
MATH 3321 Quiz 7

1. The differential equation that has y = C1x
3 + C2 as its general solution is:

(a) y′′ − 2y = 0.

(b) xy′′ − 2y′ = 0.

(c) x2y′′ − 2y = 0.

(d) y′′ − 2xy′ = 0.

(e) none of the above.

2. The general solution of xy′ + 3y =
ex

x
is:

(a) y =
ex − xex

x2
+

C

x2
.

(b) y = x2ex − x3ex + Cx3.

(c) y =
xex − ex

x2
+

C

x
.

(d) y =
xex − ex

x3
+

C

x3
.

(e) none of the above.

3. If y = y(x) is the solution of the initial-value problem

xy′ + y = 3 cos x, y(π) = 0,

then lim
x→0

y(x) is:

(a) −3.

(b) 3.

(c) 3/π.

(d) does not exist.

(e) none of the above.

4. The general solution of yy′ = xy2 − x − y2 + 1 is:

(a) y2 = Cex2
−2x + 1

(b) y2 − 1 = ex2
−2x + C

(c) y2 = ex2
−2x + C

(d) y2 − 1 = Ce2x−x2

(e) none of the above.
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5. The general solution of y′ + xy = xy3 is

(a) y =
1

1 + Cex2

(b) y2 =
1

1 + Cex2

(c) y =

√

1 + Cex2

(d) y2 =
1

1 + Ce−x2

(e) none of the above.

6. The general solution of y′ =
x2ey/x + y2

xy
. is

(a) yey/x + xey/x = Cx − x ln x

(b) ye−y/x + xe−y/x = x − x ln x + C.

(c) ye−y/x + xe−y/x = Cx − x ln x

(d) ye−y/x + xe−y/x = Cx + x ln x

(e) none of the above.

7. The family of orthogonal trajectories of y3 = Ce2x + 2 is:

(a) 3x + y2 +
4

y
= C

(b) y2 + 4 ln y = 3x + C

(c) 3x + y2 +
4

y3
= C

(d) y2 +
4

y
= 3x + C

(e) none of the above.

8. A sample of 100 grams of radioactive material was present initially and after 3 hours the sample
lost 20% of its mass. An expression for the mass of the material remaining at any time t is:

(a) A(t) = 100

(

4

5

)

−t/3

(b) A(t) = 100

(

4

5

)t/3

(c) A(t) = 100

(

1

5

)t/3

(d) A(t) = 100

(

1

5

)

−t/3

(e) None of the above.
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9. A biologist observes that a certain bacterial colony triples every 4 hours and after 12 hours

occupies 1 square centimeter. Assume that the colony obeys the population growth law. The area
the colony occupied when first observed was:

(a)
1

9
sq. cm.

(b)
1

81
sq. cm.

(c)
1

36
sq. cm.

(d)
1

27
sq. cm.

(e) None of the above.

10. A disease is spreading through a small cruise ship with 200 passengers. Let P (t) be the number

of people who have disease at time t. The disease is spreading at a rate proportional to the
product of the time elapsed and the number of people who are not sick. Suppose that 20 people

have the disease initially. The mathematical model for the spread of the disease is:

(a)
dP

dt
= k(200− P ), P (0) = 20.

(b)
dP

dt
= kt(200 − P ), P (0) = 20.

(c)
dP

dt
= ktP, P (0) = 20.

(d)
dP

dt
= kP (200 − P ), P (0) = 20.

(e) None of the above.

11. Refer to Problem 10. Suppose that 50 people are sick after 4 days. Then the number of people
that are sick at any time t is given by:

(a) P (t) = 200− 180

(

5

6

)t/4

(b) P (t) = 20

(

5

2

)t2/16

(c) P (t) = 200− 180

(

5

6

)t2/16

(d) P (t) =
200

2 + 18(5/6)t/4

(e) None of the above.
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12. y′′ −
2

x
y′ −

10

x2
y = 0 has solutions of the form y = xr. The general solution of the equation is:

(a) y = C1x
2 + C2x

−5

(b) y = C1x
9 + C2x

−1

(c) y = C1x
−2 + C2x

5

(d) y = C1x
2 + C2x

5

(e) None of the above.

13. Find the solution of the initial-value problem

x2 y′′ − 6 y = 0, y(1) = 6, y′(1) = −2.

Hint: The equation has solutions of the form y = xr.

(a) y = 2x3 + 4x−2

(b) y = 4x6 − 2x−1

(c) y = 4x3 + 2x−2

(d) y = 2x−6 + 4x

(e) None of the above.

14. The general solution of y′′ − 8y′ + 20y = 0 is:

(a) y = C1e
2x cos 4x + C2e

2x sin 4x

(b) y = C1e
4x cos 2x + C2e

4x sin 2x

(c) y = C1e
10x + C2e

−2x

(d) y = C1e
5x + C2e

4x

(e) None of the above.

15. A fundamental set of solutions of y′′ − 4y′ − 12y = 0 is:

(a)
{

e4x, e−3x
}

(b)
{

e6x, e−2x
}

(c)
{

e2x, e−6x
}

(d)
{

e−4x, e3x
}

(e) None of the above.
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16. The general solution of y′′ + 10y′ + 25y = 0 is:

(a) y = C1e
5x + C2xe5x

(b) y = C1e
−5x + C2e

5x

(c) y = C1e
5x + C2xe−5x

(d) y = C1e
−5x + C2xe−5x

(e) None of the above.

17. A solution basis for y′′ + 8y′ + 16y = 0 is:

(a) {e4x, xe4x}

(b) {e4x, e−4x}

(c) {e−4x, xe−4x}

(d) {e4x, xe−4x}

(e) None of the above.

18. The second order linear differential equation that has y = 2e−2x − e4x as a solution is:

(a) y′′ − 2y′ − 8y = 0

(b) y′′ − 6y′ + 8y = 0

(c) y′′ + 2y′ − 8y = 0

(d) y′′ − 6y′ − 8y = 0

(e) None of the above.

19. The second order linear differential equation that has y = 4xe−3x as a solution is:

(a) y′′ − 6y′ + 9y = 0

(b) y′′ + 3y′ = 0

(c) y′′ + 6y′ + 9y = 0

(d) y − 9y = 0

(e) None of the above.

20. The second order linear differential equation that has y = 3e2x sin 2x as a solution is:

(a) y” + 4y′ + 12y = 0

(b) y”− 4y′ + 8y = 0

(c) y”− 8y′ + 8y = 0

(d) y” + 4y′ + 8y = 0

(e) None of the above.
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