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Abstract

We obtain large deviation estimates for a large class of nonuniformly hyper-

bolic systems: namely those modelled by Young towers with summable decay

of correlations. In the case of exponential decay of correlations, we obtain ex-

ponential large deviation estimates given by a rate function. In the case of

polynomial decay of correlations, we obtain polynomial large deviation esti-

mates, and exhibit examples where these estimates are essentially optimal.

In contrast with many treatments of large deviations, our methods do not

rely on thermodynamic formalism. Hence, for Hölder observables we are able

to obtain exponential estimates in situations where the space of equilibrium

measures is not known to be a singleton, as well as polynomial estimates in

situations where there is not a unique equilibrium measure.

1 Introduction

Large deviations theory concerns the probability of outliers in the convergence of
Birkhoff averages. Quantitative estimates of these probabilities are used in engineer-
ing, information and statistical mechanics [7, 10]. Suppose φ is an observable on
an ergodic dynamical system (T,X, µ). We are interested in the asymptotic behav-
ior of µ(| 1

N
φN − φ̄| > ε) where φN =

∑N−1
j=0 φ ◦ T j is the Nth Birkhoff sum and

φ̄ =
∫

X
φ dµ. The classical situation is that this quantity converges exponentially

quickly and moreover

lim
N→∞

1
N

logµ(| 1
N
φN − φ̄| > ε) = −cφ(ε) (1.1)
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for small enough ε, where cφ is strictly convex and vanishes only at 0. Such a func-
tion is called a rate function and is often characterised in terms of thermodynamic
quantities. See [9] for the case of iid random variables.

Many authors have studied large deviations for dynamical systems with hyperbol-
icity. Uniformly hyperbolic (Axiom A) dynamical systems are covered entirely (for
both discrete and continuous time) by the work of [15, 18, 25, 30]. Moreover, when
X is an Axiom A attractor and µ is an SRB measure, then µ can be replaced by
Lebesgue measure in (1.1). For a general class of one-dimensional maps, [14] obtain
a large deviations result (1.1) for observables of bounded variation, again in terms of
Lebesgue measure.

In addition, Kifer [15] and Young [30] formulated quite general large deviation
principles for dynamical systems; for example Kifer obtained the upper bound half
of (1.1) for uniformly partially hyperbolic dynamical systems. However, these results
yield strong conclusions (in particular (1.1)) only if it is known that there is a unique
equilibrium measure for the underlying map. More recently, Araújo and Pacifico [2]
obtain large deviation results, in terms of Lebesgue measure, for continuous functions
over non-uniformly expanding maps with non-flat singularities or criticalities and for
certain partially hyperbolic non-uniformly expanding attracting sets. Araújo [1] has
extended these results to obtain large deviation bounds for continuous functions on
suspension semiflows over a non-uniformly expanding base transformation with non-
flat singularities or criticalities (including semiflows modeling the geometric Lorenz
flow and the Lorenz flow). Again, the results in [1, 2] yield strong conclusions only
when there is a unique equilibrium measure.

We note also results on level 2 large deviation principles by [11] for Hölder observ-
ables on parabolic rational functions (see also [8]) and by [26] on upper bounds for
preimages weighted by the derivative for certain dynamical systems with indifferent
fixed points.

In this paper, we prove large deviation results for Hölder observables of nonuni-
formly hyperbolic systems modelled by Young towers. In contrast to the results men-
tioned above, we do not require that there is a unique equilibrium measure. Moreover,
we obtain to our knowledge the first polynomial large deviations estimates. The gen-
eral set up is that T : M → M is a nonuniformly hyperbolic system in the sense of
Young [31, 32] with a return time function R that decays either exponentially [31],
or polynomially [32]. In particular, T : M → M is modelled by a Young tower con-
structed over a “uniformly hyperbolic’ base Y ⊂ M . The degree of nonuniformity is
measured by the return time function R : Y → Z+ to the base. Such systems are
known to have an SRB measure µ absolutely continuous with respect to Lebesgue
measure mu on unstable manifolds. Let φ : M → R be a Hölder continuous observ-
able. Our main results are:
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(1) If mu(y ∈ Y : R(y) > n) = O(γn) for some γ ∈ (0, 1), then the limit σ2 =
limN→∞

1
N

∫
M

(φN −Nφ̄)2 dµ exists, and if σ2 > 0 then there is a rate function
cφ(ε) such that (1.1) holds.

(2) If mu(y ∈ Y : R(y) > n) = O(n−(β+1)) for some β > 1, then for any δ > 0 there
exists a constant Cφ,δ such that for any ε > 0 and N sufficiently large

µ(| 1
N
φN − φ̄| > ε) ≤ Cφ,δ ε

−2(β−δ)N−(β−δ).

Moreover, for each δ > 0 the constant Cφ,δ depends continuously on ‖φ‖Cα.

Subject to conditions on the density, the SRB measure µ can be replaced by
Lebesgue measure. In certain situations, we show that the upper bound in (2) is
close to optimal. We obtain similar results for nonuniformly hyperbolic flows, but we
do not obtain a rate function.

Remark 1.1 For the classes of systems discussed in this paper, it is well-known that
typically σ2 > 0. Indeed, σ2 = 0 only for Hölder observables lying in a closed subspace
of infinite codimension.

Remark 1.2 Since we require β > 1 in (2), our results are restricted to cases where
the CLT and related results are known to hold (see for example [20, 21]). An in-
teresting problem is to investigate the case β ∈ (0, 1] which occurs in Example 1.3
below for α ∈ [1

2
, 1). Other examples with β = 1 include Bunimovich-type stadia and

certain classes of semidispersing billiards, see [3, 5, 19].

