Section 3.2

Section 3.2
 Second Order Linear Homogeneous Differential Equations

In this section L will be a second order linear differential operator over an interval J,

$$
L y=y^{\prime \prime}+p(x) y^{\prime}+q(x) y
$$

where each of p and q is continuous on J.

We will be concerned with the homogeneous equation

$$
L y=0
$$

or

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 .
$$

Our main goal is to develop a description of all solutions to this equation.

Theorem. Every linear combination of solutions to the homogeneous equation is also a solution.

If

$$
L y_{k}=0 \text { for } k=1,2, \ldots, m,
$$

each of $c_{1}, c_{2}, \ldots, c_{m}$ is a number and

$$
u=c_{1} y_{1+} c_{2} y_{2}+\cdots+c_{m} y_{m},
$$

then

$$
L u=0 .
$$

This is true because

$$
\begin{aligned}
L\left(c_{1} y_{1}+c_{2} y_{2} \cdots+c_{n} y_{n}\right) & =c_{1} L y_{1}+c_{2} L y_{2}+\cdots+c_{n} L y_{n} \\
& =c_{1} \cdot 0+c_{2} \cdot 0+\cdots+c_{n} \cdot 0 \\
& =0 .
\end{aligned}
$$

Definition. Suppose that each of y_{1} and y_{2} is a function with domain J. Saying that y_{1} and y_{2} are linearly independent over J means that if each of c_{1} and c_{2} is a number and

$$
c_{1} y_{1}(x)+c_{2} y(x)=0 \text { for all } x \text { in } J
$$

then

$$
c_{1}=c_{2}=0 .
$$

Saying that y_{1} and y_{2} are linearly dependent means that they are not linearly independent.

Note. y_{1} and y_{2} are linearly dependent if and only if there is a pair of numbers c_{1} and c_{2} with at least one of c_{1} and c_{2} not zero such that

$$
c_{1} y_{1}(x)+c_{2} y(x)=0 \text { for all } x \text { in } J .
$$

Theorem. y_{1} and y_{2} are linearly dependent if and only if there is a number c such that

$$
y_{1}(x)=c y_{2}(x) \text { for all } x \text { in } J
$$

or there is a number d such that

$$
y_{2}(x)=d y_{1}(x) \text { for all } x \text { in } J .
$$

Example. Let $y_{1}(x)=x$ and $y_{2}(x)=x^{2}$ for all x. It is the case that y_{1} and y_{2} are linearly independent.

To verify this, suppose that

$$
c_{1} y_{1}(x)+c_{2} y_{2}(x)=0 \text { for all } x .
$$

Then

$$
c_{1} x+c_{2} x^{2}=0 \text { for all } x .
$$

Letting $x=1$ then letting $x=-1$ we have

$$
c_{1}+c_{2}=0 \text { and }-c_{1}+c_{2}=0
$$

From these two equations it follows that $c_{1}=0$ and $c_{2}=0$. So y_{1} and y_{2} are linearly independent.

Example. Let $y_{1}(x)=\sin 2 x$ and $y_{2}(x)=\sin x \cos x$. From a trig identity, we know that $\sin 2 x=2 \sin x \cos x$. Thus

$$
y_{1}(x)=2 y_{2}(x) \text { for all } x .
$$

Since y_{1} is a constant multiple of y_{2} it follows that y_{1} and y_{2} are linearly dependent.

Definition. When $\left(y_{1}, y_{2}\right)$ is a pair of functions each defined on an interval J, their Wronski matrix is given by

$$
M_{W}\left[y_{1}, y_{2}\right]=\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)
$$

and their Wronskian is given by

$$
W\left[y_{1}, y_{2}\right]=\operatorname{det}\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

We need some facts from elementary linear algebra.
Theorem. If each of a, b, c, d, e, and f is a number and

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c \neq 0
$$

there is a unique pair of numbers x and y such that

$$
\begin{aligned}
a x+b y & =e \text { and } \\
c x+d y & =f .
\end{aligned}
$$

moreover

$$
x=\frac{e d-b f}{a d-b c} \text { and } y=\frac{a f-e c}{a d-b c} .
$$

Theorem. If each of a, b, c, and d is a number and

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c \neq 0
$$

the unique pair of numbers x and y such that

$$
\begin{aligned}
& a x+b y=0 \text { and } \\
& c x+d y=0
\end{aligned}
$$

is (x, y) where

$$
x=0 \text { and } y=0 .
$$

Theorem. If each of a, b, c, and d is a number and

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c=0
$$

there are numbers x and y at least one of which is not zero such that

$$
\begin{aligned}
& a x+b y=0 \text { and } \\
& c x+d y=0 .
\end{aligned}
$$

Theorem. (First Wronskian Test) If $W\left[y_{1}, y_{2}\right]\left(x_{0}\right) \neq 0$ for some number x_{0} in the interval J where y_{1} and y_{2} are defined, then y_{1} and y_{2} are linearly independent over J.

