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Section 3.2
Second Order Linear Homogeneous Differential Equations

In this section L will be a second order linear differential operator over an interval J,

Ly  y   pxy   qxy

where each of p and q is continuous on J.

We will be concerned with the homogeneous equation

Ly  0

or

y   pxy   qxy  0.

Our main goal is to develop a description of all solutions to this equation.

Theorem. Every linear combination of solutions to the homogeneous equation is also a
solution.

If

Lyk  0 for k  1,2, ,m,

each of c1, c2,  ,cm is a number and

u  c1y1c2y2   cmym,

then

Lu  0.

This is true because

Lc1y1  c2y2  cnyn  c1Ly1  c2Ly2   cnLyn

 c1  0  c2  0   cn  0

 0.

Definition. Suppose that each of y1 and y2 is a function with domain J. Saying that y1

and y2 are linearly independent over J means that if each of c1 and c2 is a number and

c1y1x  c2yx  0 for all x in J

then



c1  c2  0.

Saying that y1 and y2 are linearly dependent means that they are not linearly independent.

Note. y1 and y2 are linearly dependent if and only if there is a pair of numbers c1 and c2

with at least one of c1 and c2 not zero such that

c1y1x  c2yx  0 for all x in J.

Theorem. y1 and y2 are linearly dependent if and only if there is a number c such that

y1x  cy2x for all x in J

or there is a number d such that

y2x  dy1x for all x in J.

Example. Let y1x  x and y2x  x2 for all x. It is the case that y1 and y2 are linearly
independent.

To verify this, suppose that

c1y1x  c2y2x  0 for all x.

Then

c1x  c2x2  0 for all x.

Letting x  1 then letting x  1 we have

c1  c2  0 and  c1  c2  0.

From these two equations it follows that c1  0 and c2  0. So y1 and y2 are linearly
independent.

Example. Let y1x  sin2x and y2x  sinxcosx. From a trig identity, we know that
sin2x  2sinxcosx.Thus

y1x  2y2x for all x.

Since y1 is a constant multiple of y2 it follows that y1 and y2 are linearly dependent.

Definition. When y1,y2 is a pair of functions each defined on an interval J, their
Wronski matrix is given by

MWy1,y2 
y1 y2

y1
 y2





and their Wronskian is given by

Wy1,y2  det
y1 y2

y1
 y2


 y1y2

  y2y1


We need some facts from elementary linear algebra.
Theorem. If each of a, b, c, d, e, and f is a number and

det
a b

c d
 ad  bc  0

there is a unique pair of numbers x and y such that

ax  by  e and

cx  dy  f.

moreover

x 
ed  bf
ad  bc

and y 
af  ec
ad  bc

.

Theorem. If each of a, b, c, and d is a number and

det
a b

c d
 ad  bc  0

the unique pair of numbers x and y such that

ax  by  0 and

cx  dy  0

is x,y where

x  0 and y  0.

Theorem. If each of a, b, c, and d is a number and

det
a b

c d
 ad  bc  0

there are numbers x and y at least one of which is not zero such that

ax  by  0 and

cx  dy  0.

Theorem. (First Wronskian Test) If Wy1,y2x0  0 for some number x0 in the interval
J where y1 and y2 are defined, then y1 and y2 are linearly independent over J.



Proof. Suppose that

c1y1x  c2y2x  0

for all x in J. Then

c1y1
 x  c2y2

 x  0

for all x in J. When x  x0 we have

y1x0c1  y2x0c2  0 and

y1
 x0c1  y2

 x0c2  0 .

Since

Wy1,y2x0  det
y1x0 y2x0

y1
 x0 y2

 x0
 y1x0y2

 x0  y2x0y1
 x0  0

it follows that c1  0 and c2  0.

Note. Without an additional hypothesis, the first Wronskian test does not detect linear
dependence.

Example If y1x  x2 for all x and y2x  x2 for x  0 and y2x  x2 for x  0, then
Wy1,y2x  0 for all x. However, y1 and y2 are linearly independent.