Example 1.3 (Intermittency-type maps) Various authors including [13, 17, 27,
32] have studied intermittency (Pomeau-Manneville) maps of the type T : [0, 1] →
[0, 1] given by

Tx =

{
x(1 + 2αxα) 0 ≤ x < 1

2

2x− 1 1
2
≤ x < 1

for α ∈ (0, 1), where there is an indifferent fixed point at 0. The reference measure
here is Lebesgue measure, and there is a unique ergodic invariant probability measure
µ equivalent to Lebesgue. There is a Young tower with base Y = [ 1

2
, 1] and it follows

from Hu [13] that the optimal return time decay rate is given by Leb(y ∈ Y : R(y) >
n) ≈ n−(β+1) where β = 1

α
− 1.

We restrict to α ∈ (0, 1
2
) (so β > 1). Then by our results in Section 3, for δ > 0,

(i) For any φ : [0, 1] → R Hölder and ε > 0, there exists a constant C ≥ 1 such

that µ(| 1
N
φN − φ̄| > ε) ≤ CN−( 1

α
−1−δ), for all N ≥ 1, and
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(ii) For an open and dense set of Hölder observables φ : [0, 1] → R, and ε > 0

sufficiently small, µ(| 1
N
φN − φ̄| > ε) > N−( 1

α
−1+δ) for infinitely many N .

Furthermore, Hu [13] shows that dµ = g dLeb where g(x) ≈ x−α. Hence with
respect to Lebesgue measure, g−1 ∈ L∞ and g ∈ Lp for any p < α−1. By Hölder’s
inequality, for δ > 0,

(iii) For any φ : [0, 1] → R Hölder and ε > 0, there exists a constant C ≥ 1 such

that Leb(| 1
N
φN − φ̄| > ε) ≤ CN−( 1

α
−1−δ), for all N ≥ 1, and

(iv) For an open and dense set of Hölder observables φ : [0, 1] → R, and ε > 0

sufficiently small, Leb(| 1
N
φN − φ̄| > ε) > N−( 1

α
+δ) for infinitely many N .

In other words, we have polynomial upper and lower bounds for large deviations
for intermittency maps with α < 1

2
, using either the invariant measure µ or Lebesgue

measure to compute probabilities. For the invariant measure, our estimates are almost
optimal. It remains an open problem to obtain sharp results for Lebesgue measure.
As far as we are aware, all four estimates (i)–(iv) are new.

Example 1.4 (Planar periodic Lorentz gas) The planar periodic Lorenz gas is
a class of examples introduced by Sinăı [29]. The Lorentz flow is a billiard flow with
unit speed on T2 − Ω where Ω is a disjoint union of strictly convex regions with C3

boundaries. The phase space M = (T2 − Ω) × S1 is three-dimensional and the flow
preserves volume (so the invariant measure coincides with the reference measure).

The flow has a natural cross-section X = ∂Ω × [−π/2, π/2] corresponding to
collisions. The Poincaré map T : X → X is called the billiard map and preserves the
Liouville measure dµ = cos θ dx dθ. The Lorentz gas has finite horizons if the time
between collisions is uniformly bounded; otherwise it has infinite horizons.

Young [31] proved that the billiard map T : X → X has exponential decay of
correlations in the finite horizon case, and Chernov [4] extended this result to infinite
horizons. In both cases, the map is modelled by a Young tower with exponential tails.
For typical Hölder observables φ : X → R, we have σ2 > 0 and by Theorem 4.1 there
exists a rate function cφ(ε) such that (1.1) is satisfied.

In the finite horizon case, we obtain a large deviations result also for the continuous
time Lorentz flow ft : M → M . Given φ : M → R Hölder, define φT =

∫ T

0
φ ◦ ft dt.

Typically the variance is nonzero and by Theorem 5.1 there is a rate function cφ(ε)
such that

lim sup
T→∞

1
T

log Leb(| 1
T
φT − φ̄| > ε) ≤ −cφ(ε).

Example 1.5 (Dispersing Lorentz flows with vanishing curvature) Chernov
and Zhang [6] study a class of dispersing billiards where the billiard table has smooth
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strictly convex boundary with nonvanishing curvature, except that the curvature
vanishes at two points. Moreover, it is assumed that there is a periodic orbit that
runs between the two flat points, and that the boundary near these flat points has
the form ±(1 + |x|b) for some b > 2. The correlation function for the billiard map
decays as O((lnn)β+1/nβ) where β = (b + 2)/(b − 2) ∈ (1,∞). A byproduct of the
proof is the existence of a Young tower with tails decaying as O((lnn)β+1/nβ+1).
Hence for any φ : T2 −Ω → R Hölder and δ > 0, ε > 0, there exists a constant C ≥ 1
such that

Leb(| 1
T
φT − φ̄| > ε) ≤ CT−( b+2

b−2
+δ),

for all T > 0 by Theorem 5.3 (and similarly for the discrete time billiard map by
Theorem 4.2). Moreover, Chernov and Zhang [6] anticipate that these results are
sharp up to the logarithmic factor, in which case we obtain the corresponding lower

bound N−( b+2
b−2

−δ) for the billiard map by Theorem 4.3.

Similarly, our results apply to all the examples described in Young [31], including
large classes of one-dimensional maps and Hénon-like maps with SRB measure µ, for
which we establish (1.1) for Hölder observables φ, and all the examples in Young [32]
with β > 1, where we establish polynomial rates as in Examples 1.3 and 1.5.

The remainder of the paper is organised as follows. We first focus on (nonin-
vertible) nonuniformly expanding maps, considering exponential tails in Section 2
and polynomial tails in Section 3. In Section 4, we consider nonuniformly hyperbolic
systems. In Section 5, we consider nonuniformly hyperbolic flows.

