Section 1.1

Basic Terminology

Basic Terminology.
A differential equation (DE) is an equation []

For now, the unknown function will usually be denoted by []

The order of a differential equation is []

An ordinary differential equation (ODE) contains only [] The domain of the unknown function is a set of []

A partial differential equation (PDE) contains at least []. The domain of the unknown function is a subset of []

Examples: When y is the unknown function,

$$
\begin{gathered}
y^{\prime}=\frac{x^{2} y-y}{y+1} \text { is a }[] . \\
x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=4 x^{3} \text { is a }[] .
\end{gathered}
$$

When u is the unknown function,

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \text { is } a[] .
$$

When y is the unknown function,

$$
\frac{d^{3} y}{d x^{3}}-4 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}=3 e^{-x} \text { is a }[] .
$$

When y is the unknown function,

$$
x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=\frac{d^{3}}{d x^{3}}\left[e^{-2 x}\right] \text { is a }[] .
$$

Even though you see a third order derivative, it is not of the [].

While there are a few partial differential equations in this first section, this is a course in ordinary differential equations with some linear algebra.

An ordinary differential equation is one that fits the form

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=G\left(x, y, y^{\prime}, \ldots, y^{(m)}\right) .
$$

Some special cases are

$$
\begin{gathered}
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=G(x), \\
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0,
\end{gathered}
$$

and

$$
y^{\prime}=F(x, y) .
$$

Intervals

Definition. An interval is a .

Definition of a Solution

Saying that a function u is a solution to the ordinary differential equation

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=G\left(x, y, y^{\prime}, \ldots, y^{(m)}\right)
$$

means that u is a function whose domain is an interval and

$$
F\left(x, u(x), u^{\prime}(x), \ldots, u^{(n)}(x)\right)=G\left(x, u(x), u^{\prime}(x), \ldots, u^{(m)}(x)\right)
$$

for all numbers x in that interval.

Note: At this point, we will not be too concerned with domains. In the problems, to check whether or not a given function u is a solution to a differential equation of the form

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=G\left(x, y, y^{\prime}, \ldots, y^{(m)}\right)
$$

compute and simplify each of $F\left(x, u(x), u^{\prime}(x), \ldots, u^{(n)}(x)\right)$ and $G\left(x, u(x), u^{\prime}(x), \ldots, u^{(m)}(x)\right)$. If the simplified expressions are the same, then u is a solution. Otherwise, it is not a solution.

Example Problem: Suppose that

$$
u(x)=\sin 2 x
$$

Show that u is a solution to

$$
y^{\prime \prime}+4 y=0
$$

Solution: Replace y with $u(x)$ and $y^{\prime \prime}$ with $u^{\prime \prime}(x)$ and show that the result reduces to zero.

$$
u(x)=\sin 2 x
$$

then

$$
u^{\prime}(x)=
$$

and

$$
u^{\prime \prime}(x)=
$$

so

$$
u^{\prime \prime}(x)+4 u(x)=()+4()=.=
$$

Example Problem: Suppose that

$$
u(x)=\sin 3 x .
$$

Show that y is not a solution to

$$
y^{\prime \prime}+4 y=0 .
$$

Solution: Replace y with $u(x)$ and $y^{\prime \prime}$ with $u^{\prime \prime}(x)$ and show that the result reduces to something other than zero.

$$
u(x)=\sin 3 x
$$

then

$$
u^{\prime}(x)=()
$$

and

$$
u^{\prime \prime}(x)=()
$$

so

$$
u^{\prime \prime}(x)+4 u(x)=()+4()==
$$

() is not the zero function so this function u where $u(x)=\sin 3 x$ is not a solution to the differential equation.

Notation

- The symbol y will often be used to denote a function.
- The symbol x will often be used to denote a number.
- The symbol x will also often be used to denote the identity function.

$$
x(t)=t
$$

- For example, saying y is the function such that

$$
y(x)=x^{2} \text { for all numbers } x
$$

is equivalent to saying that

$$
y=x^{2} .
$$

Example Problem:Consider the differential equation

$$
y^{\prime \prime}-2 y^{\prime}-8 y=4 e^{2 x} .
$$

and the functions u and v given by

$$
u=2 e^{4 x}-\frac{1}{2} e^{2 x}
$$

and

$$
v=2 e^{2 x}-\frac{1}{2} e^{4 x} .
$$

Is u a solution to the DE? Is v a solution to the $D E$?

