Engineering Mathematics

Dr. Philip Walker

Section 2.3
 Two More First Order Differential Equations

Definition. A differential equation that is equivalent to one of the form

$$
y^{\prime}+p(x) y=q(x) y^{r}
$$

where $r \neq 0$ and $r \neq 1$ is said to be a Bernoulli differential equation. When the equation is in this form, it can be solved by dividing each side by y^{r} and letting

$$
v=y^{1-r} .
$$

The result is a first order linear differential equation for v. Find v, then noting that

$$
y=v^{\frac{1}{1-r}}
$$

find y.

Example. Find all solutions to

$$
y^{\prime}+\frac{1}{x} y=3 x^{2} y^{2} \text { on intervals of positive numbers. }
$$

Solution. Multiply each side by y^{-2} to get

$$
y^{\prime} y^{-2}+\frac{1}{x} y^{-1}=3 x^{2}
$$

Let

$$
v=y^{-1} \text { then } v^{\prime}=-y^{-2} y^{\prime}
$$

so

$$
-v^{\prime}+\frac{1}{x} v=3 x^{2}
$$

or

$$
v^{\prime}-\frac{1}{x} v=-3 x^{2}
$$

The integrating factor for this first order linear d.e. is

$$
e^{-\int \frac{1}{x} d x}=\frac{1}{x}
$$

SO

$$
\frac{1}{x} v^{\prime}-\frac{1}{x^{2}} v=-3 x
$$

or

$$
\left(\frac{1}{x} v\right)^{\prime}=-3 x
$$

Integrating we have

$$
\frac{1}{x} v=-\frac{3}{2} x^{2}+C
$$

so

$$
v=C x-\frac{3}{2} x^{3}
$$

Since

$$
y=\frac{1}{v}
$$

it follows that

$$
y=\frac{1}{C x-\frac{3}{2} x^{3}}
$$

or

$$
y=\frac{2}{C x-3 x^{3}}
$$

The C in the last equation is twice the C in the previous equation. The constant function with value zero is a singular solution.

Saying that a differential equation of the form

$$
y^{\prime}=f(x, y)
$$

is homogeneous in x and y means that

$$
f(\lambda x, \lambda y)=f(x, y)
$$

for all λ in some interval. To solve such an equation, let v be such that

$$
y=x v
$$

The result will be a separable equation for v. Solve for v then find y.

Note: In this section of the text these equations are simply called homogeneous. The term homogeneous usually refers to a linear equation where the right side is zero. That is the usage you find begining in Chapter 3.

Example. Find a parameterized family of solutions (or find the general solution) to

$$
y^{\prime}=\frac{x^{2}+y^{2}}{2 x y} \text { on intervals of positive numbers. }
$$

Solution. The differential equation is of the form

$$
y^{\prime}=f(x, y)
$$

where

$$
f(x, y)=\frac{x^{2}+y^{2}}{2 x y}
$$

Note that

$$
f(\lambda x, \lambda y)=\frac{(\lambda x)^{2}+(\lambda y)^{2}}{2 \lambda x \lambda y}=\frac{\lambda^{2}\left(x^{2}+y^{2}\right)}{\lambda^{2} 2 x y}=f(x, y)
$$

So the differential equation is of homogeneous degree.

Ley v be such that $x v=y$. Then from the differential equation we have

$$
v+x v^{\prime}=\frac{x^{2}+(x v)^{2}}{2 x(x v)}
$$

so

$$
x v^{\prime}=\frac{1+v^{2}}{2 v}-v
$$

or

$$
x v^{\prime}=\frac{1+v^{2}}{2 v}-\frac{2 v^{2}}{2 v}
$$

or

$$
x v^{\prime}=\frac{1-v^{2}}{2 v}
$$

From this we get

$$
\frac{2 v v^{\prime}}{1-v^{2}}=\frac{1}{x}
$$

SO

$$
-\int \frac{-2 v}{1-v^{2}} d v=\int \frac{1}{x} d x+C_{1}
$$

Thus

$$
-\ln \left|1-v^{2}\right|=\ln x+C_{1}
$$

so

$$
\ln \left|1-v^{2}\right|=\ln \frac{1}{x}+C_{2}
$$

SO

$$
e^{\ln \left|1-v^{2}\right|}=e^{\ln \frac{1}{x}+C_{2}}
$$

SO

$$
\left|1-v^{2}\right|=C_{3} \frac{1}{x}
$$

where $C_{3}=e^{C_{2}}$. Since $x v=y$ we have

$$
\left|1-\frac{y^{2}}{x^{2}}\right|=C_{3} \frac{1}{x}
$$

or

$$
\left|x^{2}-y^{2}\right|=C_{3} x
$$

For solutions where $x^{2} \geq y^{2}$ this becomes

$$
y^{2}=C x+x^{2}
$$

where $C=-C_{3}$. For solutions where $x^{2}<y^{2}$ this becomes

$$
y^{2}=C x+x^{2}
$$

where $C=C_{3}$.

Suggested problems for Section 2.3. Do the odd numbers 1 through 25.