2 Nonuniformly expanding maps with exponential

tails

Let (X, d) be a locally compact separable bounded metric space with Borel probability
measure m0 and let T : X → X be a nonsingular transformation for which m0 is
ergodic. Let Y ⊂ X be a measurable subset with m0(Y ) > 0, and let {Yj} be an at
most countable measurable partition of Y with m0(Yj) > 0. We suppose that there
is an L1 return time function R : Y → Z+, constant on each Yj with value R(j) ≥ 1,
and constants λ > 1, η ∈ (0, 1), C ≥ 1 such that for each j ≥ 1,

(1) The induced map F = TR(j) : Yj → Y is a measurable bijection.

(2) d(Fx, Fy) ≥ λd(x, y) for all x, y ∈ Yj.

(3) d(T `x, T `y) ≤ Cd(Fx, Fy) for all x, y ∈ Yj, 0 ≤ ` < r(j).

(4) gj =
d(m0 |Yj◦F−1)

dm0|Y
satisfies | log gj(x) − log gj(y)| ≤ Cd(x, y)η for all x, y ∈ Y .
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Such a dynamical system T : X → X is called nonuniformly expanding. There is a
unique T -invariant probability measure µ absolutely continuous with respect to m0

(see for example [32, Theorem 1]).
Our main result in this section is the following.

Theorem 2.1 Let T : X → X be a nonuniformly expanding map as above and
assume that m0(y ∈ Y : R(y) > n) = O(γn) for some γ ∈ (0, 1). Let φ : X → R be a
Hölder-continuous function with mean φ̄.

Then the limit σ2 = limN→∞
1
N

∫
X

(φN −Nφ̄)2 dµ exists, and if σ2 > 0 then there
is a rate function c : R → [0,∞) such that

lim
N→∞

1
N

log µ(| 1
N
φN − φ̄| > ε) = −c(ε).

The proof of Theorem 2.1 contains three main steps: (i) reduction to a tower
map f : ∆ → ∆, (ii) reduction to the case where the tower map is mixing, and (iii)
application of an abstract result of [12] using the function space constructed in [31].
These steps are carried out in Subsections 2.1, 2.2 and 2.3.

2.1 Reduction to a Young tower

Define ∆ = {(y, `) ∈ Y ×N : 0 ≤ ` ≤ R(y)}/ ∼ where (y, R(y)) ∼ (Fy, 0). Define the
tower map f : ∆ → ∆ by setting f(y, `) = (y, `+1) computed modulo identifications.
The projection π : ∆ → X, π(y, `) = T `y defines a semiconjugacy, π ◦ f = T ◦ π.

There is a unique invariant ergodic probability measure m equivalent to m0|Y for
the induced map F : Y → Y . We obtain an ergodic F -invariant probability measure
on ∆ given by m∆ = m × ν/|R|1 where ν denotes counting measure, and hence an
ergodic T -invariant probability measure µ = π∗m∆ on X.

If x, y ∈ Y , let s(x, y) be the least integer n ≥ 0 such that F nx, F ny lie in distinct
partition elements in Y . If x, y ∈ Yj×{`}, then there exist unique x′, y′ ∈ Yj such that
x = f `x′ and y = f `y′. Set s(x, y) = s(x′, y′). For all other pairs x, y, set s(x, y) = 0.
This defines a separation time s : ∆×∆ → N and hence a metric dβ(x, y) = βs(x,y) on
∆. Let Lip(∆) denote the Banach space of Lipschitz functions φ : ∆ → R with norm
‖φ‖Lip = |φ|∞ + |φ|Lip where |φ|Lip = supx6=y |φ(x) − φ(y)|/dβ(x, y). Given η > 0, we
can choose β ∈ (0, 1) so that φ ◦ π ∈ Lip(∆) for all φ ∈ Cη(X).

Hence, we may reduce to the situation where the nonuniformly expanding map is
given by the tower map f : ∆ → ∆ and the observable φ : ∆ → R lies in Lip(∆).

2.2 Reduction to a mixing Young tower

Let k ≥ 1 be the greatest common divisor of the values of R : Y → Z+. A Young
tower is mixing if and only if k = 1. In this subsection, we show how to reduce the
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nonmixing case k ≥ 2 to the mixing case. The only fact specific to Young towers
that we use is the fact that the tower ∆ is mixing up to a finite cycle: ∆ is the
disjoint union of k sets Λ1, . . . ,Λk cyclically permuted by f , and f k|Λi is mixing for
i = 1, . . . , k. Moreover, each Λi has the structure of a (mixing) Young tower. Let
g = f k|Λ1. Note that m∆(Λ1) = 1

k
so m1 = km∆|Λ1 is an ergodic invariant probability

measure for g : Λ1 → Λ1.
We show that large deviations for f : ∆ → ∆ are inherited from large deviations

for g : Λ1 → Λ1.
Given φ : ∆ → R with mean φ̄, define ψ : Λ1 → R,

ψ = φ(1) + φ(2) ◦ f + · · · + φ(k) ◦ f k−1, φ(i) = φ|Λi,

and set ψ̄ =
∫
Λ1
ψ dm1. It is easy to see that ψ̄ = kφ̄.

Proposition 2.2 Assume that φ ∈ L∞(∆). Define ψ : Λ1 → R as above and let
ψN =

∑N−1
j=0 ψ ◦ gj. Suppose that there is a rate function c(ε) such that

lim
N→∞

1
N

logm1(|
1
N
ψN − ψ̄| > ε) = −c(ε).

Then
lim

N→∞

1
N

logm∆(| 1
N
φN − φ̄| > ε) = −c(kε).

