POLYNOMIAL EXTENSIONS OPERATORS FOR $\boldsymbol{H}^{1}, \boldsymbol{H}$ (curl) and $\boldsymbol{H}($ div) SPACES ON A CUBE

Leszek Demkowicz (Joint work with Martin Costabel and Monique Dauge)
Institute for Computational Engineering and Sciences
The University of Texas at Austin

I will discuss the construction of polynomial extension operators for the polynomial spaces defined on the cube forming the exact sequence that make the following diagram commute.

$$
\begin{array}{llllccc}
W_{p}(\Omega) & \xrightarrow{\boldsymbol{\nabla}} & \boldsymbol{Q}_{p}(\Omega) & \stackrel{\text { curl }}{\rightleftarrows} & \boldsymbol{V}_{p} & \xrightarrow{\text { div }} & Y_{p}(\Omega) \\
\gamma_{0} \mid \uparrow \mathcal{L}_{0}^{(p)} & & \gamma_{\mathbf{t}} \downarrow \uparrow \mathcal{L}_{\mathbf{t}}^{(p)} & & \gamma_{\mathbf{n}} \downarrow \mathcal{L}_{\mathbf{n}}^{(p)} & \gamma_{\text {avg }} \downarrow \mid \mathcal{L}_{\text {avg }} \tag{0.1}\\
W_{p}(\partial \Omega) & \xrightarrow[\boldsymbol{\nabla}]{\longrightarrow} & \boldsymbol{Q}_{p}(\partial \Omega) & \xrightarrow{\text { curl }} & V_{p}(\partial \Omega) & \xrightarrow{\gamma_{\text {avg }}} & \mathbb{R}
\end{array}
$$

The main result of the presented work[1] is the fact that the norms of the extension operators $\mathcal{L}_{0}^{(p)}, \mathcal{L}_{\boldsymbol{t}}^{(p)}, \mathcal{L}_{\boldsymbol{n}}^{(p)}$ and $\mathcal{L}_{\text {avg }}$ can be bounded uniformly in polynomial degree p. The result is crucial for the Projection Based Interpolation theory [3], convergence analysis of p and $h p$ Finite Element Methods and $h p$-adaptivity [2, 4]. The proof is based on the classical method of separation of variables and its discrete counterparts. As a byproduct of the result, we propose a new way of teaching the separation of variables emphasizing the finite energy assumption.

References

[1] M. Costabel, M. Dauge, and L. Demkowicz. Polynomial extension operators for $H^{1}, \boldsymbol{H}(\mathbf{c u r l})$ and \boldsymbol{H} (div) spaces on a cube. Technical report, IRMAR Rennes, 2007. accepted to Math. Comp.
[2] L. Demkowicz. Computing with hp Finite Elements. I.One- and Two-Dimensional Elliptic and Maxwell Problems. Chapman \& Hall/CRC Press, Taylor and Francis, October 2006.
[3] L. Demkowicz. Polynomial exact sequences and projection-based interpolation with applications to Maxwell equations. In D. Boffi and L. Gastaldi, editors, Mixed Finite Elements, Compatibility Conditions and Applications, Lecture Notes in Mathematics. Springer-Verlag, 2007. see also ICES Report 06-12.
[4] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszyński, W. Rachowicz, and A. Zdunek. Computing with hp Finite Elements. II. Frontiers: Three-Dimensional Elliptic and Maxwell Problems with Applications. Chapman \& Hall/CRC, October 2007. in press.

