Engineering Mathematics Section 1.3

Dr. Philip Walker

Initial Conditions.

A list of the form

$$
y\left(x_{0}\right)=k_{0}, y^{\prime}\left(x_{0}\right)=k_{1}, y^{\prime \prime}\left(x_{0}\right)=k_{2}, \ldots, y^{(n-1)}\left(x_{0}\right)=k_{n-1}
$$

is called a set or list of n initial conditions. Such a list of conditions together with an n-th order differential equation is called an n-th order initial value problem. It is desirable that initial value problems have unique solutions on some interval.

If the solutions to a differential equation are contained in an n-parameter family, then a list of n initial conditions will often determine the value of each parameter in the family.
Example. It is true that

$$
\begin{equation*}
y^{\prime \prime}-4 y=0 \tag{1}
\end{equation*}
$$

on an interval J if and only if

$$
\begin{equation*}
y=C_{1} e^{-2 x}+C_{2} e^{2 x} \tag{2}
\end{equation*}
$$

on J for some pair of numbers C_{1} and C_{2}.

Suppose that y is a solution and y also satisfies the initial conditions

$$
\begin{equation*}
y(0)=1 \text { and } y^{\prime}(0)=-1 \tag{3}
\end{equation*}
$$

From

$$
\begin{equation*}
y=C_{1} e^{-2 x}+C_{2} e^{2 x} \tag{2}
\end{equation*}
$$

and $y(0)=1$ we have setting $x=0$ and $y=1$ that

$$
1=C_{1} e^{-2 \cdot 0}+C_{2} e^{2 \cdot 0}
$$

or

$$
\begin{equation*}
C_{1}+C_{2}=1 \tag{4}
\end{equation*}
$$

Also from (2) we have

$$
y^{\prime}=-2 C_{1} e^{-2 x}+2 C_{2} e^{2 x}
$$

so using $y^{\prime}(0)=-1$ we have setting $x=0$ and $y^{\prime}=-1$ that

$$
-1=-2 C_{1} e^{-2 \cdot 0}+2 C_{2} e^{2 \cdot 0}
$$

or

$$
\begin{equation*}
-2 C_{1}+2 C_{2}=-1 \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
C_{1}+C_{2}=1 \tag{4}\\
-2 C_{1}+2 C_{2}=-1 \tag{5}
\end{gather*}
$$

Solving (4) and (5) (For example, add -2 times (4) to (5) to get C_{1} then use (4) to get C_{2}) we have

$$
C_{1}=\frac{3}{4} \text { and } C_{2}=\frac{1}{4}
$$

Thus the solution to the initial value problem consisting of (1) and (3) is the function y given by

$$
y=\frac{3}{4} e^{-2 x}+\frac{1}{4} e^{2 x}
$$

Example. Suppose that an object moves along a coordinatized straight line and its displacement from the origin at time t is $y(t)$. Then its velocity $v(t)$ at time t is given by

$$
v(t)=y^{\prime}(t)
$$

and its acceleration $a(t)$ is given by

$$
a(t)=v^{\prime}(t)
$$

SO

$$
y^{\prime \prime}(t)=a(t)
$$

Suppose that a is constant with

$$
a(t)=a
$$

and that these initial conditions are satisfied.

$$
y(0)=y_{0} \text { and } v(0)=y^{\prime}(0)=v_{0}
$$

Then

$$
v^{\prime}(t)=a
$$

Since

$$
\int a_{0} d t=a t
$$

we have

$$
v(t)=a t+C_{1}
$$

and since $v(0)=v_{0}$ we have $v_{0}=a \cdot 0+C_{1}$ yielding $C_{1}=v_{0}$. Thus

$$
v(t)=a t+v_{0}
$$

Continuing with

$$
v(t)=a t+v_{0}
$$

we have

$$
y^{\prime}(t)=a t+v_{0} .
$$

Since

$$
\int\left(a t+v_{0}\right) d t=\frac{1}{2} a t^{2}+v_{0} t
$$

we have

$$
y(t)=\frac{1}{2} a t^{2}+v_{0} t+C_{2} .
$$

Since $y(0)=y_{0}$ we have $y_{0}=\frac{1}{2} a \cdot 0^{2}+v_{0} \cdot 0+C_{2}$ yielding $C_{2}=y_{0}$. Thus

$$
y(t)=\frac{1}{2} a t^{2}+v_{0} t+y_{0} .
$$

Additional Examples: See Section 1.3 of the text.

Suggested Problems: Do the odd numbered problems 1-25 for Section 1.3 The answers are posted on Dr. Walker's web site.