Proof We give the details for k = 2. Write

φ2N =
2N−1∑

j=0

φ ◦ f j =
2N−1∑

j=0

φ ◦ f j|Λ1 +
2N−1∑

j=0

φ ◦ f j|Λ2

=

N−1∑

j=0

φ(1) ◦ gj +

N−1∑

j=0

φ(2) ◦ f ◦ gj +

N−1∑

j=0

φ(2) ◦ gj +

N−1∑

j=0

φ(1) ◦ f ◦ gj

=

N−1∑

j=0

ψ ◦ gj +

N−1∑

j=0

φ(1) ◦ f ◦ gj +

N−1∑

j=0

φ(2) ◦ gj ◦ f 2 + χ

= ψN + ψN ◦ f + χ

where χ = φ(2) − φ(2) ◦ gN . Hence

m∆( 1
2N

(φ2N − χ) − φ̄| > ε) = m∆( 1
N

(φ2N − χ) − 2φ̄| > 2ε)

= 1
2
m1(|

1
N
ψN − 2φ̄| > 2ε) + 1

2
m2(|

1
N
ψN ◦ f − 2φ̄| > 2ε)

= m1(|
1
N
ψN − ψ̄| > 2ε).
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Since |χ|∞ ≤ 2|φ|∞, it follows that

lim
N→∞

1
N

logm∆(| 1
2N

|φ2N − φ̄| > ε) = lim
N→∞

1
N

logm1(|
1
N
|ψN − ψ̄| > 2ε) = −c(2ε),

as required.

2.3 Proof of Theorem 2.1

By Subsections 2.1 and 2.2, it suffices to prove Theorem 2.1 for f : ∆ → ∆ a mixing
tower map and φ : ∆ → R a Lipschitz observable. Following Young [31], we define
B to be a Banach space of weighted Lipschitz functions as follows. Let ∆` =

⋃
∆j,`

where the union is over all j with R(j) > `. Let ε > 0, β ∈ (0, 1). Given v : ∆ → C

measurable, define

‖v‖∞ = sup
`

|v1∆`
|∞ e−ε`, ‖v‖β = sup

`
|v1∆`

|β e
−ε`, ‖v‖ = ‖v‖∞ + ‖v‖β,

where

|v1∆`
|β = sup

x,y∈∆`
x6=y

|v(x) − v(y)|

βs(x,y)
.

Now define B to be the Banach space of functions v : ∆ → C with ‖v‖ < ∞. Let
B∗ denote the Banach space of bounded linear functionals. We have the following
elementary result.

Proposition 2.3 Provided ε is sufficiently small (eεγ < 1 suffices),

(a) If v ∈ B, then v̄ ∈ B (complex conjugation) and |v| ∈ B.

(b) For all x ∈ ∆, the maps v 7→ v(x) and v 7→
∫
∆
v dm∆ lie in B∗.

Let P : L1(∆) → L1(∆) be the transfer (Perron-Frobenius) operator given by∫
∆
v w ◦ T dm∆ =

∫
∆
Pv w dm∆ for v ∈ L1(∆), w ∈ L∞(∆). Note that P1 = 1.

By ergodicity, the eigenvalue at 1 is simple. Since f is mixing, there are no further
eigenvalues on the unit circle. Young [31] shows that P lies in the space LB of bounded
linear operators on B. Moreover, viewed as such an operator, ‖P n‖ is bounded (so
the spectral radius is 1) and P is quasicompact. To summarize:

Lemma 2.4 The transfer operator P restricts to a bounded linear operator on B
satisfying P1 = 1 and with spectral radius 1. Moreover ‖P n‖ is bounded, P is quasi-
compact, and the spectrum of P lies strictly inside the unit circle with the exception
of a simple eigenvalue at 1.
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Proposition 2.5 If v ∈ B and φ ∈ Lip(∆), then φv ∈ B and ‖φv‖ ≤ ‖φ‖Lip‖v‖.

Proof Compute that |φv1∆`
|β ≤ |φ|∞|v1∆`

|β + |φ|Lip|v1∆`
|∞ so that

‖φv‖β ≤ |φ|∞‖v‖β + |φ|Lip‖v‖∞.

Similarly, ‖φv‖∞ ≤ |φ|∞‖v‖∞ and the result follows.

Corollary 2.6 Let φ ∈ Lip(∆), and define Pz : B → B by Pzv = P (ezφv). Then Pz

is a bounded operator for all z ∈ C, and the map z 7→ Pz from C to LB is analytic on
the whole of C.

Proof Write Pz = PMz where Mzv = ezφv. Since P ∈ LB, it suffices to consider
Mz. By Proposition 2.5, ‖Mz‖ ≤ e|z|‖φ‖Lip so that Mz ∈ LB for all z ∈ C. Moreover,
∂
∂z
Mzv = φMzv so that ‖ ∂

∂z
Mz‖ ≤ ‖φ‖Lipe

|z|‖φ‖Lip. Again, ∂
∂z
Mz ∈ LB for all z ∈ C,

proving that z 7→Mz is analytic on the whole of C.

We can now verify the hypotheses of an abstract result of Hennion and Hervé [12,
Theorem E*, p. 84] (noting that φ here corresponds to ξ in [12]). Once the hypotheses
are verified we obtain the large deviation result for Lipschitz observables φ : ∆ → R.
The result for Hölder observables φ : X → R is then immediate.

Condition (K1) and part (i) of condition (K2) in [12, p. 81] are valid by Propo-
sition 2.3. The remainder of condition (K2) follows from Lemma 2.4. Condition
(K2)(iv) in [12, p. 82] follows from Lemma 2.4 (specifically the fact that P1 = 1).
Condition (K3) holds for all m ≥ 1 (and I0 = R) by Corollary 2.6 and so we have

verified condition K[m] for all m ≥ 1. Finally condition D̃ in [12, p. 84] follows from
Corollary 2.6 (for any θ0).

