of disjoint
compact subsets T1, ..., Tp of V representing the distinct ‘texture types’ identified.

The goal of a supervised segmentation algorithm is to generate a segmentation L, which assigns to each pixel
z a label L(z) ∈ 1, ...p defining the texture type of pixel z. The mapping L(z) = j identifies the point z with
‘texture type’ Tj . Supervision may be provided in picking the number of labels, p, in defining characteristics of
‘texture types’, or both.

Moreover we want the texture type identification L(z) = j at pixel z to remain the same if we first rotate the
underlying image f and then segment it. This is a strong requirement on acceptable segmentation algorithms,
and will be formalized elsewhere. But this imposes the following requirement:

Rigid motion invariance of texture types: For each j = 1, ..., p the subset Tj of V must be invariant by every
U(R) in GL(V ), where R is an arbitrary rigid motion of R3 and U is the homomorphism associated to the
steerable feature map A.



4.1 Segmentation Algorithm

As previously noted, the algorithmic approach can be considered in two parts — the underlying multiscale
representation, and the segmentation algorithm that operates in this space. The previous section describes our
ongoing approach to choosing the appropriate feature vector space and distance. In moving beyond our First
Generation IMRA based segmentation techniques, we are developing a novel segmentation algorithm in the spirit
of Markov Random Field approaches utilizing the steerable translation-invariant feature map A defined by Eq.
(2).

We are working in three dimensions; there are significant practical constraints on the amount of computation
that will remain tractable for the problem domain. For this reason, some of the design constraints are as much
computational as mathematical. The quality of any potential segmentation L is quantified by a cost function
usually referred to in the MRF context as an energy function, E(L). Assigning a positive energy function to the
candidate labeling function L(z) for z ∈ R3. Finding a good segmentation L becomes the problem of minimizing
the energy E(L)

To remain computationally tractable, optimization was done by multi-scale non-stochastic gradient descent
with initial texture types determined by a k-means on the feature space V. One cannot expect global optimality,
but good results are possible while achieving computational efficiency. Our ongoing work is exploring the capa-
bilities of this class of algorithms, and of the underlying representations. The preliminary results reported in §5
are promising.

As previously noted, the energy of a segmentation L requires the definition of a ‘texture distance’ D placed on
the feature vector space V . We are currently comparing various appropriate metrics; the experiments reported
in this paper simply use a Euclidean distance on the feature vectors, but our final goal is to implement distances
D between textures incorporating the ideas of robustness to rotations.

Each voxel z ∈ R3 has a label L(z) in 1, . . . , N . Each voxel also has a localized energy Ez, which is the sum of
four components: Ez =

∑4
k=1 Vk(z). Each component will typically take contributions from neighboring pixels

(i.e. the elements of a neighborhood N (z)), so

Vk(z) =
∑

z′∈N (z)

αkfk(d(z, z′),L(z),L(z′)) .

Here αk is a parameter and fk a precise function of the distance between feature vectors at sites z and z′, and
the labels of both pixels.

The four components of the energy function tend to enforce separate crucial qualitative aspects of the seg-
mentation L:

1. Texture discontinuities must lie on region boundaries: local energy V1 will force region boundaries to
coincide with strong discontinuities in the feature vector space.

2. Regional homogeneity of textures: local energy V2 ensures that when voxels z and z′ lie within the same
region, and are close to each other, then the distance between their feature vectors Af(z) and Af(z′) must
be small.

3. Label consistency : local energy V3 penalizes drift across regions, i.e. voxels in the same region should have
statistically similar feature vectors even when they are spatially far apart.

4. Smoothness of region boundaries: enforced by local energy term V4 smoothness constraints).

The energy of the entire segmentation is the sum of the local energies E =
∑

z∈R3 Ez. Optimizing this function
results in a segmentation.



