Section 1.1

Basic Terminology

Basic Terminology.

A differential equation (DE) is an equation that contains an unknown function and at least one of its derivatives.

For now, the unknown function will usually be denoted by y.

The order of a differential equation is the order of the highest derivative of the unknown function.

An ordinary differential equation (ODE) contains only ordinary derivatives of the unknown function. The domain of the unknown function is a set of real numbers.

A partial differential equation (PDE) contains at least one partial derivative of the unknown function. The domain of the unknown function is a subset of \mathbb{R}^{n} for some $n>1$.

Examples: When y is the unknown function,

$$
\begin{gathered}
y^{\prime}=\frac{x^{2} y-y}{y+1} \text { is a first order ODE. } \\
x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=4 x^{3} \text { is a second order ODE. }
\end{gathered}
$$

When u is the unknown function,

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \text { is a second order PDE. }
$$

When y is the unknown function,

$$
\frac{d^{3} y}{d x^{3}}-4 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}=3 e^{-x} \text { is a third order ODE. }
$$

When y is the unknown function,

$$
x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=\frac{d^{3}}{d x^{3}}\left[e^{-2 x}\right] \text { is a second order ODE. }
$$

Even though you see a third order derivative, it is not of the unknown function.

While there are a few partial differential equations in this first section, this is a course in ordinary differential equations with some linear algebra.

An ordinary differential equation is one that fits the form

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=G\left(x, y, y^{\prime}, \ldots, y^{(m)}\right) .
$$

Some special cases are

$$
\begin{gathered}
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=G(x), \\
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0,
\end{gathered}
$$

and

$$
y^{\prime}=F(x, y) .
$$

Intervals

Definition. An interval is a connected set of real numbers containing more than one number.

Definition of a Solution

Saying that a function u is a solution to the ordinary differential equation

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=G\left(x, y, y^{\prime}, \ldots, y^{(m)}\right)
$$

means that u is a function whose domain is an interval and

$$
F\left(x, u(x), u^{\prime}(x), \ldots, u^{(n)}(x)\right)=G\left(x, u(x), u^{\prime}(x), \ldots, u^{(m)}(x)\right)
$$

for all numbers x in that interval.

Note: At this point, we will not be too concerned with domains. In the problems, to check whether or not a given function u is a solution to a differential equation of the form

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=G\left(x, y, y^{\prime}, \ldots, y^{(m)}\right),
$$

compute and simplify each of $F\left(x, u(x), u^{\prime}(x), \ldots, u^{(n)}(x)\right)$ and $G\left(x, u(x), u^{\prime}(x), \ldots, u^{(m)}(x)\right)$. If the simplified expressions are the same, then u is a solution. Otherwise, it is not a solution.

Example Problem: Suppose that

$$
u(x)=\sin 2 x
$$

Show that u is a solution to

$$
y^{\prime \prime}+4 y=0
$$

Solution: Replace y with $u(x)$ and $y^{\prime \prime}$ with $u^{\prime \prime}(x)$ and show that the result reduces to zero.

$$
u(x)=\sin 2 x
$$

then

$$
u^{\prime}(x)=2 \cos 2 x
$$

and

$$
u^{\prime \prime}(x)=-4 \sin 2 x
$$

so

$$
u^{\prime \prime}(x)+4 u(x)=-4 \sin 2 x+4 \sin 2 x=0 .
$$

Example Problem: Suppose that

$$
u(x)=\sin 3 x .
$$

Show that y is not a solution to

$$
y^{\prime \prime}+4 y=0
$$

Solution: Replace y with $u(x)$ and $y^{\prime \prime}$ with $u^{\prime \prime}(x)$ and show that the result reduces to something other than zero.

$$
u(x)=\sin 3 x
$$

then

$$
u^{\prime}(x)=3 \cos 3 x
$$

and

$$
u^{\prime \prime}(x)=-9 \sin 3 x
$$

so

$$
u^{\prime \prime}(x)+4 u(x)=-9 \sin 3 x+4 \sin 3 x=-5 \sin 3 x
$$

$-5 \sin 3 x$ is not the zero function so this function (u where $u(x)=\sin 3 x$) is not a solution to the differential equation.

Notation

- The symbol y will often be used to denote a function.
- The symbol x will often be used to denote a number.
- The symbol x will also often be used to denote the identity function.

$$
x(t)=t
$$

- For example, saying y is the function such that

$$
y(x)=x^{2} \text { for all numbers } x
$$

is equivalent to saying that

$$
y=x^{2} .
$$

Example Problem:Consider the differential equation

$$
y^{\prime \prime}-2 y^{\prime}-8 y=4 e^{2 x} .
$$

and the functions u and v given by

$$
u=2 e^{4 x}-\frac{1}{2} e^{2 x}
$$

and

$$
v=2 e^{2 x}-\frac{1}{2} e^{4 x} .
$$

Is u a solution to the DE? Is v a solution to the DE?

Solution.

$$
\begin{gathered}
u=2 e^{4 x}-\frac{1}{2} e^{2 x} \\
u^{\prime}=8 e^{4 x}-e^{2 x} \\
u^{\prime \prime}=32 e^{4 x}-2 e^{2 x} \\
u^{\prime \prime}-2 u^{\prime}-8 u=\left(32 e^{4 x}-2 e^{2 x}\right)-2\left(8 e^{4 x}-e^{2 x}\right)-8\left(2 e^{4 x}-\frac{1}{2} e^{2 x}\right) \\
=(32-16-16) e^{4 x}+(-2+2+4) e^{2 x} \\
=4 e^{2 x}
\end{gathered}
$$

This is the right side of the given differential equation, so u is a solution.

