Notes on Section 2.4.4 Falling Objects with Air Resistance

Philip W. Walker

Suppose that an object of mass m falls under gravity near the surface of the earth with air rresistance proportional to its velocity. Then from second law of motion we have

$$mv'(t) = -mg - kv(t)$$
 for $t \ge 0$

where v(t) is the velocity of the object at time t, g is the magnitute of the acceleration due to gravity, and k is a positive constant known as the drag coefficient. The equation is equivalent to

$$mv'(t) + kv(t) = -mg$$
 for $t \ge 0$

which is a first order linear equation. Solving it, you should find that v is a solution if and only if

$$v(t) = ce^{-kt/m} - \frac{gm}{k}$$

for some number c and all $t \ge 0$. If $v(0) = v_0$, then

$$v(t) = \left(v_0 + \frac{gm}{k}\right)e^{-kt/m} - \frac{gm}{k}$$

The altitude y(t) at time t is related to the velocity by

$$v(t) = y'(t)$$
 for $t \ge 0$

So

$$y(t) - y(t_0) = \int_{t_0}^t v(\tau)d\tau.$$

Suggested Problem. Problem 1 in Exercises 2.4.4 on page 51 of the text.