EMCF Quiz 9 Problems 6 and 7

The given system is

$$
\begin{aligned}
x-2 y & =1 \\
x-y+k z & =-2 \\
k y+4 z & =6 .
\end{aligned}
$$

The augmented matrix is

$$
\left(\begin{array}{cccc}
1 & -2 & 0 & 1 \\
1 & -1 & k & -2 \\
0 & k & 4 & 6
\end{array}\right)
$$

Row reducing, we have

$$
\xrightarrow[-R_{1}+R_{2} \rightarrow R_{2}]{ }\left(\begin{array}{cccc}
1 & -2 & 0 & 1 \\
0 & 1 & k & -3 \\
0 & k & 4 & 6
\end{array}\right) \xrightarrow[-k R_{2}+R_{3} \rightarrow R_{3}]{ }\left(\begin{array}{cccc}
1 & -2 & 0 & 1 \\
0 & 1 & k & -3 \\
0 & 0 & 4-k^{2} & 3 k+6
\end{array}\right) .
$$

If $k^{2} \neq 0$ (i.e. if $k \neq 2$ and $k \neq-2$), backward substitution substitution shows that there is a unique solution,

$$
(x, y, z)=\left(\frac{k+10}{k-2}, \frac{6}{k-2}, \frac{3}{2-k}\right) .
$$

If $k=-2$, the last matrix becomes

$$
\left(\begin{array}{cccc}
1 & -2 & 0 & 1 \\
0 & 1 & -2 & -3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and backward substitution shows that (x, y, z) is a solution if and only if

$$
(x, y, z)=(4 a-5,2 a-3, a)
$$

for some number a.There are infinitely many solutions.

If $k=2$, the matrix

$$
\left(\begin{array}{cccc}
1 & -2 & 0 & 1 \\
0 & 1 & k & -3 \\
0 & 0 & 4-k^{2} & 3 k+6
\end{array}\right)
$$

becomes

$$
\left(\begin{array}{cccc}
1 & -2 & 0 & 1 \\
0 & 1 & 2 & -3 \\
0 & 0 & 0 & 12
\end{array}\right)
$$

The last of the three implied equations is

$$
0=12
$$

so the given system has no solution.