3 Nonuniformly expanding maps with polynomial

tails

We continue to assume that T : X → X is a nonuniformly expanding map as in
Section 2, but we relax the condition on m0(R > n). Write ‖φ‖ = ‖φ‖Cη .

Theorem 3.1 Let T : X → X be a nonuniformly expanding map as above and
assume that m0(y ∈ Y : R(y) > n) = O(n−(β+1)) for some β > 1. Let φ : M → R be
Hölder with mean φ̄ = 0 (for convenience).

Then for any ε, δ > 0,

µ(| 1
N
φN | > ε) = O(ε−2(β−δ)N−(β−δ)).
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More precisely, there is a constant C ≥ 1 with the following property. Let p = β−δ
and define Cp = 4C1/p

∑
j≥1 j

−β/(β−δ). Write ‖φ‖ = ‖φ‖Cη . Then for all ε > 0,
N ≥ 1,

µ(| 1
N
φN | > ε) ≤ {4p|φ|∞(|φ|p + Cp‖φ‖

1/p|φ|1−1/p
∞ )}pε−2pN−p.

Proof As in Section 2, we may suppose without loss that T : X → X is mixing.
We claim that

|φN |
2p
2p ≤ {4p|φ|∞(|φ|p + Cp‖φ‖

1/p|φ|1−1/p
∞ )}pNp. (3.1)

By Markov’s inequality,

µ(| 1
N
φN | > ε) ≤ |φN |

2p
2p ε

−2pN−2p,

so the result follows from (3.1).
It remains to verify (3.1). The two main ingredients are a martingale inequality

of Rio [28] recalled for convenience as Theorem A.1 in the appendix, and a result on
decay of correlations by Young [32, Theorem 3] which states that

|
∫

X
LNφψ dµ| = |

∫
X
φψ ◦ TN dµ| ≤ C‖φ‖|ψ|∞ /Nβ, (3.2)

for all ψ ∈ L∞.
Following [22], we substitute ψ = sgnLNφ into (3.2), yielding |LNφ|1 ≤ C‖φ‖/Nβ.

Hence ∫
X
|LNφ|p dµ ≤ (|LNφ|∞)p−1|LNφ|1 ≤ C‖φ‖|φ|p−1

∞ /Nβ,

so that |LNφ|p ≤ C1/p‖φ‖1/p|φ|
1−1/p
∞ /Nβ/(β−δ). It follows that χ =

∑
N≥1 L

Nφ is

summable in Lp and |χ|p ≤
1
4
Cp‖φ‖

1/p|φ|1−1/p
∞ .

Next, write φ = ψ + χ ◦ T − χ where ψ is an Lp martingale. More precisely, {ψ ◦
T j; j ≥ 1} is a sequence of reverse martingale differences, i.e. E(ψ◦T j|T−(j+1)M) = 0
where M is the underlying σ-algebra.

Passing to the inverse limit, we obtain φ ◦ T j = ψ ◦ T j + χ ◦ T j+1 − χ ◦ T j for
j = 0,±1,±2, . . . and so the sequence {ψ ◦ T−j; j ≥ 1} is a sequence of (forward)
martingale differences with respect to the filtration Fj = T jM.

Let Xj = φ ◦ T−j, Zj = ψ ◦ T−j. Then for each i ≤ `,

∑̀

j=i

E(Xj|Fi) =
∑̀

j=i

E(Zj|Fi) + E(χ ◦ T−i+1|Fi) − E(χ ◦ T−`|Fi)

= E(Zi|Fi) + E(χ ◦ T−i+1|Fi) − E(χ ◦ T−`|Fi),

and so |
∑`

j=iE(Xj|Fi)|p ≤ |ψ|p + 2|χ|p ≤ |φ|p + 4|χ|p. Hence bi,n defined as in

Theorem A.1 satisfies bi,n ≤ |φ|∞(|φ|p + Cp‖φ‖
1/p|φ|

1−1/p
∞ ), and (3.1) follows from

Theorem A.1.
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Remark 3.2 We note related results of [16]. In particular, [16, Theorem 3.6] gives
a polynomial estimate for Lp martingales and [16, Corollary 4.4] generalises to the
case of an Lp martingale plus coboundary. They obtain the decay rate O(N−p/2) and
show that this is sharp for Lp martingales.

We obtain a stronger result because the underlying observable lies in L∞ even
though the decomposition into martingale plus coboundary holds only in Lp.

We note also that the decay rate in Theorem 3.1 is stronger than the optimal
decay rate, namely o(N−(p−1)), for i.i.d.s in Lp (see [16, Proposition 2.6]).

3.1 Lower bounds

In this subsection, we show that Theorem 3.1 is essentially optimal for Young towers.
Assume that m0(y ∈ Y : R(y) > N) ∼ N−(β+1). Let DN = {(y, `) ∈ ∆ : R(y) ≥ N}.
Note that m∆(DN) ∼ N−β.

Proposition 3.3 Suppose that φ ≥ φ̄ + ε0 on DN0 for some N0 ≥ 1, ε0 > 0. Then
there exists C > 0 such that

m∆( 1
N
φN − φ̄ > ε) ≥ CN−β (3.3)

for all N ≥ N0 and ε ∈ (0, ε0).

Proof Let N ≥ N0, ε ∈ (0, ε0). If R(y) ≥ N and ` < R(y)−N − 1, then φN(y, `) ≥
(φ̄+ ε0)N > (φ̄+ ε)N . Hence

m∆( 1
N
φN − φ̄ > ε) ≥ m∆{(y, `) : R(y) ≥ N, ` < R(y) −N − 1} ∼ 1/Nβ.

