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Section 2.4.1
Orthogonal Trajectories
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Orthogonal means perpendicular.

Dr. Philip Walker () Mathematics 3321 3 / 12



Lines in the plane are perpendicular or orthogonal if and only if one is
vertical and the other horizontal or the product of their slopes is −1.
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Smooth curves in the plane are orthogonal at a point of intersection if and
only if their tangent lines are orthogonal at that point.
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Suppose that F is a one-parameter family of smooth curves in the plane.
Saying that G is the family of orthogonal trajectories for F means that
G is a one-parameter family of smooth curves in the plane and if f is in F ,
g is in G and f and g intersect at a point, they are orthogonal at that
point.
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Example. The straight lines through the origin form the orthogonal
trajectories for the circles centered at the origin. In plane geometry, we
learn that a radius and tangent that meet at a point on a circle are
perpendicular.
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Procedure. To find the orthogonal trajectories for a given family, find the
differential equation for the family, replace y ′ in that equation with
−1/y ′, and solve the resulting differential equation. The solutions will
form the family of orthogonal trajectories.
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Example. Find the orthogonal trajectories for the family of parabolas
indicated by

x = Cy2. (1)

Solution. From (1) we have

1 = 2Cyy ′. (2)

Solving (1) for C to get

C =
x
y2

and putting this value of C into (2) we have

1 = 2
x
y2
yy ′

so
1 = 2

x
y
y ′. (3)

This is the d.e. for the given family.
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1 = 2
x
y
y ′. (3)

Replacing y ′ with −1/y ′ we have

1 = −2 x
yy ′

or
yy ′ = −2x (4)

This is the d.e. for the orthogonal trajectories. It is separable. Solving it
by integration we have

1
2
y2 = −x2 + C

or
x2

1
+
y2

2
= C (5)

(5) gives the orthogonal trajectories. It is a family of ellipses.
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Additional Examples: See Section 2.4.1 of the text and the notes
presented on the board in class.
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Suggested Problems. Do the odd numbered problems for section 2.4.1.
The answers are posted on Dr. Walker’s web site.
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