EMCF Quiz 1 Due January 19 at 11:59 p.m.

Work the problems, go to the CASA web site, click on EMCF, and mark your answers on the form for this quiz.

- 1. A minimum quiz average of
 - (a) 55%
 - (b) 60%
 - (c) 65%
 - (d) 70%
 - (e) 75%
 - (f) None of the above.

is required for a passing grade in this course.

2. A solution to the differential equation

$$y'' - 4y = 0$$

is given by

- (a) $y(x) = e^{4x}$
- (b) $y(x) = \cos 8x \sin 8x$
- (c) $y(x) = \sinh 2x$
- (d) $y(x) = \cosh 4x$
- (e) $y(x) = \cos 4x$
- (f) None of the above.
- 3. y is a solution to the differential equation

$$y'' = 2x + e^{-x}$$

if and only if

- (a) $y = \frac{1}{3}x^3 + e^{-x} + C$ (b) $y = \frac{1}{2}x^3 + e^{-x} + C_1x + C_2$ (c) $y = \frac{1}{3}x^3 + e^{-x} + C_1x + C_2$ (d) $y = \frac{1}{3}x^3 - e^{-x} + C_1x + C_2$ (e) $y = \frac{1}{2}x^3 + e^{-x} + C$
- (f) None of the above.

4. If

$$y = x^{-4}$$

then y is a solution to

(a) $x^2y'' - 8xy' - 16y = 0$ (b) $x^2y'' - 8xy' + 16y = 0$ (c) $x^2y'' + 8xy' + 12y = 0$ (d) $x^2y'' + 4xy' + 16y = 0$ (e) $x^2y'' + 8xy' - 4y = 0$ (f) None of the above.

5. Suppose that $y = e^{rx}$. The value(s) of r such that y is a solution to

$$y'' + 2y' - 8y = 0$$

is (are)

- (a) -2
 (b) -4 and 2
 (c) -4
 (d) -2 and -4
 (e) -2 and 4
 (f) None of these.
- 6. Suppose that $y = e^{rx}$. The value(s) of r such that y is a solution to

$$y'' + 6y' + 9y = 0$$

is (are)

- (a) 3
- (b) -3 and 3
- (c) 0 and 3
- (d) 1 and 3
- (e) -3
- (f) None of these.
- 7. Suppose that $y = x^r$. The value(s) of r such that y is a solution to

$$y'' - \frac{3}{x}y' - \frac{12}{x^2}y = 0$$

is (are)

(a) -2 and 6
(b) 2 and -6
(c) 2
(d) -2 and -6
(e) 6

- (f) None of these.
- 8. Suppose that $y = x^r$. The value(s) of r such that y is a solution to

$$x^2y'' - 7xy' + 16y = 0$$

is (are)

- (a) -4
 (b) 0 and 4
 (c) 4
 (d) -2 and -8
 (e) -4 and 4
 (f) N = -6 +1
- (f) None of these.
- 9. Give the differential equation that has

$$y^2 = Cx^4 - 3$$

as its general solution.

(a)
$$y' = \frac{y^2 + 6}{2xy}$$

(b) $y' = \frac{y^2 - 6}{xy}$
(c) $y' = \frac{4y^2 + 3}{4xy}$
(d) $y' = \frac{2y^2 + 6}{xy}$
(e) $y' = \frac{y^2 - 4}{xy}$
(f) None of these.

10. Give the differential equation that has

$$y = C_1 x + C_2 x^3$$

as its general solution.

(a) $y' - 3x^2y = 0$ (b) $x^2y'' - 3xy' + 3y = 0$ (c) $x^2y'' - 4xy' + 6y = 0$ (d) $y' - 3x^2y + 6 = 0$ (e) y'' - 4y' + 3y = 0(f) None of these.

$$y = Ce^{6x}$$

is the general solution to the differential equation

y' - 6y = 0,

find the solution to the initial value problem

$$y' - 6y = 0$$
 and $y(0) = 5$.

(a) y = 5x(b) $y = 5e^{6x}$ (c) y = 5

- (d) $y = -5e^{6x}$ (e) $y = 30e^{6x}$
- (f) None of these

12. Given

$$y = C_1 e^{2x} + C_2 e^{-x}$$

is the general solution to the differential equation

$$y'' - y' - 2y = 0,$$

find the solution to the initial value problem

$$y'' - y' - 2y = 0$$
, $y(0) = 4$, and $y'(0) = 3$.

(a) $y = \frac{7}{3}e^{2x} + \frac{2}{3}e^{-x}$ (b) $y = \frac{7}{3}e^{2x} + \frac{5}{3}e^{-x}$ (c) $y = 3e^{2x} + 4e^{-x}$ (d) $y = 4e^{2x} + 3e^{-x}$ (e) $y = \frac{1}{3}e^{2x} - \frac{10}{3}e^{-x}$ (f) None of these.

13. $e^{3\ln x} =$

- (a) x^3
- (b) 3^x
- (c) 3*x*
- (d) xe^3
- (e) $\ln(x^3)$
- (f) None of these.
- 14. An object is moving along a coordinatized line with constant acceleration of 3 m/s². Suppose that the object is located at the 5 m mark and has a velocity of -4 m/s at time 0. Where is the object located 10 seconds later?

- (a) At the 100 m mark.
- (b) At the 115 m mark.
- (c) At the 105 m mark.
- (d) At the 195 m mark.
- (e) At the 190 m mark.
- (f) None of these.

15.
$$\int \frac{\ln x}{x} dx =$$
(a) $\frac{1}{2} (\ln x)^2 + C$
(b) $\ln(x^2) + C$
(c) $\frac{1}{2} (\ln x^2) + C$
(d) $\ln x^2 + C$
(e) $\ln(\ln x) + C$

(f) None of these