To obtain an explicit counterexample, take N0 so large that m∆(DN0) ≤
1
2
. Define

φ ≡ 2 on DN0 and φ ≡ 0 elsewhere (so φ̄ ≤ 1). Then the counterexample holds with
ε0 = 1.

Remark 3.4 Let φ, ε0, N0 be as in Proposition 3.3. Given ρ ∈ (0, ε0/2), let ε1 =
ε0 − 2ρ. Then any φ′ with |φ′ − φ|∞ < ρ satisfies (3.3) for all N ≥ N0, ε ∈ (0, ε1).

Theorem 3.5 Given β ′ > β, there is an open and dense set of Lipschitz observables
ψ : ∆ → R with ε0(ψ) > 0 such that for all ε ∈ (0, ε0(ψ))

m∆(| 1
N
ψN − ψ̄| > ε) > N−β′

for infinitely many N . Moreover ε0(ψ) may be taken as constant on a Lipschitz
neighborhood of ψ.

11



Proof Let A denote the set of Lipschitz observables ψ for which the conclusion of
the theorem holds. If ψ ∈ IntA, then we are finished. Otherwise, we make an initial
perturbation so that ψ 6∈ A. We complete the proof by showing that there exists
ψ′ ∈ IntA arbitrarily close to ψ.

Since ψ 6∈ A, there exists β ′ > 0 such that for all α > 0 there exists ε ∈ (0, α) and
N(α) such that for all N > N(α)

m∆(|ψN −Nψ̄| > Nε) ≤ N−β′

.

Hence for all ε > 0 there exists N(ε) such that for all N > N(ε)

m∆(|ψN −Nψ̄| > Nε) ≤ N−β′

.

Let φ be the explicit counterexample of Proposition 3.3 i.e. φ ≡ 2 on DN0 and
φ = 0 elsewhere. To simplify the construction, we normalise so that φ̄ = 0.

For small δ > 0 define ψ′ = ψ + δφ. Compute that

m∆(|ψ′
N −Nψ̄′| > Nε) = m∆(|δφN + ψN −Nψ̄| > Nε)

≥ m∆(|δφN | > 2Nε, |ψN −Nψ| < Nε)

≥ m∆(|δφN | > 2Nε) −m∆(|ψN −Nψ| > Nε)

= m∆(|φN | > 2Nε/δ) −m∆(|ψN −Nψ| > Nε)

≥ CN−β −N−β′

≥ N−β′

for sufficiently large N . Hence ψ′ ∈ A. Moreover, by Remark 3.4, we can replace φ
by φ′ sufficiently close to φ. Hence ψ′ ∈ A.

Remark 3.6 For certain systems T : X → X modelled by Young towers we may
find an open and dense set of Lipschitz observables φ : X → R which have polynomial
lower bounds. In the notation of Proposition 3.3, let XN = π(DN ). Suppose that
there exists an N0 sufficiently large that µ(XN0) = a0 < 1 (hence we require that XN0

is not dense in X for some N0). Choose a1 ∈ (a0, 1) and define φ ≡ 1/a1 on µ(XN0)
and φ ≡ 0 elsewhere. Then φ̄ = a0/a1 < 1. Smooth φ using a bump function so that
φ : X → R is C∞ with φ ≡ 1/a1 on XN0 and φ̄ < 1.

It is immediate that φ lifts to a Lipschitz observable φ∆ : ∆ → R such that
φ∆ ≡ 1/a1 on DN0 and φ∆ < 1. Hence the construction in Proposition 3.3 holds
with ε0 = 1/a1 − φ∆ > 0. Furthermore there exists ρ > 0 such that if |φ− φ

′

|Lip < ρ
(Euclidean metric) then φ

′

also lifts to a function φ
′

∆ : ∆ → R satisfying the conditions
of Proposition 3.3 for ε0(ρ) > 0. The statement and proof of openness and density
proceeds exactly as in the case of functions on the tower.

The condition on π(XN) is satisfied in Example 1.3. For these maps T : [0, 1] →
[0, 1], we have π(XN) ∩ (1/2, 1] = ∅ for all N > 2.
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4 Nonuniformly hyperbolic systems

Let T : M → M be nonuniformly hyperbolic in the sense of Young [31, 32], (alter-
natively, see [20, Section 3].) In particular, there is a “uniformly hyperbolic” subset
Y ⊂ M with partition {Yj} and an integrable return time function r : Y → Z+

constant on partition elements such that, modulo uniformly contracting directions,
the induced map F = T r : Y → Y is uniformly expanding.

Using the induced map F : Y → Y and the return time function r : Y → Z+,
we can build a tower map f : ∆ → ∆ just as in Section 2.1 with semiconjugacy
π : ∆ → M given by π(y, `) = T `y. Moreover, the quotient tower map f̄ : ∆̄ → ∆̄
has all the structure of the Young tower in Section 2.1.

In particular, there is an absolutely continuous f̄ -invariant ergodic probability
measure m∆̄. Furthermore, there is an f -invariant measure m∆ on ∆ such that the
natural projection π̄ : ∆ → ∆̄ is a measure-preserving semiconjugacy. The required
SRB or physical measure is given by µ = π∗m∆. This is an ergodic T -invariant
probability measure whose restriction to unstable manifolds is absolutely continuous.
with respect to Lebesgue measure mu.

Theorem 4.1 Let T : M → M be nonuniformly hyperbolic modelled by a Young
tower, and suppose that mu(y ∈ Y : R(y) > n) = O(γn) where γ ∈ (0, 1). Let
φ : M → R be Hölder with mean φ̄.

Then the limit σ2 = limN→∞
1
N

∫
X

(φN −Nφ̄)2 dµ exists, and if σ2 > 0 then there
is a rate function c(ε) such that

lim
N→∞

1
N

log µ(| 1
N
φN − φ̄| > ε) = −cφ(ε).

