Section 2.1

Section 2.1
 First Order Linear Differential Equations

Definition A first order linear differential equation is one that is equivalent to one of the form

$$
y^{\prime}+p(x) y=f(x)
$$

Suppose that each of p and f is continuous on an interval J. To solve the first order linear differential equation

$$
y^{\prime}+p(x) y=f(x)
$$

begin by finding an anti-derivative h of p.

$$
h(x)=\int p(x) d x
$$

Leave off the $+C$. Note that

$$
h^{\prime}(x)=p(x) .
$$

$$
y^{\prime}+p(x) y=f(x)
$$

Multiply each side of (1) by

$$
e^{h(x)}
$$

This function is called the integrating factor. The result is

$$
\begin{align*}
& y^{\prime} e^{h(x)}+p(x) e^{h(x)} y=f(x) e^{h(x)} \tag{2}\\
& y^{\prime} e^{h(x)}+p(x) e^{h(x)} y=f(x) e^{h(x)} \tag{2}
\end{align*}
$$

Using the product rule, it follows that the left side of (2) is the derivative of $y e^{h(x)}$. Thus

$$
\begin{equation*}
\left(y e^{h(x)}\right)^{\prime}=f(x) e^{h(x)} . \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left(y e^{h(x)}\right)^{\prime}=f(x) e^{h(x)} \tag{3}
\end{equation*}
$$

Integrating, it follows that

$$
\begin{equation*}
y e^{h(x)}=Q(x)+C \tag{4}
\end{equation*}
$$

where Q is an antiderivative of the right side of (3).

$$
\begin{align*}
& Q(x)=\int f(x) e^{h(x)} d x \tag{5}\\
& y e^{h(x)}=Q(x)+C \tag{4}
\end{align*}
$$

Thus

$$
\begin{equation*}
y=C e^{-h(x)}+e^{-h(x)} Q(x) . \tag{6}
\end{equation*}
$$

If y is given by (6), differentiation shows that y is a solution to (1). The function y is a solution to (1) if and only if y is given by (6) for some constant C.

Example. Find all solutions (or find the general solution) to

$$
\begin{equation*}
y^{\prime}-2 x y=x . \tag{7}
\end{equation*}
$$

Solution: The integrating factor is

$$
e^{\int(-2 x) d x}=e^{-x^{2}} .
$$

Multiplying each side of (7) by it gives

$$
y^{\prime} e^{-x^{2}}-2 x e^{-x^{2}} y=x e^{-x^{2}}
$$

which is equivalent to

$$
\left(y e^{-x^{2}}\right)^{\prime}=x e^{-x^{2}}
$$

$$
\left(y e^{-x^{2}}\right)^{\prime}=x e^{-x^{2}}
$$

Noting that

$$
\int x e^{-x^{2}} d x=-\frac{1}{2} e^{-x^{2}}
$$

it follows that

$$
y e^{-x^{2}}=C-\frac{1}{2} e^{-x^{2}}
$$

so

$$
y=C e^{x^{2}}-\frac{1}{2} .
$$

Example. Find the solution to

$$
y^{\prime}-2 x y=x \text { and } y(0)=0 .
$$

Solution: It follows from the last example that

$$
y(x)=C e^{x^{2}}-\frac{1}{2}
$$

for some constant C. Since $y(0)=0$ we have

$$
C e^{0^{2}}-\frac{1}{2}=0
$$

So

$$
C-\frac{1}{2}=0
$$

yielding

$$
C=\frac{1}{2} .
$$

Thus the solution to the IVP is given by

$$
y=\frac{1}{2} e^{x^{2}}-\frac{1}{2} .
$$

Note. The integration by parts formula is

$$
\int u(x) v^{\prime}(x) d x=u(x) v(x)-\int u^{\prime}(x) v(x) d x .
$$

In the next example we will need

$$
\begin{gathered}
\int \ln x d x \\
\int \ln x d x=\int(\ln x)(1) d x
\end{gathered}
$$

Let u and v be such that $u(x)=\ln x$ and $v^{\prime}(x)=1$ so $u^{\prime}(x)=\frac{1}{x}$ and $v(x)=\int 1 d x=x$.

$$
\begin{aligned}
& \int \ln x d x=\int(\ln x)(1) d x=(\ln x)(x)-\int\left(\frac{1}{x}\right)(x) d x=x \ln x-\int 1 d x \\
& \int \ln x d x=x \ln x-x
\end{aligned}
$$

Example. Find all solutions (or find the general solution) to

$$
x y^{\prime}+3 y=\frac{\ln x}{x^{2}} \text { on the set of positive numbers. }
$$

Solution. First divide each side of the equation by x to put it in the standard form for a first order linear equation.

