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The differential equation

0() = () ( − ()) for  ≥ 0 (1)

where each of  and  is a positive number is known as the logistic equation.

The equation has applications in mathematical biology. For example, () could

be the number of people in a population of  people who have been infected

by a certain disease by time . The number  is called the carrying capacity

and  is called the intrinsic growth rate.

Equation (1) is equivalent to

0()− () = − (())2 for  ≥ 0
which is a Bernoulli differential equation. It is also equivalent to

0()
()( − ())

=  for  ≥ 0 (2)

which is separable. We will find the solutions to (1) by solving (2). Using partial

fractions
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on the left side of (2) we haveZ µ
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In the applications of interest it will be the case that 0  ()   so
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Exponentiating and noting that the additive constant becomes a multiplicative

one,
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Example. See the example on page 56 of the text.

Suggested Problems. Problems 1,3, and 5 in Exercises 2.4.6 on pages 56

and 57 of the text.
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