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Definition. A differential equation that is equivalent to one of the form

f (y)y ′ = g(x) (1)

is said to be separable. When in this form, It can be solved by integrating
each side. The result is

F (y) = G (x) + C (2)

where F is an anti-derivative of f and G is an anti-derivative of g .

F (y) =
∫
f (y)dy and G (x) =

∫
g(x)dx

Equation (2) gives an implicit description of the solutions. It may or may
not be possible to solve it for y explicitly.
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Although lacking in mathematical rigor, a helpful notational device is to
replace y ′ in

f (y)y ′ = g(x) (1)

with
dy
dx

multiply each side of the resulting equation by dx resulting in

f (y)dy = g(x)dx

and supply an integral sign to each side resulting in∫
f (y)dy =

∫
g(x)dx + C .
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Example 1. Solve

y ′ =
y2 + 1
xy + y

.

Solution. The given d.e. is equivalent to

y ′ =
y2 + 1
y(x + 1)

which is equivalent to
y

y2 + 1
y ′ =

1
x + 1

.

This is of the form given in equation (1).
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Next we have
y

y2 + 1
· dy
dx
=

1
x + 1

Then ∫ y
y2 + 1

dy =
∫ 1
x + 1

dx + C

so
1
2

∫ 2y
y2 + 1

dy =
∫ 1
x + 1

dx + C .

For all x in some interval. Integrating each side we have

1
2
ln(y2 + 1) = ln |x + 1|+ C .

This gives an implicit description of the solutions. We will try to solve for
y .
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ln(y2 + 1) = 2 ln |x + 1|+ C
or

ln(y2 + 1) = ln((x + 1)2) + C .

Exponentiating, this becomes

e ln(y
2+1) = e ln((x+1)

2)+C. .

Note that
e ln((x+1)

2)+C. = e ln((x+1)
2)eC

Remember that e ln z = z for all z > 0. Thus

y2 + 1 = (x + 1)2 · C .

So
y2 = C (x + 1)2 − 1

or
y = ±

√
C (x + 1)2 − 1.

An initial condition is needed to determine whether to use + or −.
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Example 2. Solve (find the general solution to)

y ′ = 3x(1+ y2).

Solution. The given d.e. is equivalent to

1
1+ y2

y ′ = 3x

This is of the form given in Equation (1). Continuing, we have∫ 1
1+ y2

dy =
∫
3xdx + C

so
arctan y =

3
2
x2 + C .

Thus

y = tan
(
3
2
x2 + C

)
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Additional Examples: See Additional Examples for Section 2.2 posted on
Dr. Walker’s web site, Section 2.2 of the text, and the notes presented on
the board in class.
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Suggested Problems. Do the odd numbered problems for section 2.2.
The answers are posted on Dr. Walker’s web site.
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