Proof Without loss, we may suppose that φ̄ = 0. By [20, Lemma 3.2], we can write
φ◦π = ψ+χ−χ◦f where ψ, χ ∈ L∞(∆), and ψ depends only on future coordinates.
In particular, we can write ψ : ∆̄ → R where ∆̄ is the quotient tower. This is a
nonuniformly expanding tower as in Section 2. By [20, Lemma 3.2] ψ is Lipschitz on
∆̄. Hence, by Theorem 2.1 there is a rate function c(ε) such that

lim
N→∞

1
N

logm∆̄(|ψN | > Nε) = −c(ε).

This result lifts to ψ : ∆ → R. Since |φN ◦ π − ψN | ≤ 2|χ|∞, we obtain

lim
N→∞

1
N

logm∆(|φN ◦ π| > Nε) = −c(ε).

Since π is measure-preserving, we obtain the required result on M .
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Theorem 4.2 Let T : M → M be nonuniformly hyperbolic modelled by a Young
tower, and suppose that mu(y ∈ Y : R(y) > n) = O(n−(β+1)) where β > 1. There is

a constant C̃ ≥ 1 with the following property.
Let φ : M → R be Hölder with mean φ̄ = 0 (for convenience) and norm ‖φ‖ =

‖φ‖Cη . Let p = β − δ where δ > 0. Then for all ε > 0, N ≥ 1,

µ(| 1
N
φN − φ̄| > ε) ≤ {4p|φ|∞(|φ|p + Cp‖φ‖

1/p
γ |φ|1−1/p

∞ )}p(ε− C̃‖φ‖γ/N)−2pN−p.

where Cp is the constant in Theorem 3.1.

Proof As in the previous result, we have φ ◦ π = ψ + χ − χ ◦ f where χ ∈ L∞(∆)
and ψ : ∆̄ → R is Lipschitz. By Theorem 3.1,

m∆(| 1
N
ψN | > ε) ≤ {4p|ψ|∞(|ψ|p + Cp‖ψ‖

1/p
θ |ψ|1−1/p

∞ )}pε−2pN−p.

Since |φN ◦ π − ψN | ≤ 2|χ|∞,

µ(| 1
N
φN | > ε) ≤ {4p|φ|∞(|φ|p + Cp‖ψ‖

1/p
θ |φ|1−1/p

∞ )}p(ε− 2|χ|∞/N)−2pN−p.

Moreover, it follows from the proof of [20, Lemma 3.2] that |χ|∞ ≤ C̃‖φ‖ and ‖ψ‖θ ≤

C̃‖φ‖ completing the proof (with a modified choice of C̃).

Theorem 4.3 Let T : M → M be nonuniformly hyperbolic modelled by a Young
tower π : ∆ → M , and suppose that mu(y ∈ Y : R(y) > n) = O(n−(β+1)) where
β > 1. Let MN = π(DN) where DN = {(y, `) ∈ ∆ : R(y) ≥ N} and suppose that
µ(MN0) < 1 for some N0. Then for any β ′ > β, there is an open and dense set of
Hölder observables ψ : M → R with ε0(ψ) > 0 such that for all ε ∈ (0, ε0(ψ))

µ(| 1
N
ψN − ψ̄| > ε) > N−β′

for infinitely many N . Moreover ε0(ψ) may be taken as constant on a Hölder neigh-
borhood of ψ.

Proof This follows from the same arguments used in the proof of Theorem 3.5 and
Remark 3.6.

5 Nonuniformly hyperbolic flows

Let f : X → X be an invertible measure-preserving transformation with ergodic
invariant measure µ. Suppose that h : X → R+ is an L∞ roof function and define the
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suspension flow ft : Xh → Xh with invariant ergodic measure µh = µ × Lebesgue/h̄
where h̄ =

∫
X
h dµ.

Let φ : Xh → R be an L∞ observable with mean zero. Define φT =
∫ T

0
φ ◦ ft dt.

We consider large deviation results for µh(|φT | > Tε). We assume large deviations
results on X and deduce results on Xh.

Define the induced observable Φ = φh =
∫ h

0
φ◦ft dt : X → R also with mean zero.

As usual, ΦN =
∑N−1

j=0 Φ ◦ f j. Similarly, hN =
∑N−1

j=0 h ◦ f j.

5.1 Exponential case

Theorem 5.1 Suppose that ft : Xh → Xh is a suspension flow built over a map
f : X → X with roof function h ∈ L∞(X). Let φ ∈ L∞(Xh) be a mean zero
observable and define Φ ∈ L∞(X) as above.

Assume that there exist rate functions cΦ(ε), ch(ε) such that

lim
N→∞

1
N

logµ(| 1
N

ΦN | > ε) = −cΦ(ε), (5.1)

lim
N→∞

1
N

log µ(| 1
N
hN − h̄| > ε) = −ch(ε). (5.2)

Then there is a rate function c(ε) such that

lim sup
T→∞

1
T

log µh(| 1
T
φT | > ε) ≤ −c(ε).

Define the lap number n[x, T ] to be the integer satisfying

hn[x,T ](x) ≤ T < hn[x,T ]+1(x).

Proposition 5.2 For δ > 0 sufficiently small,

lim sup
T→∞

1
T
µ(|n[·, T ] − T/h̄| ≥ δT ) ≤ −(1/h̄)(1 + δh̄)ch(δh̄

2(1 + δh̄)−1).