$$
\begin{equation*}
y^{\prime}+\frac{3}{x} y=\frac{\ln x}{x^{3}} \tag{8}
\end{equation*}
$$

Next get the integrating factor.

$$
\int \frac{3}{x} d x=3 \ln x=\ln x^{3} .
$$

Remember that

$$
e^{\ln z}=z \text { for every positive number } z
$$

The integrating factor is

$$
e^{\ln x^{3}}=x^{3} .
$$

Multiplying each side of (8) by the integrating factor produces

$$
x^{3} y^{\prime}+\frac{3}{x} x^{3} y=\frac{\ln x}{x^{3}} x^{3}
$$

or

$$
\begin{gathered}
x^{3} y^{\prime}+3 x^{2} y=\ln x \text { or }\left(x^{3} y\right)^{\prime}=\ln x \\
\int \ln x d x=x \ln x-x
\end{gathered}
$$

Thus

$$
x^{3} y=x \ln x-x+C
$$

so

$$
y=\frac{C}{x^{3}}+\frac{\ln x}{x^{2}}-\frac{1}{x^{2}}
$$

Example. Find all solutions (or find the general solution) to

$$
x y^{\prime}+2 y=\frac{2}{\sqrt{x^{2}-1}}-2 x^{2} \text { on the set of numbers greater than one. }
$$

Solution. First divide each side by x to produce

$$
y^{\prime}+\frac{2}{x} y=\frac{2}{x \sqrt{x^{2}-1}}-2 x .
$$

The integrating factor is

$$
e^{\int \frac{2}{x} d x}=e^{2 \ln x}=e^{\ln x^{2}}=x^{2}
$$

Multiplying each side of (9) by the integrating factor, we have

$$
x^{2} y^{\prime}+2 x y=\frac{2 x}{\sqrt{x^{2}-1}}-2 x^{3}
$$

or

$$
\begin{gathered}
\left(x^{2} y\right)^{\prime}=\frac{2 x}{\sqrt{x^{2}-1}}-2 x^{3} \\
\int\left(\frac{2 x}{\sqrt{x^{2}-1}}-2 x^{3}\right) d x=\int\left(\left(x^{2}-1\right)^{-\frac{1}{2}}(2 x)-2 x^{3}\right) d x=2\left(x^{2}-1\right)^{\frac{1}{2}}-\frac{1}{2} x^{4}
\end{gathered}
$$

so

$$
\left(x^{2} y\right)=2\left(x^{2}-1\right)^{\frac{1}{2}}-\frac{1}{2} x^{4}+C
$$

and

$$
y=\frac{C}{x^{2}}+\frac{2\left(x^{2}-1\right)^{\frac{1}{2}}}{x^{2}}-\frac{1}{2} x^{2}
$$

or

$$
y=\frac{C}{x^{2}}+\frac{2 \sqrt{\left(x^{2}-1\right)}}{x^{2}}-\frac{1}{2} x^{2}
$$

Example. Find the solution to

$$
y^{\prime}+\cot (x) y=2 \cos x \text { on the set of numbers between } 0 \text { and } \pi \text { and } y\left(\frac{\pi}{2}\right)=3 .
$$

Solution. The integrating factor is

$$
e^{\int \cot x d x}=e^{\int \frac{\cos x}{\sin x} d x}=e^{\ln \sin x}=\sin x
$$

and multiplying each side of the DE by it produces

$$
\begin{gathered}
y^{\prime} \sin x+\cos (x) y=2 \sin x \cos x \text { or }(y \sin x)^{\prime}=2 \sin x \cos x . \\
\int 2 \sin x \cos x d x=\sin ^{2} x
\end{gathered}
$$

so

$$
y \sin x=\sin ^{2} x+C
$$

and

$$
y=\frac{C}{\sin x}+\sin x
$$

Since

$$
y\left(\frac{\pi}{2}\right)=3 \text { we have } 3=\frac{C}{\sin \frac{\pi}{2}}+\sin x \frac{\pi}{2} \text { or } 3=\frac{C}{1}+1
$$

so

$$
C=2
$$

and

$$
y=\frac{2}{\sin x}+\sin x
$$

or

$$
y=2 \csc x+\sin x
$$

Note. Suppose that the right side of a first order linear differential equation in standard form is zero so that

$$
y^{\prime}+p(x) y=0
$$

Let $h(x)=\int p(x) d x$ and multiply each side of the DE by the integrating factor $e^{h(x)}$ to get

$$
y^{\prime} e^{h(x)}+p(x) e^{h(x)} y=0 \text { or }\left(y e^{h(x)}\right)^{\prime}=0 \text { so } y e^{h(x)}=C
$$

or

$$
\begin{equation*}
y=C e^{-h(x)}=C e^{-\int p(x) d x} \tag{11}
\end{equation*}
$$

for some constant C. Conversely, if y is given by (11) for some constant C, then y is an solution to (10).

