Notes on Section 2.4.5 Mixing Problems

Philip W. Walker

already there. Let			
The rate of change in A is the The inflow rate of the substance is The concentration of the substance in the container at time t is This is also the concentration of the substance in the fluid that is being pumped out. Thus the outflow rate of the substance is Putting everything together, we have for $t \ge 0$. (1) Note that V is constant when and $V(t) =$ (2) when $R_1 \neq R_2$. Note that (1) is equivalent to (2) which is a (2) which is a (2) which is a (2) substance is (3) substance is (3) substance is (3) substance is (4) substance is			
The inflow rate of the substance is The concentration of the substance in the container at time t is This is also the concentration of the substance in the fluid that is being pumped out. Thus the outflow rate of the substance is Putting everything together, we have for $t \ge 0$. (1) Note that V is constant when and (1) Note that (1) is equivalent to (2) which is a (2)			
The inflow rate of the substance is The concentration of the substance in the container at time t is This is also the concentration of the substance in the fluid that is being pumped out. Thus the outflow rate of the substance is Putting everything together, we have for $t \ge 0$. (1) Note that V is constant when and (1) Note that (1) is equivalent to (2) which is a (2)			
inflow rate of the substance is The concentration of the substance in the container at time t is This is also the concentration of the substance in the fluid that is being pumped out. Thus the outflow rate of the substance is Putting everything together, we have for $t \ge 0$. (1) Note that V is constant when and $V(t) =$			
container at time t is . This is also the concentration of the substance in the fluid that is being pumped out. Thus the outflow rate of the substance is Putting everything together, we have for $t \ge 0$. (1) Note that V is constant when and $V(t) =$ (2) when $R_1 \ne R_2$. Note that (1) is equivalent to (2) which is a Example . A 100 gallon tank is initially full of water. At time $t = 0$ a 20% hydrochloric acid solution begins to flow into the tank at a rate of 2 gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t.			
the fluid that is being pumped out. Thus the outflow rate of the substance is Putting everything together, we have for $t \ge 0$. (1) Note that V is constant when and V(t) = when $R_1 \ne R_2$. Note that (1) is equivalent to Example . A 100 gallon tank is initially full of water. At time $t = 0$ a 20% hydrochloric acid solution begins to flow into the tank at a rate of 2 gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t .			
Putting everything together, we have for $t \ge 0$. (1) Note that V is constant when and V(t) = when $R_1 \ne R_2$. Note that (1) is equivalent to Example . A 100 gallon tank is initially full of water. At time $t = 0$ a 20% hydrochloric acid solution begins to flow into the tank at a rate of 2 gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t .			
Note that V is constant when and $V(t) =$ when $R_1 \neq R_2$. Note that (1) is equivalent to (2) which is a Example. A 100 gallon tank is initially full of water. At time $t = 0$ a 20% hydrochloric acid solution begins to flow into the tank at a rate of 2 gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t .			
Note that V is constant when and V(t) = when $R_1 \neq R_2$. Note that (1) is equivalent to (2) which is a Example . A 100 gallon tank is initially full of water. At time $t = 0$ a 20% hydrochloric acid solution begins to flow into the tank at a rate of 2 gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t .			
Note that V is constant when and V(t) = when $R_1 \neq R_2$. Note that (1) is equivalent to (2) which is a Example . A 100 gallon tank is initially full of water. At time $t = 0$ a 20% hydrochloric acid solution begins to flow into the tank at a rate of 2 gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t .			
$V(t) = $ when $R_1 \neq R_2$. Note that (1) is equivalent to (2) which is a Example. A 100 gallon tank is initially full of water. At time $t = 0$ a 20% hydrochloric acid solution begins to flow into the tank at a rate of 2 gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t .			
when $R_1 \neq R_2$. Note that (1) is equivalent to (2) which is a Example. A 100 gallon tank is initially full of water. At time $t = 0$ a 20% hydrochloric acid solution begins to flow into the tank at a rate of 2 gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t .			
Note that (1) is equivalent to (2) which is a Example . A 100 gallon tank is initially full of water. At time $t = 0$ a 20% hydrochloric acid solution begins to flow into the tank at a rate of 2 gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t .			
(2) which is a Example . A 100 gallon tank is initially full of water. At time $t = 0$ a 20% hydrochloric acid solution begins to flow into the tank at a rate of 2 gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t .			
which is a Example . A 100 gallon tank is initially full of water. At time $t = 0$ a 20% hydrochloric acid solution begins to flow into the tank at a rate of 2 gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t .			
Example . A 100 gallon tank is initially full of water. At time $t = 0$ a 20% hydrochloric acid solution begins to flow into the tank at a rate of 2 gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t .			
Example . A 100 gallon tank is initially full of water. At time $t = 0$ a 20% hydrochloric acid solution begins to flow into the tank at a rate of 2 gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t .			
a 20% hydrochloric acid solution begins to flow into the tank at a rate of 2 gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t .			
gallons/minute. The well-mixed solution in the tank is pumped out at the same rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t.			
rate. Find the amount $A(t)$ (in gallons) of acid in the tank at time t.			
Solution Note that V Thus (2) becomes			
Solution . Note that V . Thus (2) becomes			
which becomes			
1			

Using the integrating factor		we have	
Defining B by			
the last differential equation becomes			
SO		<u>}.</u>	
Thus			
for some number C and all when $t = 0$, we have	$t \ge 0$). Since the mixing tank contains only water	
Thus and			
Example . See the example on pages 52 and 53 of the text.			

Example. See the example on pages 52 and 53 of the text. **Suggested Problems**. Problems 1, 3, and 5, in Exercises 2.4.5 on pages 53 and 54 of the text.