The Cauchy-Euler Equation | The differential equation | | |--|--| | | (1) | | | | | or its equivalent | | | | (1) | | where each of a and b is a r | umber is known as the Cauchy-Euler differential equation. Its | | is the function Q given by | | | | | | | | | for all complex numbers r . | | | | | | Theorem. (1) If | then y is a solution to (1) if and only | | if | | | | | | for all $x > 0$ and some pair of | of numbers (c_1, c_2) . | | | | | (a) IC | | | (2) If | , then y is a solution to (1) if and only if | | | | | for all $x > 0$ and some pair of | of numbers (e. e.) | | for an $x > 0$ and some pan of | in multiplets (c_1, c_2) . | | | | | (3) If | where each of α and β is real and $\beta \neq 0$, then | | y is a solution to (1) if and of | | | | | | | | | for all $x > 0$ and some pair of | of numbers (c_1, c_2) . | | | | | | | | Suggestion for Proof. Le | u and y be related by | | | for all x | | | | | or | | | | for $\dot{x} > 0$ | | and let | | | | or | | Show that y satisfies (1) if and only if u satisfies the constant coefficient equation | | | | for all t . (2) | | | |