Theorem (Second Wronskin Test) If Ly1  0 and Ly2  0 on an interval J and
Wy1,y2x0  0 for some number x0 in J, then y1 and y2 are linearly dependent over J.

Proof. Let c1 and c2 be a pair of numbers at least one of which is not zero such that

y1x0c1  y2x0c2  0 and

y1
 x0c1  y2

 x0c2  0 .

    1

    2

This can be done because

Wy1,y2x0  det
y1x0 y2x0

y1
 x0 y2

 x0
 y1x0y2

 x0  y2x0y1
 x0  0.

Let

ux  c1yx  c2y2x for all x in J.

Then u is a linear combination of solutions to the homogeneous equation Ly  0, so u is
also a solution. From (1) and (2), it follows that

ux0  0 and ux0  0

so



ux  0 for all x in J.

We now have

c1yx  c2y2x  0 for all x in J

and at least one of c1 and c2 is not zero. This shows that y1 and y2 are linearly dependent.

Definition. Saying that y1,y2 or y1,y2 is a fundamental pair or fundamental set for
L or for Ly  0 or for

y   py   qy  0

on J means that

Ly1  0 or y1
  py1

  qy1  0,

Ly2  0 or y2
  py2

  qy2  0,

and

y1 and y2 are linearly independent.

Theorem. If y1,y2 is a fundamental set or fundamental pair for Ly  0 on J, then

Ly  0 or y   py   qy  0 on J

if and only if

y  c1y1  c2y2

for some pair of numbers c1and c2.
Proof. If y  c1y1  c2y2 then Ly  0 because every linear combination of solutions to the

homogeneous equation is a solution.

If Ly  0, let x0 be a number in J and let c1 and c2 be numbers such that

y1x0c1  y2x0c2  yx0 and

y1
 x0c1  y2

 x0c2  y x0 .

    1

    2

This can be done because by the second Wronskian test,
Wy1,y2x0  y1x0y2

 x0  y2x0y1
 x0  0; otherwise y1 and y2 would be linearly

dependent. Let

ux  c1y1x  c2y2x for all x in J.

From (1) and (2) it follows that ux0  yx0 and ux0  y x0. Since Ly  0 and Lu  0 it
follows that

yx  ux for all x in J.

Thus



yx  c1y1x  c2y2x for all x in J.

Example. Let

y1x  e2x and y2x  e3x

for all x. It is easy to verify that each of y1 and y2 is a solution to

y   y   6y  0.

Wy1,y2x  y1xy2
 x  y2xy1

 x

 e2x3e3x  e3x2e2x

 5ex.

Thus Wy1,y20  5e0  5  0 implying that y1 and y2 are linearly independent. Thus y is a
solution to the differential equation if and only if

yx  c1e2x  c2e3x

for some pair of numbers c1 and c2 and all x.

A Formula for the Wronskian. If Ly1  0 and Ly2  0 on an interval J,

Ly  y   pxy   qxy,

w  Wy1,y2,

and x0 is a number in J then

w  pxw  0

and

wx  wx0e


x0

x
ptdt

for all t in J.

A Formula for a Second Solution. Let L be as above. If Ly1  0 on an interval J and
y1x  0 for all x in J, a second solution y2 to Ly  0 on J such that y1,y2 is a fundamental
pair is given by

y2x  y1x  e
 pxdx
y1x2

dx.

Leave off the C in each integration. The formula in Problem 15 for Section 3.2 is not
correct. Both anti-derivatives are with respect to x.

Example. It is each to verify that y1 given by y1x  ex is a solution to



y   2y   y  0.

A second solution y2 such that y1,y2 is a fundamental pair is given by

y2x  ex  e
2dx
ex2

dx

 ex  e2x

e2x dx

 ex  1dx

 xex.

Additional Examples: See Section 3.2 of the text and the notes presented on the board
in class.

Suggested Problems. Do the odd numbered problems for Section 3.2. The answers
are posted on Dr. Walker’s web site.


