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Definition

A first order linear differential equation is one that is equivalent to one of
the form

y'+p(x)y = f(x)
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Suppose that each of p and f is continuous on an interval J. To solve the
first order linear differential equation

y'+p(x)y = f(x)
begin by finding an anti-derivative h of p.
h(x) = / p(x)dx

Leave off the +C. Note that
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Y +p(x)y = f(x) (1)

Multiply each side of (1) by
h(x).

This function is called the integrating factor. The result is

y'e") 4 p(x)e"™y = f(x)e"). (2)
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') 4 p(x)e"y = f(x)e"). ()

Using the product rule, it follows that the left side of (2) is the derivative

of yeh™). Thus
(ye")) = F(x)e"™). (3)
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(ve"™)) = f(x)e"™). (3)

Integrating, it follows that
ye'™ = Q(x) + C (4)

where Q is an antiderivative of the right side of (3).

Dr. Philip Walker () Mathematics 3321



ye'™ = Q(x) + C (4)
Thus
y = Ce ") 4 e~ Q(x). (6)

If y is given by (6), differentiation shows that y is a solution to (1). The
function y is a solution to (1) if and only if y is given by (6) for some
constant C.
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Example. Find all solutions (or find the general solution) to
y' —2xy = x.

Solution: The integrating factor is

ef(72x)dx _ efx2.

Multiplying each side of (7) by it gives

2 2 2
y'e ™ —2xe ™y = xe ¥

which is equivalent to
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Noting that

it follows that

yefx2 =C— %e—%
o) 1
- C x2 -
y e >
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Example. Find the solution to

y' —2xy = x and y(0) = 0.

Solution: It follows from the last example that

2 1
y(x) = Ce* — 2
for some constant C. Since y(0) = 0 we have
02 _ 1 _
Ce > 0
So )
C—=-=0
2
yielding
1
C= 5
Thus the solution to the IVP is given by
_ Ll 1
Y=2° o
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Note. The integration by parts formula is

/u(x)v/(x)dx = u(x)v(x) —/u'(x)v(x)dx.

In the next example we will need

1
Let u and v be such that u(x) =Inx and v/(x) =1 so v/(x) = = and
x
v(x) = [1ldx = x.

/Inxdx = /(Inx)(l)dxz (Inx)(x)—/(%)(X)dxlenx—/ldx
/Inxdx = xlnx—x
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Example. Find all solutions (or find the general solution) to

In x ..
xy' 4+ 3y = —5 on the set of positive numbers.
X
Solution. First divide each side of the equation by x to put it in the

standard form for a first order linear equation.
, 3 In x
Y+-y=—7
X X
Next get the integrating factor.

/édx:3lnx: Inx3.
X

Remember that

e"? = 7z for every positive number z

The integrating factor is

3
elnx — X3.

Multiplying each side of (8) by the integrating factor produces

3 In x
/
x3y + —x3y = — x3
X X
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or
3y +3x%y = Inx or (x*y) = Inx.

/Inxdx:xlnx—x

Thus
XXy =xhx—x+C

o)
C Inx 1

Y= T
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Example. Find all solutions (or find the general solution) to

2
xy' +2y = a1 2x2 on the set of numbers greater than one.

Solution. First divide each side by x to produce

2 2
/
+ -y =—"——2x. 9
e (9)
The integrating factor is
ef%dx — e2Inx _ elnx2 — 2

Multiplying each side of (9) by the integrating factor, we have
2x

AN WS
x2—1

x2y/ +2xy =
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or
9 2x

XPy) = ——— —2x%.
(x°y) ——
2x 3 2 -1 3 2 11,
/(7—2X )dx:/((x —1)72(2x) —2x%)dx = 2(x* —1)2 — =x
x2—1 2
so )
(X2y):2(x2—1)%—ix4+C
and .
C 2(x*-1)2 1,
y:;‘i‘ 2 — =X
or
C 2y/(x*-1) 1,
Y= x2 -

Dr. Philip Walker () Mathematics 3321



Example. Find the solution to

T
y' +cot(x)y = 2cos x on the set of numbers between 0 and 7t and y(;) =

Solution. The integrating factor is

sin x =

cos x : .
efcotxdx:ef dx elnsz:SInX

and multiplying each side of the DE by it produces

y'sinx + cos(x)y = 2sin xcos x or (ysinx)' = 2sinxcosx.

