EMCF Quiz 1
 Due January 19 at 11:59 p.m.

Work the problems, go to the CASA web site, click on EMCF, and mark your answers on the form for this quiz.

1. A minimum quiz average of
(a) 55%
(b) 60%
(c) 65%
(d) 70%
(e) 75%
(f) None of the above.
is required for a passing grade in this course.
2. A solution to the differential equation

$$
y^{\prime \prime}-4 y=0
$$

is given by
(a) $y(x)=e^{4 x}$
(b) $y(x)=\cos 8 x-\sin 8 x$
(c) $y(x)=\sinh 2 x$
(d) $y(x)=\cosh 4 x$
(e) $y(x)=\cos 4 x$
(f) None of the above.
3. y is a solution to the differential equation

$$
y^{\prime \prime}=2 x+e^{-x}
$$

if and only if
(a) $y=\frac{1}{3} x^{3}+e^{-x}+C$
(b) $y=\frac{1}{2} x^{3}+e^{-x}+C_{1} x+C_{2}$
(c) $y=\frac{1}{3} x^{3}+e^{-x}+C_{1} x+C_{2}$
(d) $y=\frac{1}{3} x^{3}-e^{-x}+C_{1} x+C_{2}$
(e) $y=\frac{1}{2} x^{3}+e^{-x}+C$
(f) None of the above.
4. If

$$
y=x^{-4}
$$

then y is a solution to
(a) $x^{2} y^{\prime \prime}-8 x y^{\prime}-16 y=0$
(b) $x^{2} y^{\prime \prime}-8 x y^{\prime}+16 y=0$
(c) $x^{2} y^{\prime \prime}+8 x y^{\prime}+12 y=0$
(d) $x^{2} y^{\prime \prime}+4 x y^{\prime}+16 y=0$
(e) $x^{2} y^{\prime \prime}+8 x y^{\prime}-4 y=0$
(f) None of the above.
5. Suppose that $y=e^{r x}$. The value(s) of r such that y is a solution to

$$
y^{\prime \prime}+2 y^{\prime}-8 y=0
$$

is (are)
(a) -2
(b) -4 and 2
(c) -4
(d) -2 and -4
(e) -2 and 4
(f) None of these.
6. Suppose that $y=e^{r x}$. The value(s) of r such that y is a solution to

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

is (are)
(a) 3
(b) -3 and 3
(c) 0 and 3
(d) 1 and 3
(e) -3
(f) None of these.
7. Suppose that $y=x^{r}$. The value(s) of r such that y is a solution to

$$
y^{\prime \prime}-\frac{3}{x} y^{\prime}-\frac{12}{x^{2}} y=0
$$

is (are)
(a) -2 and 6
(b) 2 and -6
(c) 2
(d) -2 and -6
(e) 6
(f) None of these.
8. Suppose that $y=x^{r}$. The value(s) of r such that y is a solution to

$$
x^{2} y^{\prime \prime}-7 x y^{\prime}+16 y=0
$$

is (are)
(a) -4
(b) 0 and 4
(c) 4
(d) -2 and -8
(e) -4 and 4
(f) None of these.
9. Give the differential equation that has

$$
y^{2}=C x^{4}-3
$$

as its general solution.
(a) $y^{\prime}=\frac{y^{2}+6}{2 x y}$
(b) $y^{\prime}=\frac{y^{2}-6}{x y}$
(c) $y^{\prime}=\frac{4 y^{2}+3}{4 x y}$
(d) $y^{\prime}=\frac{2 y^{2}+6}{x y}$
(e) $y^{\prime}=\frac{y^{2}-4}{x y}$
(f) None of these.
10. Give the differential equation that has

$$
y=C_{1} x+C_{2} x^{3}
$$

as its general solution.
(a) $y^{\prime}-3 x^{2} y=0$
(b) $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0$
(c) $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$
(d) $y^{\prime}-3 x^{2} y+6=0$
(e) $y^{\prime \prime}-4 y^{\prime}+3 y=0$
(f) None of these.
11. Given

$$
y=C e^{6 x}
$$

is the general solution to the differential equation

$$
y^{\prime}-6 y=0
$$

find the solution to the initial value problem

$$
y^{\prime}-6 y=0 \text { and } y(0)=5 .
$$

(a) $y=5 x$
(b) $y=5 e^{6 x}$
(c) $y=5$
(d) $y=-5 e^{6 x}$
(e) $y=30 e^{6 x}$
(f) None of these
12. Given

$$
y=C_{1} e^{2 x}+C_{2} e^{-x}
$$

is the general solution to the differential equation

$$
y^{\prime \prime}-y^{\prime}-2 y=0,
$$

find the solution to the initial value problem

$$
y^{\prime \prime}-y^{\prime}-2 y=0, y(0)=4, \text { and } y^{\prime}(0)=3 .
$$

(a) $y=\frac{7}{3} e^{2 x}+\frac{2}{3} e^{-x}$
(b) $y=\frac{7}{3} e^{2 x}+\frac{5}{3} e^{-x}$
(c) $y=3 e^{2 x}+4 e^{-x}$
(d) $y=4 e^{2 x}+3 e^{-x}$
(e) $y=\frac{1}{3} e^{2 x}-\frac{10}{3} e^{-x}$
(f) None of these.
13. $e^{3 \ln x}=$
(a) x^{3}
(b) 3^{x}
(c) $3 x$
(d) $x e^{3}$
(e) $\ln \left(x^{3}\right)$
(f) None of these.
14. An object is moving along a coordinatized line with constant acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$. Suppose that the object is located at the 5 m mark and has a velocity of $-4 \mathrm{~m} / \mathrm{s}$ at time 0 . Where is the object located 10 seconds later?
(a) At the 100 m mark.
(b) At the 115 m mark.
(c) At the 105 m mark.
(d) At the 195 m mark.
(e) At the 190 m mark.
(f) None of these.
15. $\int \frac{\ln x}{x} d x=$
(a) $\frac{1}{2}(\ln x)^{2}+C$
(b) $\ln \left(x^{2}\right)+C$
(c) $\frac{1}{2}\left(\ln x^{2}\right)+C$
(d) $\ln x^{2}+C$
(e) $\ln (\ln x)+C$
(f) None of these

