Section 1.3

Initial Conditions.

A list of the form

$$
y\left(x_{0}\right)=k_{0}, y^{\prime}\left(x_{0}\right)=k_{1}, y^{\prime \prime}\left(x_{0}\right)=k_{2}, \ldots, y^{(n-1)}\left(x_{0}\right)=k_{n-1}
$$

is called a set or list of n initial conditions. Such a list of conditions together with an n-th order differential equation is called an n-th order initial value problem. It is desirable that initial value problems have unique solutions on some interval.

If the solutions to a differential equation are contained in an n-parameter family, then a list of n initial conditions will often determine the value of each parameter in the family.

Example. It is true that

$$
\begin{equation*}
y^{\prime \prime}-4 y=0 \tag{1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
y=() \tag{2}
\end{equation*}
$$

for some pair of numbers C_{1} and C_{2}.

Suppose that y is a solution and y also satisfies the initial conditions

$$
\begin{equation*}
y(0)=1 \text { and } y^{\prime}(0)=-1 . \tag{3}
\end{equation*}
$$

From

$$
\begin{equation*}
y=() \tag{2}
\end{equation*}
$$

and $y(0)=1$ we have, setting $x=0$ and $y=1$, that

$$
1=()
$$

or

$$
()=1 .
$$

Also from (2) we have

$$
y^{\prime}=() ;
$$

so using $y^{\prime}(0)=-1$ we have, setting $x=0$ and $y^{\prime}=-1$ that,

$$
-1=()
$$

or

$$
()=-1 .
$$

$$
()=1 .
$$

$$
()=-1 .
$$

Solving (4) and (5) [] we have

$$
C_{1}=() \text { and } C_{2}=() .
$$

Thus the solution to the initial value problem consisting of (1) and (3) is the function y given by

$$
y=()
$$

Example. Suppose that an object moves along a coordinatized straight line and its displacement from the origin at time t is $y(t)$. Then its velocity $v(t)$ at time t is given by

$$
v(t)=y^{\prime}(t)
$$

and its acceleration $a(t)$ is given by

$$
a(t)=v^{\prime}(t)
$$

so

$$
y^{\prime \prime}(t)=a(t) .
$$

Now suppose that a is constant with

$$
a(t)=a
$$

and that these initial conditions are satisfied:

$$
y(0)=y_{0} \text { and } v(0)=y^{\prime}(0)=v_{0}
$$

Then

$$
v^{\prime}(t)=a
$$

Since

$$
\int a d t=()
$$

we have

$$
v(t)=()+C_{1}
$$

and since $v(0)=v_{0}$ we have () yielding $C_{1}=()$.Thus

$$
v(t)=()
$$

Continuing with

$$
v(t)=()
$$

we have

$$
y^{\prime}(t)=() .
$$

Since

$$
\int() d t=()
$$

we have

$$
y(t)=()+C_{2} .
$$

Since $y(0)=y_{0}$ we have () yielding $C_{2}=()$. Thus

$$
y(t)=() .
$$

Example. Find a differential equation for the family indicated by

$$
y^{2}=C x^{4}-2 .
$$

$$
1
$$

Solution. Differentiating each side of (1) we have

$$
\text { () so } C=() \text {. }
$$

From (1)

$$
y^{2}=() x^{4}-2 \text { or } 2 y^{2}=()
$$

SO

$$
y^{\prime}=-
$$

Example. Find a differential equation for the family indicated by

$$
\begin{equation*}
y=C e^{x}+\sin x \tag{1}
\end{equation*}
$$

Solution. From (1) we have

$$
\begin{equation*}
y^{\prime}=() . \tag{2}
\end{equation*}
$$

Subtracting (2) from (1) we have

$$
y-y^{\prime}=()
$$

or

$$
y^{\prime}-y=() .
$$

Example. Find a differential equation for the family indicated by

$$
\begin{equation*}
y=C_{1} e^{x}+C_{2} e^{-2 x} . \tag{1}
\end{equation*}
$$

Solution.

$$
\begin{align*}
y^{\prime} & =() \tag{2}\\
y^{\prime \prime} & =() \tag{3}
\end{align*}
$$

Subtracting (2) from (1) yields

$$
y-y^{\prime}=() .
$$

Subtracting (3) from (1) yields

$$
y-y^{\prime \prime}=() \text { so } y-y^{\prime \prime}=-\left(y-y^{\prime}\right)
$$

Thus

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

Additional Examples: See Section 1.3 of the text.

Suggested Problems: Do the odd numbered problems 1-25 for Section 1.3 The answers are posted on Dr. Walker's web site.