Proof Note that µ(n[·, T ] ≥ K) = µ(hK ≤ T ). Let T ′ = (1/h̄)(1 + δh̄)T . Then

µ(|n[·, T ] − T/h̄| ≥ δT ) = µ(n[·, T ] ≥ T ′) + µ(n[·, T ] ≤ T ′)

= µ(hT ′ ≤ T ) + µ(hT ′ ≥ T )

= µ(hT ′ − T ′h̄ ≤ −δh̄T ) + µ(hT ′ − T ′h̄ ≥ −δh̄T )

= µ(hT ′ − T ′h̄ ≤ −δh̄2(1 + δh̄)−1T ′)

+ µ(hT ′ − T ′h̄ ≥ −δh̄2(1 + δh̄)−1T ′).
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Applying (5.2),

lim sup
T→∞

1
T
µ(|n[·, T ]− T | ≥ δT )

≤ −(1/h̄) min{(1 + δh̄)ch(δh̄
2(1 + δh̄)−1), (1 − δh̄)ch(δh̄

2(1 − δh̄)−1)},

and the result follows from convexity of ch.

For ε > 0, there is a unique δ < ε/(|h|∞|φ|∞) such that (1/h̄)cΦ((ε −
δ|h|∞|φ|∞)h̄) = (1/h̄)(1+ δh̄)ch(δh̄

2(1+ δh̄)−1). Define c(ε) to be this common value.
Then c(ε) is a rate function (in particular c(ε) > 0 for all ε 6= 0 sufficiently small).

Proof of Theorem 5.1 For notational convenience, we restrict T to integer multi-
ples of h̄. Since φ ∈ L∞, this is no loss of generality.

Let δ > 0 and define A = {x : |n[x, T ] − T/h̄| ≤ δT}. For x ∈ A, we have
|Φn[x,T ](x) − ΦT/h̄(x)| ≤ δT |Φ|∞ ≤ δTK where K = |h|∞|φ|∞. Hence

µ
(
|Φn[x,T ](x)| ≥ εT

)
≤ µ

(
|ΦT/h̄| ≥ (ε− δK)h̄(T/h̄)

)
+ µ(X − A).

By (5.1) and Proposition 5.2,

lim sup
T→∞

1
T

logµ(|Φn[·,T ]| ≥ εT ) ≤ −(1/h̄) min{cΦ((ε−δK)h̄), (1+δh̄)ch(δh̄
2(1+δh̄)−1)}.

This holds for all δ > 0 sufficiently small and hence by definition of c,

lim sup
T→∞

1
T

logµ(|Φn[·,T ]| ≥ εT ) ≤ −c(ε).

Now write

φT (x, u) =

∫ T+u

u

φ ◦ ft(x, 0) dt =
(∫ T

0

+

∫ T+u

T

−

∫ u

0

)
φ ◦ ft(x, 0) dt,

for x ∈ X and u < h(x). Hence, |maxu∈[0,h(x)] φT (x, u) − φT (x, 0)| ≤ 2K. Moreover,
|φT (x, 0) − φhn[x,T ](x)(x, 0)| ≤ K and φhn(x)(x, 0) = Φn(x) for all n (cf. [23]) so we
obtain

| max
u∈[0,h(x)]

φT (x, u) − Φn[x,T ](x)| ≤ 3K

for all x ∈ X. It follows that

lim sup
T→∞

1
T

log µ(| max
u∈[0,h(x)]

φT (x, u)| ≥ εT ) ≤ −c(ε).

Finally, if E ⊂ X is measurable, define Ê ⊂ Xh to be Ê = {(x, u) ∈ Xh : x ∈ E}.
Then

∫
Xh 1Ê dµ

h = (1/h̄)
∫

X
h1E dµ so that µh(Ê) ≤ (1/h̄)|h|∞µ(E). The result

follows.
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5.2 Polynomial case

Theorem 5.3 Suppose that ft : Xh → Xh is a suspension flow built over a map
f : X → X with roof function h ∈ L∞(X). Let φ ∈ L∞(Xh) be a mean zero
observable and define Φ ∈ L∞(X) as above.

Assume that there exists C ≥ 1 and p > 0 such that

µ(| 1
N

ΦN | > ε) ≤ Cε−2pN−p, µ(| 1
N
hN − h̄| > ε) ≤ Cε−2pN−p,

for all ε > 0 and all N sufficiently large. Then there is a constant C ′ such that

µ(| 1
T
φT | > ε) ≤ C ′ε−2pT−p,

for all ε > 0 and all T sufficiently large.

Proof This is similar to the proof of Theorem 5.1. Define the lap number n[·, T ] as
before. Below, the value of C may change from line to line and depends on φ, h, and
p but not on ε, δ, N, T . We compute that

µ(|n[·, T ] − T/h̄| ≥ δT ) ≤ Cδ−2pT−p,

and hence that

µ(|Φn[·,T ]| ≥ εT ) ≤ C(ε− δK)−2pT−p + Cδ−2pT−p,

where K = |φ|∞|h|∞. Taking δ = ε/(K + 1), we obtain

µ(|Φn[·,T ]| ≥ εT ) ≤ Cε−2pT−p.

Hence
µ(| max

u∈[0,h(x)]
φT (x, u)| ≥ εT ) ≤ C ε−2pT−p

for T sufficiently large and the result follows.

A Appendix: Rio’s inequality

The following inequality due to Rio [28, Theorem 2.5] is taken from [24, Proposition 7].

Theorem A.1 Let {Xi} be a sequence of L2 random variables with filtration Fi. Let
p ≥ 1 and define

bi,n = max
i≤u≤n

‖Xi

u∑

k=i

E(Xk|Fi)‖p.

Then

E|X1 + · · ·+Xn|
2p ≤

(
4p

n∑

i=1

bi,n

)p

.
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[1] V. Araújo. Large deviations for semiflows over a non-uniformly expanding base.
Preprint, 2006.
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