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Section 3.4
Nonhomogeneous Second Order Linear Differential Equations

Part 1

In this section and the next, we will be concerned with finding the solutions to the
nonhomogeneous equation

y   pxy   qxy  fx     N

on an interval J when each of p, q, and f is a continuous function with domain J. In order to
solve (N) we will first need to solve the related homogeneous equation

y   pxy   qxy  0     H

which is sometimes called the reduced equation. In connection with (N) and (H) we define
the linear differential operator L by

Ly  y   pxy   qxy

whenever y is a twice differentiable function with domain J.

Recall that

Lc1y1  c2y2  c1Ly1  c2Ly2.

Consequently,

Ly1  y2  Ly1  Ly2, Ly1  y2  Ly1  Ly2, and Lcy  cLy.

Also, if

Ly1  f and Ly2  f then Ly1  y2  f  f  0.

The difference of two solutions to (N) is a solution to (H).

y   pxy   qxy  fx     N

y   pxy   qxy  0     H

In order to find all solutions to the nonhomogeneous equation (N) we need one solution
of (N) (called a particular solution) and all solutions of the corresponding homogeneous or
reduced equation (H).

Theorem. Suppose that

Lz  f or z  pxz  qxz  fx on J.



(The function z is called a particular solution to the nonhomogeneous equation (N), and
the following is a description of all solutions to (N).) It follows that

Ly  f which means z  pxz  qxz  fx on J if and only if

y  u  z for some u such that

Lu  0 which means u  pxu  qxu  0.

Proof. If Ly  f, let u  y  z. Then y  u  z and Lu  Ly  z  Ly  Lz  f  f  0 on J.

If y  u  z and Lu  0 on J, then Ly  Lu  z  Lu  Lz  0  f  f on J.

If y1,y2 is a fundamental pair or set for (H), the u in the last theorem can be replaced
with

c1y1  c2y2.

Theorem. Suppose that y1,y2 is a fundamental pair or set for L, and

Lz  f on J.

It follows that

Ly  f on J if and only if

y  c1y1  c2y2  z for some pair of numbers c1 and c2.

While the solutions to (H) are given by

y  c1y1  c2y2

when y1,y2 is a fundamental pair, we will see that a particular solution to (N) is of the form

z  u  y1  v  y2

where each of u and v is a function. Hence the name, Variation of Parameters.

The following theorem gives a formula for a particular solution to the nonhomogeneous
equation.

Theorem. Suppose that y1,y2 is a fundamental set for(H). Let W be the Wronskian of
y1,y2 and let

zx  y1x  y2xfx
Wx

dx  y2x  y1xfx
Wx

dx     1

or



zx  y2x  y1xfx
Wx

dx  y1x  y2xfx
Wx

dx     2

It follows that z is a particular solution to (N).

z  pxz  qxz  fx on J. .

Note. Leave of the "C" when finding the anti-derivatives. The form (1) is the way the
formula is given in the text. See page 94. The equivalent form (2) is easier to remember and
we will use it.

Proof.

z  y2  y1f
W

dx  y1  y2f
W

dx

z  y2
  y1f

W
dx  y2

y1f
W

 y1
  y2f

W
dx  y1

y2f
W

z  y2
  y1f

W
dx  y1

  y2f
W

dx

z  y2
  y1f

W
dx  y2

 y1f
W

 y1
  y2f

W
dx  y1

 y2f
W

z  y2
  y1f

W
dx  y1

  y2f
W

dx 
y1y2

  y2y1
 f

W

z  y2
  y1f

W
dx  y1

  y2f
W

dx  f

z  y2  y1f
W

dx  y1  y2f
W

dx

z  y2
  y1f

W
dx  y1

  y2f
W

dx

z  y2
  y1f

W
dx  y1

  y2f
W

dx  f

Lz  z  pz  qz

 y2
  y1f

W
dx  y1

  y2f
W

dx  f

 py2
  y1f

W
dx  y1

  y2f
W

dx

 qy2  y1f
W

dx  y1  y2f
W

dx



Lz  z  pz  qz

 y2
  y1f

W
dx  y1

  y2f
W

dx  f

 py2
  y1f

W
dx  y1

  y2f
W

dx

 qy2  y1f
W

dx  y1  y2f
W

dx

Lz  y2
  py2

  qy2  y1f
W

dx

 y1
  py1

  qy1  y2f
W

dx

 f

Lz  y2
  py2

  qy2  y1f
W

dx

 y1
  py1

  qy1  y2f
W

dx

 f

Lz  Ly2  y1f
W

dx  Ly1  y2f
W

dx  f

Lz  0   y1f
W

dx  0   y2f
aw dx  f

Lz  f

Note. If you want to derive the formula, start with

z  uy1  vy2.