Remember the DE is

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}-8 y=4 e^{2 x} . \\
v=2 e^{2 x}-\frac{1}{2} e^{4 x} \\
v^{\prime}=4 e^{2 x}-2 e^{4 x} \\
v^{\prime \prime}=8 e^{2 x}-8 e^{4 x} \\
v^{\prime \prime}-2 v^{\prime}-8 v=\left(8 e^{2 x}-8 e^{4 x}\right)-2\left(4 e^{2 x}-2 e^{4 x}\right)-8\left(2 e^{2 x}-\frac{1}{2} e^{4 x}\right) \\
=(-8+4+4) e^{4 x}+(8-8-16) e^{2 x} \\
=-16 e^{2 x}
\end{gathered}
$$

This is not the right side of the differential equation which is $4 e^{2 x}$, so v is not a solution.

Example Problem: Consider the differential equation

$$
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial y}
$$

where u is the unknown function. Let the functions z and w given by

$$
z=\sin (2 x+y)
$$

and

$$
w=e^{2 x+y} .
$$

Is z a solution to the DE? Is w a solution to the DE?
Solution.

$$
\begin{gathered}
z=\sin (2 x+y) \\
\frac{\partial z}{\partial x}=\cos (2 x+y)(2)=2 \cos (2 x+y)
\end{gathered}
$$

and

$$
\frac{\partial z}{\partial y}=\cos (2 x+y)(1)=\cos (2 x+y)
$$

so

$$
2 \frac{\partial z}{\partial y}=2 \cos (2 x+y)
$$

The DE is

$$
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial y}
$$

Since

$$
\frac{\partial z}{\partial x}=2 \frac{\partial z}{\partial y}
$$

it follows that z is a solution.

$$
\begin{gathered}
w=e^{2 x+y} \\
\frac{\partial w}{\partial x}=e^{2 x+y}(2)=2 e^{2 x+y}
\end{gathered}
$$

and

$$
\frac{\partial w}{\partial y}=e^{2 x+y}(1)=e^{2 x+y}
$$

so

$$
2 \frac{\partial w}{\partial y}=2 e^{2 x+y}
$$

The DE is

$$
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial y}
$$

Since

$$
\frac{\partial w}{\partial x}=2 \frac{\partial w}{\partial y}
$$

it follows that w is a solution.

Note

Some differential equations can be solved just by integrating.
The solutions to

$$
y^{\prime}=f(x)
$$

are given by

$$
y(x)=\int f(x) d x+C
$$

The solutions to

$$
y^{\prime \prime}=f(x)
$$

are given by

$$
y(x)=\iint f(x) d x d x+C_{1} x+C_{2}
$$

Example

Find all solutions to

$$
y^{\prime}=2 x+e^{2 x} .
$$

Solution:

$$
\int\left(2 x+e^{2 x}\right) d x=x^{2}+\frac{1}{2} e^{2 x}
$$

so

$$
y=x^{2}+\frac{1}{2} e^{2 x}+C \text { for some number } C .
$$

If

$$
y=x^{2}+\frac{1}{2} e^{2 x}+C \text { for some number } C
$$

then, differentiating,

$$
y^{\prime}=2 x+e^{2 x}
$$

Example

Find all solutions to

$$
y^{\prime \prime}=\sin 2 x
$$

Solution: Suppose that y is a solution. Then integrating

$$
y^{\prime}=-\frac{1}{2} \cos 2 x+C_{1}
$$

and integrating again

$$
y=-\frac{1}{4} \sin 2 x+C_{1} x+C_{2}
$$

for some pair of numbers C_{1} and C_{2}. If y is given by $(\#)$ then differentiating twice produces

$$
y^{\prime \prime}=\sin 2 x
$$

Example

Some differential equations have solutions that are exponential functions. Consider

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

and suppose that

$$
y=e^{r x} .
$$

Then

$$
y^{\prime}=r e^{r x} \text { and } y^{\prime \prime}=r^{2} e^{r x}
$$

so

$$
y^{\prime \prime}-y^{\prime}-6 y=r^{2} e^{r x}-r e^{r x}-6 e^{r x}=\left(r^{2}-r-6\right) e^{r x} .
$$

This is 0 if and only if $r^{2}-r-6=0$ or $(r+2)(r-3)=0$ if and only if $r=-2$ or $r=3$. Thus y is a solution if and only if

$$
r=-2 \text { or } r=3 \text {. }
$$

Example

Some differential equations have solutions that are power functions. Consider the differential equation

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+8 y=0
$$

and suppose that

$$
y=x^{r} .
$$

Then

$$
y^{\prime}=r x^{r-1} \text { and } y^{\prime \prime}=r(r-1) x^{r-2}
$$

so

$$
\begin{aligned}
x^{2} y^{\prime \prime}-5 x y^{\prime}+8 y & =x^{2} r(r-1) x^{r-2}-5 x r x^{r-1}+8 x^{r} \\
& =r^{2} x^{r}-r x^{r}-5 r x^{r}+8 x^{r} \\
& =\left(r^{2}-6 r+8\right) x^{r} .
\end{aligned}
$$

This is 0 on an interval if and only if $r^{2}-6 r+8=0$ or $(r-2)(r-4)=0$ if and only if $r=2$ or $r=4$. Thus y is a solution if and only if

$$
r=2 \text { or } r=4 \text {. }
$$

Additional Examples: See Section 1.1 of the text and the notes presented on the board in class.

Suggested Problems: Do the odd numbered problems for Section 1.1 The answers are posted on Dr. Walker's web site.