(a) input µCT data (b) First Generation IMRA-based segmentation

Figure 2: Segmentation performed on µCT volume of arterial segments. (a) shows a single slice
through the data volume (b) shows a colored representation of the segmentation approach based
on the feature map A

5 Results and Commentary

The largest part of our empirical work to date has involved micro x-ray CT (µCT) volumes of arterial specimens.
This data set and the results of our First Generation IMRA approach are discussed in detail in.21

For our purposes here it suffices to show a characteristic result; Figure 2 (a) shows a slice of one calcified
segment, while (b) gives a color overlay representation of the segmentation achieved with the feature map A
resulting from the First Generation IMRA. There are three classes — yellow, blue, and neutral gray. The
yellow and blue are overlaid on actual data, and show regions of ‘abnormal’ tissue, as compared to the grayed
out tissue. It should be noted that the overall purpose of that study was not to segment the images, and
particularly the colored image shown here was not the output used. It does, however, show the characteristics
of the segmentation part of our reconstruction algorithm. These results help to inform the new segmentation
approaches we are constructing. Particular features to note are the lack of clear boundary on the arterial wall
and lumen, and sometimes overly generous boundaries surrounding calcifications.

By comparison, Figure 3 again shows the original data, along with a segmentation result from the new
algorithm. Again the color map is overlaid on the real data; there are only five labels (colors) and shading
represents features of the underlying data. This result has greatly improved the boundary definition of arterial
wall, lumen, and calcifications. It also finds two tissue types (red and light blue). There are, however, issues to
be resolved in the consistency of these two tissue types.

Figure 4 shows the results of decomposing the input data under our first generation IMRA scheme. This
results in a feature vector space of dimension 3 (or 4 if original data is included). We can decompose further,
but rapidly lose resolution, so for this application it is not helpful to do so (since relevant information about the
textures is localized, and of relatively high frequency).

By comparison, the tensor product family described in Section 3 allows us much more freedom to design
a feature vector space tuned to a particular applications needs. Figure 5 shows several results from applying
various members of the tensor product family described previously; Gaussian and spherical harmonics in 2D.
When, d = 2 the orthonormal basis of the space of spherical harmonics of degree m consists of two functions:
cos(m·) and sin(m·). In Figure 5 we see outputs for two choices of the parameter σj (controlling the width of the
Gaussian ‘window’) and for each of these, several choices of m, (controlling the ‘rate of local angular oscillation’).
These are the parameters that were used to construct the feature vector space used in the segmentation result



(a) input µCT data (b) new segmentation algorithm

Figure 3: Segmentation performed on µCT volume of arterial segments. (a) shows a single slice
through the data volume (b) shows a colored representation segmentation approach utilizing the
steerable feature map defined by Eq. (2)

(a) input (b) H

(c) LH (d) LL

Figure 4: IMRA decomposition. Input data (a) is decomposed into (b) H and The L subband (not
part of the representation) is further decomposed into (c) LH and (d) LL subbands.



(a) σ = 0.4, n = 1, sin (b) σ = 0.4, n = 3, sin (c) σ = 0.4, n = 1, cos

(d) σ = 0.4, n = 3, cos (e) σ = 1.2, n = 1, sin (f) σ = 1.2, n = 3, sin

(g) σ = 1.2, n = 1, cos (h) σ = 1.2, n = 3, cos

Figure 5: Gaussian ‘windows’ tensor product with spherical harmonics. Here we see the outputs
of different choices of σj and m for the 2D-spherical harmonics.



showed in Figure 3. The parameters are in no sense optimal. Inspection here shows that there is apparently
quite a bit of redundant information in some of the bands, so this can be improved upon.

Finally, Figure 6 shows a comparison between original data, histological ‘ground truth’, and the result of the
new segmentation algorithm. This figure demonstrates some difficulties with the modality; the strong presence

(a) original (b) histology (c) segmentation

Figure 6: For this data set we have histological truth. Here we see the original data (a) histology
slide (b), and a segmentation of comparable slice of the µCT data (registered by hand).

of calcium in the data (a) overshadows texture detail. In the histological slide (b) a lipid pool bordering the
location of calcium (deep blue in (c)) is very apparent. The segmentation in (b) does not circumscribe this lipid
pool tightly, which it is not visually apparent in the data either. The segmentation does give good boundaries
on other features, and recognizes the density differences in the arterial wall, but it is not really pinning down the
lipid. This is a very difficult section to segment well due to the overwhelming scattering effect of the calcium in
the original data. The result shown is quite good, but we are convinced it can be improved with further study.

In conclusion, We have demonstrated our approach to medical image segmentation, with reference to both
the first generation IMRA based approach and our ongoing work on multiscale representations and feature
vector spaces, ‘texture distances’ and segmentation algorithms. Preliminary results given here demonstrate good
performance for certain tasks, and our ongoing work will generalize these results.
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