Notes on Section 2.4.5
 Mixing Problems

Philip W. Walker

A fluid containing a substance (e.g. a salt water solution) with concentration k_{1} flows into a mixing container at a rate of R_{1} and is mixed with the fluid already there.

Let \qquad
The rate of change in A is the and let The inflow rate of the substance is \square. The concentration of the substance in the container at time t is . This is also the concentration of the substance in the fluid that is being pumped out. Thus the outflow rate of the substance is

Putting everything together, we have

Note that V is constant when \square and

$$
V(t)=\square
$$

when $R_{1} \neq R_{2}$.
Note that (1) is equivalent to

which is a
Example. A 100 gallon tank is initially full of water. At time $t=0$ a 20% hydrochloric acid solution begins to flow into the tank at a rate of 2 gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t.

Solution. Note that V \qquad . Thus (2) becomes

which becomes \square

Using the integrating factor \square we have

Defining B by

the last differential equation becomes
so

Thus

for some number C and all $t \geq 0$. Since the mixing tank contains only water when $t=0$, we have

Example. See the example on pages 52 and 53 of the text.
Suggested Problems. Problems 1, 3, and 5, in Exercises 2.4.5 on pages 53 and 54 of the text.