Assume that

z  uy1
  vy2

 .

This is equivalent to assuming that

y1u  y2v   0.     1

z  uy1
  uy1

  vy2
  v y2

 .

Using these expressions for z, z, ztogether with the fact that Ly1  0 and Ly2  0, we get
Lz  y1

 u  y2
 v . So since we want Lz  f, we have

y1
 u  y2

 v   f     2

Solve

y1u  y2v   0.     1



and

y1
 u  y2

 v   f     2

for u and v . Multiply (1) by y2
 and (2) by y2. Subtract to get

u 
y2f
W

.

Integrate to get

u   y2f
W

dx.

Solve

y1u  y2v   0.     1

and

y1
 u  y2

 v   f     2

for u and v . Multiply (1) by y1
 and (2) by y1. Subtract to get

v  
y1f
W

.

Integrate to get

v   y1f
W

dx.

Since

z  uy1  vy2  y1u  y2v

we have

zx  y1x  y2xfx
Wx

dx  y2x  y1xfx
Wx

dx

or

zx  y2x  y1xfx
Wx

dx  y1x  y2xfx
Wx

dx.

Example. Find all functions y such that

y   y  tanx for 0  x  
2

Solution. We are looking for all y such that

Ly  f on J

where Ly  y   y, fx  tanx, and J consists of all x where 0  x  
2 . The reduced

equation is



y   y  0

and fundamental set for L is y1,y2 where y1x  cosx and y2x  sinx. The Wronskian W
is given by

Wx  det
cosx sinx

 sinx cosx
 cos2x  sin2x  1.

A particular solution z satisfying Lz  f is given by

zx  y2x  y1xfx

Wx
dx  y1x  y2xfx

Wx
dx

 sinx  cosx tanx
1

dx  cosx  sinx tanx
1

dx

 sinx  sinxdx  cosx  sin2x
cosx dx

 sinx  sinxdx  cosx  1  cos2x
cosx dx

 sinx  sinxdx  cosx secx  cosxdx

 sinxcosx  cosxlnsecx  tanx  sinx

 cosx lnsecx  tanx.

zx  cosx lnsecx  tanx.

Thus y is a solution to the given differential equation and only if

yx  c1 cosx  c2 sinx  cosx lnsecx  tanx.

for some pair of numbers c1,c2 and all x with 0  x  
2 .

Note. Sometimes when applying this method, the solution z will turn out to be of the
form

z  z1  z2

where

Lz2  0 on J.

In this case discard z2and use z1 as the particular solution.
This works because

f  Lz  Lz1  z2  Lz1  Lz2  0  Lz1  Lz1.

Example. Find all functions y such that



y   3y   2y  1
1  ex for all x in .

Solution The reduced equation is

y   3y   2y  0.

The characteristic polynomial is given by

r  r2  3r  2  r  1r  2

so a fundamental pair is y1,y2 where y1x  ex and y2x  e2x. The Wronskian W is given
by

Wx  det
ex e2x

ex 2e2x
 e3x.

A particular solution z satisfying the given nonhomogeneous equation is given by

zx  y2x  y1xfx

Wx
dx  y1x  y2xfx

Wx
dx

 e2x  ex 1
1ex

e3x dx  ex  e2x 1
1ex

e3x dx

 e2x  ex

1  ex e
xdx  ex  ex

1  ex dx.

Since

x
1  x

 1  1
1  x

the first integrand can be re-written so that

zx  e2x  1  1
1  ex exdx  ex  ex

1  ex dx

 ex  e2x ln1  ex  ex ln1  ex

 e2x ln1  ex  ex ln1  ex  ex.

Note that

z  z1  z2

where

z1x  e2x ln1  ex  ex ln1  ex

and

z2x  ex.

Since z2 is a linear combination of y1 and y2 ( z2  1y1  0  y2),

Lz2  0,



and consequently,

Lz1  f.

Thus

Ly  f on

if and only if

yx  c1ex  c2e2x  e2x ln1  ex  ex ln1  ex

for some pair of numbers c1,c2 and all real numbers x.

Additional Examples: See Section 3.4 of the text and the notes presented on the board
in class.

Suggested Problems. Do the odd numbered problems for Section 3.4. The answers
are posted on Dr. Walker’s web site.