Proof. Suppose that

$$
c_{1} y_{1}(x)+c_{2} y_{2}(x)=0
$$

for all x in J. Then

$$
c_{1} y_{1}^{\prime}(x)+c_{2} y_{2}^{\prime}(x)=0
$$

for all x in J. When $x=x_{0}$ we have

$$
\begin{aligned}
& y_{1}\left(x_{0}\right) c_{1}+y_{2}\left(x_{0}\right) c_{2}=0 \text { and } \\
& y_{1}^{\prime}\left(x_{0}\right) c_{1}+y_{2}^{\prime}\left(x_{0}\right) c_{2}=0 .
\end{aligned}
$$

Since

$$
W\left[y_{1}, y_{2}\right]\left(x_{0}\right)=\operatorname{det}\left(\begin{array}{ll}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) \\
y_{1}^{\prime}\left(x_{0}\right) & y_{2}^{\prime}\left(x_{0}\right)
\end{array}\right)=y_{1}\left(x_{0}\right) y_{2}^{\prime}\left(x_{0}\right)-y_{2}\left(x_{0}\right) y_{1}^{\prime}\left(x_{0}\right) \neq 0
$$

it follows that $c_{1}=0$ and $c_{2}=0$.

Note. Without an additional hypothesis, the first Wronskian test does not detect linear dependence.

Example If $y_{1}(x)=x^{2}$ for all x and $y_{2}(x)=x^{2}$ for $x \geq 0$ and $y_{2}(x)=-x^{2}$ for $x<0$, then $W\left[y_{1}, y_{2}\right](x)=0$ for all x. However, y_{1} and y_{2} are linearly independent.

Theorem (Second Wronskin Test) If $L y_{1}=0$ and $L y_{2}=0$ on an interval J and $W\left[y_{1}, y_{2}\right]\left(x_{0}\right)=0$ for some number x_{0} in J, then y_{1} and y_{2} are linearly dependent over J.

Proof. Let c_{1} and c_{2} be a pair of numbers at least one of which is not zero such that

$$
\begin{align*}
& y_{1}\left(x_{0}\right) c_{1}+y_{2}\left(x_{0}\right) c_{2}=0 \text { and } \tag{1}\\
& y_{1}^{\prime}\left(x_{0}\right) c_{1}+y_{2}^{\prime}\left(x_{0}\right) c_{2}=0 . \tag{2}
\end{align*}
$$

This can be done because

$$
W\left[y_{1}, y_{2}\right]\left(x_{0}\right)=\operatorname{det}\left(\begin{array}{ll}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) \\
y_{1}^{\prime}\left(x_{0}\right) & y_{2}^{\prime}\left(x_{0}\right)
\end{array}\right)=y_{1}\left(x_{0}\right) y_{2}^{\prime}\left(x_{0}\right)-y_{2}\left(x_{0}\right) y_{1}^{\prime}\left(x_{0}\right)=0 .
$$

Let

$$
u(x)=c_{1} y(x)+c_{2} y_{2}(x) \text { for all } x \text { in } J .
$$

Then u is a linear combination of solutions to the homogeneous equation $L y=0$, so u is also a solution. From (1) and (2), it follows that

$$
u\left(x_{0}\right)=0 \text { and } u^{\prime}\left(x_{0}\right)=0
$$

so

$$
u(x)=0 \text { for all } x \text { in } J .
$$

We now have

$$
c_{1} y(x)+c_{2} y_{2}(x)=0 \text { for all } x \text { in } J
$$

and at least one of c_{1} and c_{2} is not zero. This shows that y_{1} and y_{2} are linearly dependent.

Definition. Saying that $\left(y_{1}, y_{2}\right)$ or $\left\{y_{1}, y_{2}\right\}$ is a fundamental pair or fundamental set for L or for $L y=0$ or for

$$
y^{\prime \prime}+p y^{\prime}+q y=0
$$

on J means that

$$
\begin{aligned}
& L y_{1}=0 \text { or } y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}=0 \\
& L y_{2}=0 \text { or } y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}=0
\end{aligned}
$$

and
y_{1} and y_{2} are linearly independent.