Solution.

$$
\begin{gathered}
u=2 e^{4 x}-\frac{1}{2} e^{2 x} \\
u^{\prime}= \\
u^{\prime \prime}= \\
u^{\prime \prime}-2 u^{\prime}-8 u=()-2()-8() \\
=() e^{4 x}+() e^{2 x} \\
=
\end{gathered}
$$

This is is not the right side of the given differential equation, so u is is not a solution.
Remember the DE is

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}-8 y=4 e^{2 x} . \\
v=2 e^{2 x}-\frac{1}{2} e^{4 x} \\
v^{\prime}= \\
v^{\prime \prime}= \\
v^{\prime \prime}-2 v^{\prime}-8 v=()-2()-8() \\
=() e^{4 x}+() e^{2 x} \\
=
\end{gathered}
$$

This is is not the right side of the differential equation, so v is is not a solution.

Example Problem: Consider the differential equation

$$
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial y}
$$

where u is the unknown function. Let the functions z and w given by

$$
z=\sin (2 x+y)
$$

and

$$
w=e^{2 x+y}
$$

Is z a solution to the DE? Is w a solution to the DE?
Solution.

$$
\begin{gathered}
z=\sin (2 x+y) \\
\frac{\partial z}{\partial x}=
\end{gathered}
$$

and

$$
\frac{\partial z}{\partial y}=
$$

so

$$
2 \frac{\partial z}{\partial y}=
$$

Since

$$
\frac{\partial z}{\partial x}=2 \frac{\partial z}{\partial y}
$$

it follows that z is a solution.

$$
\begin{aligned}
& w=e^{2 x+y} \\
& \frac{\partial w}{\partial x}=
\end{aligned}
$$

and

$$
\frac{\partial w}{\partial y}=
$$

so

$$
2 \frac{\partial w}{\partial y}=2 e^{2 x+y}
$$

Since

$$
\frac{\partial w}{\partial x}=2 \frac{\partial w}{\partial y}
$$

it follows that w is a solution.

Note

Some differential equations can be solved just by integrating.
The solutions to

$$
y^{\prime}=f(x)
$$

are given by

$$
y(x)=\int f(x) d x+C
$$

The solutions to

$$
y^{\prime \prime}=f(x)
$$

are given by

$$
y(x)=\iint f(x) d x d x+C_{1} x+C_{2}
$$

Example

Find all solutions to

$$
y^{\prime}=2 x+e^{2 x} .
$$

Solution:

$$
\int\left(2 x+e^{2 x}\right) d x=
$$

so

$$
y=.
$$

Conversely, if

$$
y=
$$

then, differentiating,

$$
y^{\prime}=2 x+e^{2 x} .
$$

Example

Find all solutions to

$$
y^{\prime \prime}=\sin 2 x
$$

Solution: Suppose that y is a solution. Then integrating,

$$
y^{\prime}=
$$

and integrating again,

$$
y=
$$

for some pair of numbers C_{1} and C_{2}. If y is given by (\#) then differentiating twice produces

$$
y^{\prime \prime}=\sin 2 x
$$

Example

Some differential equations have solutions that are exponential functions. Consider

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

and suppose that

$$
y=e^{r x} .
$$

Then

$$
y^{\prime}=\text { and } y^{\prime \prime}=
$$

so

$$
y^{\prime \prime}-y^{\prime}-6 y=()-()-6()=
$$

This is 0 if and only if ()$=0 \operatorname{or}()()=0$ if and only if $r=$ or $r=$. Thus y is a solution if and only if

$$
r=\text { or } r=.
$$

Example

Some differential equations have solutions that are power functions. Consider the differential equation

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+8 y=0
$$

and suppose that

$$
y=x^{r} .
$$

Then

$$
y^{\prime}=\text { and } y^{\prime \prime}=
$$

so

$$
\begin{aligned}
x^{2} y^{\prime \prime}-5 x y^{\prime}+8 y & =x^{2}()-5 x()+8() \\
& =() x^{r}-() x^{r}-() x^{r}+() x^{r} \\
& =() x^{r} .
\end{aligned}
$$

This is 0 on an interval if and only if ()$=0$ or ()()$=0$ if and only if $r=$ or $r=$. Thus y is a solution if and only if

$$
r=\text { or } r=.
$$

Additional Examples: See Section 1.1 of the text.

Suggested Problems: Do the odd numbered problems for Section 1.1 The answers are posted on Dr. Walker's web site.

