Section 2.4.1

Section 2.4.1
 Orthogonal Trajectories

Orthogonal means

Lines in the plane are perpendicular or orthogonal if and only if or

Smooth curves in the plane are orthogonal at a point of intersection

Suppose that \mathcal{F} is a one-parameter family of smooth curves in the plane. Saying that \mathcal{G} is the family of orthogonal trajectories for \mathcal{F} means that \mathcal{G} is a one-parameter family of smooth curves in the plane and

Example.

Procedure. To find the orthogonal trajectories for a given family, and

Example. Find the orthogonal trajectories for the family of parabolas indicated by

$$
x=C y^{2} .
$$

Solution. From (1) we have
and putting this value of C into (2) we have
so

This is the d.e. for the given family.

Replacing y^{\prime} with $-1 / y^{\prime}$ we have
or

This is the d.e. for the orthogonal trajectories. It is separable. Solving it by integration we have
or
(5) gives the orthogonal trajectories. It is

Additional Examples: See Section 2.4.1 of the text and the notes presented on the board in class.

Suggested Problems. Do the odd numbered problems for section 2.4.1. The answers are posted on Dr. Walker's web site.