Theorem. If $\left\{y_{1}, y_{2}\right\}$ is a fundamental set or fundamental pair for $L y=0$ on J, then

$$
L y=0 \text { or } y^{\prime \prime}+p y^{\prime}+q y=0 \text { on } J
$$

if and only if

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

for some pair of numbers c_{1} and c_{2}.
Proof. If $y=c_{1} y_{1}+c_{2} y_{2}$ then $L y=0$ because every linear combination of solutions to the homogeneous equation is a solution.

If $L y=0$, let x_{0} be a number in J and let c_{1} and c_{2} be numbers such that

$$
\begin{align*}
& y_{1}\left(x_{0}\right) c_{1}+y_{2}\left(x_{0}\right) c_{2}=y\left(x_{0}\right) \text { and } \tag{1}\\
& y_{1}^{\prime}\left(x_{0}\right) c_{1}+y_{2}^{\prime}\left(x_{0}\right) c_{2}=y^{\prime}\left(x_{0}\right) . \tag{2}
\end{align*}
$$

This can be done because by the second Wronskian test, $W\left[y_{1}, y_{2}\right]\left(x_{0}\right)=y_{1}\left(x_{0}\right) y_{2}^{\prime}\left(x_{0}\right)-y_{2}\left(x_{0}\right) y_{1}^{\prime}\left(x_{0}\right) \neq 0$; otherwise y_{1} and y_{2} would be linearly dependent. Let

$$
u(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \text { for all } x \text { in } J .
$$

From (1) and (2) it follows that $u\left(x_{0}\right)=y\left(x_{0}\right)$ and $u^{\prime}\left(x_{0}\right)=y^{\prime}\left(x_{0}\right)$. Since $L y=0$ and $L u=0$ it follows that

$$
y(x)=u(x) \text { for all } x \text { in } J .
$$

Thus

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \text { for all } x \text { in } J .
$$

Example. Let

$$
y_{1}(x)=e^{-2 x} \text { and } y_{2}(x)=e^{3 x}
$$

for all x. It is easy to verify that each of y_{1} and y_{2} is a solution to

$$
\begin{aligned}
& y^{\prime \prime}-y^{\prime}-6 y=0 . \\
& W\left[y_{1}, y_{2}\right](x)=y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x) \\
&=e^{-2 x}(3) e^{3 x}-e^{3 x}(-2) e^{-2 x} \\
&=5 e^{x} .
\end{aligned}
$$

Thus $W\left[y_{1}, y_{2}\right](0)=5 e^{0}=5 \neq 0$ implying that y_{1} and y_{2} are linearly independent. Thus y is a solution to the differential equation if and only if

$$
y(x)=c_{1} e^{-2 x}+c_{2} e^{3 x}
$$

for some pair of numbers c_{1} and c_{2} and all x.

A Formula for the Wronskian. If $L y_{1}=0$ and $L y_{2}=0$ on an interval J,

$$
\begin{gathered}
L y=y^{\prime \prime}+p(x) y^{\prime}+q(x) y, \\
w=W\left[y_{1}, y_{2}\right],
\end{gathered}
$$

and x_{0} is a number in J then

$$
w^{\prime}+p(x) w=0
$$

and

$$
w(x)=w\left(x_{0}\right) e^{-\int_{x_{0}}^{x} p(t) d t}
$$

for all t in J.

A Formula for a Second Solution. Let L be as above. If $L y_{1}=0$ on an interval J and $y_{1}(x) \neq 0$ for all x in J, a second solution y_{2} to $L y=0$ on J such that $\left(y_{1}, y_{2}\right)$ is a fundamental pair is given by

$$
y_{2}(x)=y_{1}(x) \int \frac{e^{-\int p(x) d x}}{y_{1}(x)^{2}} d x
$$

Leave off the $+C$ in each integration. The formula in Problem 15 for Section 3.2 is not correct. Both anti-derivatives are with respect to x.

Example. It is each to verify that y_{1} given by $y_{1}(x)=e^{x}$ is a solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

A second solution y_{2} such that $\left(y_{1}, y_{2}\right)$ is a fundamental pair is given by

$$
\begin{aligned}
y_{2}(x) & =e^{x} \int \frac{e^{-\int(-2) d x}}{\left(e^{x}\right)^{2}} d x \\
& =e^{x} \int \frac{e^{2 x}}{e^{2 x} d x} \\
& =e^{x} \int 1 d x \\
& =x e^{x} .
\end{aligned}
$$

Additional Examples: See Section 3.2 of the text and the notes presented on the board in class.

Suggested Problems. Do the odd numbered problems for Section 3.2. The answers are posted on Dr. Walker's web site.