If p is continuous on an interval J, x_{0} is a number in J and

$$
h(x)=\int_{x_{0}}^{x} p(t) d t
$$

(h is the specific anti-derivative of p such that $h\left(x_{0}\right)=0$) then

$$
y\left(x_{0}\right)=C e^{-\int_{x_{0}}^{x_{0}} p(t) d t}=C e^{0}=C
$$

so

$$
y(x)=y\left(x_{0}\right) e^{-\int_{x_{0}}^{x} p(t) d t}
$$

Consequently, if $y\left(x_{0}\right) \neq 0$ for some x_{0} in J, then $y(x) \neq 0$ for all x in J, and if $y\left(x_{0}\right)=0$ for some x_{0} in J, then $y(x)=0$ for all x in J.

Definition. Saying that L is a linear operator acting on a collection of functions S means if y is in S and c is a number then $c y$ is in S and

$$
L[c y]=c L[y],
$$

and if each of y_{1} and y_{2} is in S then $y_{1}+y_{2}$ is in S and

$$
L\left[y_{1}+y_{2}\right]=L\left[y_{1}\right]+L\left[y_{2}\right]
$$

Example. Differentiation acting on the differentiable functions defined on an interval is a linear operator. If

$$
L[y]=y^{\prime}
$$

then

$$
L[c y]=(c y)^{\prime}=c y^{\prime}=c L[y]
$$

and

$$
L\left[y_{1}+y_{2}\right]=\left(y_{1}+y_{2}\right)^{\prime}=y_{1}^{\prime}+y_{2}^{\prime}=L\left[y_{1}\right]+L\left[y_{2}\right] .
$$

Definition. Saying that L is a first order linear differential operator over an interval J
means that there is a function p with domain J such that

$$
L[y]=y^{\prime}+p(x) y
$$

whenever y is a differentiable function with domain J.

Note that in standard form, a first order linear differential equation is of the form

$$
L[y]=f
$$

where L is as above.

Theorem. If p is a function defined on an interval J and

$$
L[y]=y^{\prime}+p(x) y
$$

whenever y is a differentiable function defined of J, then L is a linear operator.

Proof.

$$
L[c y]=(c y)^{\prime}+p(x)(c y)=c y^{\prime}+c p(x)=c\left(y^{\prime}+p(x) y\right)=c L[y]
$$

and

$$
\begin{aligned}
L\left[y_{1}+y_{2}\right] & =\left(y_{1}+y_{2}\right)^{\prime}+p(x)\left(y_{1}+y_{2}\right)=y_{1}^{\prime}+y_{2}^{\prime}+p(x) y_{1}+p(x) y_{2} \\
& =y_{1}^{\prime}+p(x) y_{1}+y_{2}^{\prime}+p(x) y_{2}=L\left[y_{1}\right]+L\left[y_{2}\right]
\end{aligned}
$$

whenever each of y, y_{1}, y_{2} is a differentiable function defined on J and c is a number.

Example. Suppose that the operator L is given by

$$
L[y]=y^{\prime}+\frac{2}{x} y
$$

whenever y is a differentiable function defined on the positive numbers. Then

$$
\begin{gathered}
L\left[2 x^{3}+x\right]=\left(6 x^{2}+1\right)+\frac{2}{x}\left(2 x^{3}+x\right)=10 x^{2}+3, \\
L\left[e^{2 x}\right]=2 e^{2 x}+\frac{2}{x} e^{2 x}=\left(2+\frac{2}{x}\right) e^{2 x}
\end{gathered}
$$

and

$$
L\left[x^{2}\right]=2 x+\frac{2}{x} \cdot x^{2}=4 x .
$$

Definition. When each of y_{1} and y_{2} is a function defined on a set J and each of c_{1} and c_{2} is a number,

$$
c_{1} y_{1}+c_{2} y_{2}
$$

is called a linear combination of y_{1} and y_{2}.

Theorem. If L is a linear operator acting on a collection of functions S, each of y_{1} and y_{2} is in S and each of c_{1} and c_{2} is a number then

$$
L\left[c_{1} y_{1}+c_{2} y_{2}\right]=c_{1} L\left[y_{1}\right]+c_{2} L\left[y_{2}\right]
$$

Additional Examples: See Section 2.1 of the text.

Suggested Problems. Do the odd numbered problems for Section 2.1. The answers are posted on Dr. Walker's web site.