/25inxcosxdx = sin? x

so
ysinx =sin>x+ C

and

= + sin x

Sin X
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Since

y(g) = 3 we have 3 = sinC72T —|—sinxg or3= %—I— 1

so

C=2
and

2 .

Yy = - -+ sin x.

sin x

or

y = 2cscx +sinx
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Note. Suppose that the right side of a first order linear differential
equation in standard form is zero so that

y'+px)y =0. (10)

Let h(x) = [ p(x)dx and multiply each side of the DE by the integrating
factor e ( ) to get

") 4 p(x)e"™¥)y = 0 or (ye"™)) =050 ye"™) = C

or

y = Ce ) = e~ [ px)dx (11)

for some constant C. Conversely, if y is given by (11) for some constant
C, then y is an solution to (10).

Dr. Philip Walker () Mathematics 3321 19 / 28



If p is continuous on an interval J, xg is a number in J and
X
hix) = [ pl(e)de
X0

(h is the specific anti-derivative of p such that h(xp) = 0) then
y(x0) = Ce Jo PO _ ce0 — ¢

SO .
y(x) = y(xg)e o P

Consequently, if y(xp) # 0 for some xp in J, then y(x) # 0 for all x in
J,and if y(xp) = 0 for some xg in J, then y(x) = 0 for all x in J.
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Definition. Saying that L is a linear operator acting on a collection of
functions S means if y isin S and c is a number then cy isin S and

Lley] = cLly],
and if each of y; and y» isin S then y; + y» isin S and

Llyr + yo] = L] + Lly2]
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Example. Differentiation acting on the differentiable functions defined on
an interval is a linear operator. If

Llyl=y

then
Lley] = (cy)' = ¢y’ = clLly]

and
Lyt +y2] = (1 +y2) = yi +y5 = L] + L[y
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Definition. Saying that L is a first order linear differential operator over
an interval J means that there is a function p with domain J such that

Lyl =y + p(x)y

whenever y is a differentiable function with domain J.

Note that in standard form, a first order linear differential equation is of
the form

Lly]=f

where L is as above.
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Theorem. If p is a function defined on an interval J and
Lly] =y + p(x)y
whenever y is a differentiable function defined of J, then L is a linear

operator.

Proof.

Lley] = (cy) + p(x)(cy) = ¢y’ + cp(x) = c(y' + p(x)y) = cL|y]

and

Lyn+yo] = (a+y) +px)n+y2) =yi+ys+p(x)n + p(x)y
= yi+p(xX)y1+ys+p(x)y2 = Liyi] + L]ys]

whenever each of y, y1, y» is a differentiable function defined on J and ¢ is
a number.
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Example. Suppose that the operator L is given by

whenever y is a differentiable function defined on the positive numbers.
Then

2
L[2x3 4+ x] = (6x° +1) + =(2x* 4+ x) = 10x* + 3,
X

and
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Definition. When each of yjand y»is a function defined on a set J and
each of ¢; and ¢ is a number,

ayrt+ oy

is called a linear combination of y; and y».

Theorem. If L is a linear operator acting on a collection of functions S,
each of y; and y» is in S and each of ¢; and ¢ is a number then

Lleiyr + cayo] = cillyi] + L[y
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Additional Examples: See Section 2.1 of the text.
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Suggested Problems. Do the odd numbered problems for Section 2.1.
The answers are posted on Dr. Walker's web site.
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