next up previous
Next: About this document ...





Department of Mathematics
University of Houston



Scientific Computing Seminar



Professor Jing-Mei Qiu
Department of Mathematical and Computer Science
Colorado School of Mines

High order semi-Lagrangian WENO method
for kinetic equations and applications in Plasma Physics


Thursday, September 23, 2010
3 PM - 4 PM
Room 646 PGH

Abstract: We propose a novel semi-Lagrangian finite difference formulation for approximating conservative form of advection equations with general variable coefficients. Compared with the traditional semi-Lagrangian finite difference schemes, which are designed by approximating the advective form of equation via direct characteristics tracing, the scheme we proposed approximates the conservative form of equation. This essential difference makes the proposed scheme conservative by nature, and extendable to equations with variable coefficients. The proposed semi-Lagrangian finite difference framework is coupled with high order essentially non-oscillatory (ENO) or weighted ENO (WENO) reconstructions to achieve high order accuracy in smooth parts of the solution and capture sharp interfaces without introducing oscillations. The scheme is extended to high dimensional problem by Strang splitting. The performance of the proposed schemes is demonstrated by linear advection, several challenging examples of rigid body rotation and swirling deformation in multi-dimensions, as well as the Vlasov Poisson system for plasma applications. As the information is propagating along characteristics, the semi-Lagrangian scheme does not have CFL time step restriction, allowing for a cheaper and more flexible numerical realization than the regular finite difference scheme.

This seminar is easily accessible to persons with disabilities. For more information or for assistance, please contact the Mathematics Department at 743-3500.




next up previous
Next: About this document ...
Tsorng-Whay Pan 2010-08-27