Notes on Section 2.4.7

Philip W. Walker

The following are solutions and solution suggestions for some of the problems in this subsection.

1. A disease is infecting a colony of 1000 penguins living on a remote island Let $P(t)$ be the number of sick penguins t days after the outbreak. Suppose that 50 penguins had the disease initially, and suppose that the disease is spreading at a rate proportional to the product of the time elapsed and the number of penguins who do not have the disease.
(a) The model is

$$
P^{\prime}=k t(1000-P)
$$

and

$$
P(0)=50 .
$$

(b) The differential equation is separable.

$$
\begin{gathered}
\frac{P^{\prime}}{1000-P}=k t \\
\int \frac{d P}{1000-P}=\int k t d t \\
-\ln (1000-P)=\frac{1}{2} k t^{2}+C \\
1000-P=C e^{-\frac{1}{2} k t^{2}} \\
P=1000-C e^{-\frac{1}{2} k t^{2}}
\end{gathered}
$$

is the general solution to the differential equation.
(c) The initial condition is

$$
P(0)=50
$$

so

$$
\begin{gathered}
50=1000-C \\
C=950 \\
P=1000-950 e^{-\frac{1}{2} k t^{2}}
\end{gathered}
$$

is the solution to the initial value problem. More information is needed to determine the value of k.
2. A disease is infecting a herd of 100 cows. Let $P(t)$ be the number of sick cows t days after the outbreak. Suppose that 15 cows had the disease initially, and suppose that the disease is spreading at a rate proportional to the number of cows who do not have the disease.
(a) The model is

$$
P^{\prime}=k(100-P)
$$

and

$$
P(0)=15 .
$$

(b) The differential equation is separable.

$$
\begin{gathered}
\frac{p^{\prime}}{100-P}=k \\
\int \frac{d P}{100-P}=\int k d t+C \\
-\int \frac{(-1) d P}{100-P}=\int k d t+C \\
-\ln (100-P)=k t+C \\
\ln (100-P)=-k t+C \\
100-P=C e^{-k t} \\
P=100-C e^{-k t}
\end{gathered}
$$

is the general solution.
(c)

$$
P(0)=15
$$

so

$$
15=100-C e^{-k \cdot 0}=100-C .
$$

Thus

$$
C=85
$$

and

$$
P(t)=100-15 e^{-k t}
$$

This is the solution to the initial value problem. More information is needed to determine the value of k.
3. A 1000-gallon tank, initially full of water, develops a leak at the bottom. Given that 200 gallons of water leaks out in the first 10 minutes, find the amount of water, $A(t)$ in the tank t minutes after the leak develops if water drains off at a rate proportional to the product of the time elapsed and the amount of water present.

Solution.

$$
\begin{gathered}
A^{\prime}=k t A \\
A(0)=1000 \\
A(10)=800
\end{gathered}
$$

Solving the d.e. we have

$$
\begin{gathered}
\frac{A^{\prime}}{A}=k t \\
\int \frac{d A}{A}=\int k t d t+C \\
\ln A=\frac{1}{2} k t^{2}+C \\
A=C e^{k t^{2} / 2}
\end{gathered}
$$

applying $A(0)=1000$ we have

$$
\begin{gather*}
1000=C e^{0} \text { so } C=1000 \text { and } \\
A=1000 e^{k t^{2} / 2} \tag{*}
\end{gather*}
$$

Using $A(10)=800$ we have

$$
800=1000 e^{50 k}
$$

so

$$
\ln \left(\frac{4}{5}\right)=50 k
$$

and

$$
k=\frac{1}{50} \ln \left(\frac{4}{5}\right) .
$$

Putting this value for k into $\left(^{*}\right)$ we have

$$
A=1000 \exp \left(\frac{t^{2}}{100} \ln \left(\frac{4}{5}\right)\right)=1000 \exp \ln \left(\left(\frac{4}{5}\right)^{t^{2} / 100}\right)
$$

so

$$
A=1000\left(\frac{4}{5}\right)^{t^{2} / 100}
$$

4. A 1000-gallon tank, initially full of water, develops a leak at the bottom. Given that 500 gallons of water leaks out in the first 30 minutes, find the amount of water, $A(t)$ in the tank t minutes after the leak develops if water drains off at a rate proportional to the product of the time elapsed and the square root of the amount of water present.

Solution.

$$
\begin{aligned}
& A^{\prime}=k t \sqrt{A} \\
& A(0)=1000 \\
& A(30)=500
\end{aligned}
$$

Solving the differential equation, we have

$$
\begin{gathered}
\frac{A^{\prime}}{\sqrt{A}}=k t \\
\int A^{-1 / 2} d A=\int k t d t+C \\
2 A^{1 / 2}=\frac{1}{2} k t^{2}+C
\end{gathered}
$$

$A(0)=1000$ so

$$
2 \cdot \sqrt{1000}=0+C \text { so } C=20 \sqrt{10}
$$

Continuing,

$$
\begin{equation*}
2 A^{1 / 2}=\frac{1}{2} k t^{2}+20 \sqrt{10} . \tag{*}
\end{equation*}
$$

$A(30)=500 \mathrm{~s} 0$

$$
\begin{aligned}
2 \sqrt{500} & =\frac{1}{2} k \cdot 900+20 \sqrt{10} \\
k & =\frac{2(\sqrt{5}-\sqrt{10)}}{45}
\end{aligned}
$$

From (*),

$$
A^{1 / 2}=\frac{1}{4} k t^{2}+10 \sqrt{10} .
$$

So

$$
A=\left(\frac{\sqrt{5}-\sqrt{10}}{90} t^{2}+10 \sqrt{10}\right)^{2}
$$

5. A 1000-gallon tank, initially full of water, develops a leak at the bottom. Given that 300 gallons of water leaks out in the first 20 minutes, find the amount of water, $A(t)$ in the tank t minutes after the leak develops if water drains off at a rate proportional to the square of the amount of water in the tank.

Solution.

$$
\begin{gathered}
A^{\prime}=k A^{2} \\
A(0)=1000 \\
A(20)=700
\end{gathered}
$$

Solving the differential equation we have

$$
\begin{gathered}
A^{-2} A^{\prime}=k \\
-A^{-1}=k t+C \\
A=\frac{1}{C-k t}
\end{gathered}
$$

Using $A(0)=1000$ this becomes

$$
1000=\frac{1}{C} \text { so } A=\frac{1000}{1-1000 k t}
$$

Using $A(20)=700$ we have

$$
700=\frac{1000}{1-20000 k} \text { so } k=-\frac{3}{140000}
$$

and

$$
A=\frac{1000}{1-1000\left(-\frac{3}{140000}\right) t}
$$

So

$$
A=\frac{140000}{3 t+140} .
$$

6. Let $P(t)$ be be the number (in millions) of people who become aware of the product by time t.

$$
\begin{gathered}
P^{\prime}=k t(2-P) \\
P(0)=0 \\
P(10)=0.4
\end{gathered}
$$

