Section 3.1

Section 3.1 Introduction to Second Order Linear Differential Equations

Definition. Saying that *L* is a **second order linear differential operator** over an interval *J* means that there is a pair of continuous functions (p,q) defined on *J* such that

$$Ly = y'' + py' + qy$$

whenever y is a twice differential function defined on J. We will be concerned with the **homogeneous** differential equation

$$Ly = 0 \text{ or } y'' + p(x)y' + q(x)y = 0, \qquad 1$$

the nonhomogeneous differential equation

$$Ly = f \text{ or } y'' + p(x)y' + q(x)y = f(x), \qquad 2$$

and the initial value problems consisting of (1) or (2) and

$$y(x_0) = k_0$$
 and $y'(x_0) = k_1$

where x_0 is a number in *J* and each of k_0 and k_2 is a number.

The equations (1) and (2) are said to be linear because L has the following properties.

Theorem. L[cy] = cLy and $L[y_1 + y_2] = Ly_1 + Ly_2$.

As a consequence of these properties, we have the following.

Theorem. If *L* is a second order linear differential operator over an interval *J*, each of y_1 and y_2 is a twice differentiable function with domain *J*, and each of c_1 and c_2 is a number, then

$$L(c_1y_1 + c_2y_2) = c_1Ly_1 + c_2Ly_2.$$

Corollary. If *L* is a second order linear differential operator over an interval *J*, *m* is a positive integer, each of $y_1, y_2, ..., y_m$ is a twice differentiable function with domain *J*, and each of $c_1, c_2, ..., c_m$ is a number, then

$$L(c_1y_1 + c_2y_2 \cdots + c_ny_n) = c_1Ly_1 + c_2Ly_2 + \cdots + c_nLy_n.$$

We will accept the following uniqueness and existence theorem and use it as a basis for developing a description of all solutions to the homogeneous equation in the next section. An indication of proof will be given in a later chapter

Theorem. Suppose that *L* is a second order linear differential operator over the interval *J*. If x_0 is a number in *J* and each of k_0 and k_1 is a number, there is a unique function *y* defined on *J* such that

$$Ly = 0 \text{ on } J,$$

 $y(x_0) = k_0, \text{ and}$
 $y'(x_0) = k_1.$

Theorem. Suppose that *L* is a second order linear differential operator over the interval *J*. If x_0 is a number in *J*

$$Ly = 0 \text{ on } J,$$

 $y(x_0) = 0, \text{ and}$
 $y'(x_0) = 0$

then

$$y(x) = 0$$
 for all x in J.

Proof. The zero function has these properties, and there is only one function with these properties, so *y* must be the zero function.

Theorem. Suppose that L is a second order linear differential operator that is regular over the interval J. If

$$Lu = 0 \text{ on } J,$$

 $Lv = 0 \text{ on } J,$
 $u(x_0) = v(x_0), \text{ and}$
 $u'(x_0) = v'(x_0)$

for some x_0 in *J*, then

$$u(x) = v(x)$$
 for all x in J.

Proof. There is only one solution to the homogeneous equation satisfying a given list of initial conditions.