Engineering Mathematics Section 1.2

Dr. Philip Walker

Parameterized Families

We will introduce the notion of a parameterized family of function by way of some examples.
Example 1. Suppose that $\mathcal{F}=\{f \mid f(x)=3 x+C$ for all x and some number $C\}$. This is an example of a one-parameter family of functions. It consists of all straight line functions with slope 3 . The parameter C determines the y-intercept.

Example 2. Suppose that

$\mathcal{F}=\left\{f \mid f(x)=C_{1} x^{2}+C_{2}\right.$ for all x and some pair of number C_{1} and $\left.C_{2}\right\}$.
This set of quadratic functions is an example of a two-parameter family of functions. The parameters C_{1} and C_{2} determine the spread and vertex of the parabola and whether it opens upward or downward.

General Solutions, Singular Solutions, and Particular Solutions The set of solutions to an n-th order differential equation is often contained in an n-parameter family of functions. An expression that indicates this family is sometimes called the general solution of the differential equation.

Example 3. We will learn later in this course that y is a solution to

$$
\begin{equation*}
y^{\prime \prime}+4 y=0 \tag{1}
\end{equation*}
$$

on the set of real numbers if and only if

$$
\begin{equation*}
y=C_{1} \cos 2 x+C_{2} \sin 2 x \tag{2}
\end{equation*}
$$

for some pair of numbers C_{1} and C_{2} and all real numbers x. In this case (2) is called the general solution to (1).

In some cases, most solutions to a differential equation will be containedn in members of a parameterized family. Those solutions, if any, that are not members of the family are known as singular solutions.

Example 4. Most solutions of

$$
y^{\prime}=y^{2}
$$

are contained in members of the one-parameter family indicated by

$$
y=\frac{1}{C-x}
$$

However, the function given by

$$
y=0
$$

is also a solution. It is an example of a singular solution.

If specific values are assigned to the parameters in a parameterized family of solutions, the result is known as a particular solution. Example 5. In view of Example 3, the function y given by

$$
y=3 \cos 2 x-5 \sin 2 x
$$

is a particular solution to

$$
y^{\prime \prime}+4 y=0
$$

Finding the Differential Equation

Sometimes a differential equation can be reconstructed from a parameterized family of solutions. If the family contains n parameters, we look for an n-th order differential equation. Given the n-parameter family, we compute derivatives through order n and use these equations to eliminate the parameters.

Example 6. Find a differential equation for the family indicated by

$$
y=C x^{3}+1
$$

Solution. From

$$
\begin{equation*}
y=C x^{3}+1 \tag{3}
\end{equation*}
$$

we have

$$
\begin{equation*}
y^{\prime}=3 C x^{2} \tag{4}
\end{equation*}
$$

From (4) we have

$$
C=\frac{y^{\prime}}{3 x^{2}}
$$

Using this expression for C, equation (3) becomes

$$
y=\frac{y^{\prime}}{3 x^{2}} x^{3}+1 \text { so } y=\frac{y^{\prime}}{3} x+1
$$

Thus

$$
3 y=x y^{\prime}+3 \text { so } x y^{\prime}-3 y+3=0
$$

Example 7. Find a differential equation for the family indicated by

$$
y=C_{1} x+\frac{C_{2}}{x}
$$

Solution. From

$$
\begin{equation*}
y=C_{1} x+\frac{C_{2}}{x}=C_{1} x+C_{2} x^{-1} \tag{5}
\end{equation*}
$$

we have

$$
\begin{equation*}
y^{\prime}=C_{1}-C_{2} x^{-2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime \prime}=2 C_{2} x^{-3} \tag{7}
\end{equation*}
$$

From (7) it follows that

$$
\begin{equation*}
C_{2}=\frac{x^{3}}{2} y^{\prime \prime} \tag{8}
\end{equation*}
$$

Then from (6) it follows that

$$
\begin{equation*}
C_{1}=y^{\prime}+C_{2} x^{-2}=y^{\prime}+\left(\frac{x^{3}}{2} y^{\prime \prime}\right) x^{-2}=y^{\prime}+\frac{x}{2} y^{\prime \prime} \tag{9}
\end{equation*}
$$

Putting the expressions for C_{1} and C_{2} given in (8) and (9) into (5), we have

$$
y=C_{1} x+C_{2} x^{-1}=\left[y^{\prime}+\frac{x}{2} y^{\prime \prime}\right] x+\left[\frac{x^{3}}{2} y^{\prime \prime}\right] x^{-1}
$$

so

$$
y=x y^{\prime}+\frac{1}{2} x^{2} y^{\prime \prime}+\frac{1}{2} x^{2} y^{\prime \prime}
$$

This simplifies to

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

Additional Examples: See Section 1.2 of the text.

Suggested Problems. Do the odd numbered problems 11-25 at the end of Section 1.3. Answers are posted on Dr. Walker's web site. There are no problems at the end of Section 1.2.

