
Section 3.6

Section 3.6
Vibrating Mechanical Systems

Suppose that a weight of mass m is suspended by a spring with spring constant k, and
the weight moves only in the vertical direction. Let ut be the displacement of the weight
from the suspension point at time t. Note that ut is the velocity and ut is the
acceleration of the weight at time t. Take the downward direction to be positive, and let the
magnitude of acceleration due to gravity be g. Let u0 be the position of the weight when the
spring is unstretched and uncompressed. Let u1 be the position of the weight when the
system is in equilibrium. Using Newton’s second law and Hooke’s law we have

mu  mg  ku  u0

mu  mg  ku  u0

Let y be the displacement of the weight from the equilibrium position.

y  u  u1

Note that y   u and y   u. Since

mg  ku1  u0

for equilibrium, we have

my   ku1  u0  ku  u0  ku  u1  ky.

Thus

my   ky.

If there is damping proportional to velocity, the differential equation becomes

my   ky  cy 

where c is a positive constant. There might also be an external force applied. For example,
the weight might be ferromagnetic and move up and down inside a solenoid to which an
alternating EMF is applied. In this case the differential equation becomes

my   ky  cy   Gt.

Undamped Free Vibrations
When there is no damping and no applied force the differential equation

my   ky

will be written



y   2y  0     1

where

  k
m .

In this case the weight is said to execute simple harmonic motion.

The polynomial P for

y   2y  0     1

is given by

Pr  r2  2

Its zeros are i and i so y is a solution to (1) if and only if

y  c1 cost  c2 sint     2

for some pair of numbers c1 and c2.

y   2y  0     1

y  c1 cost  c2 sint     2

It is also true that y is a solution to (1) if and only if

y  A sint  0     3

for some number A  0 and number 0 with 0  0  2.

To get the connection between

y  c1 cost  c2 sint     2

and

y  A sint  0     3

start with (3) and use the formula for the sine of a sum.

y  Asintcos0  cost sin0

 A sin0 cost  Acos0 sint

 c1 cost  c2 sint

where c1  A sin0 and c2  Acos0.

To go from (2) to (3)

y  c1 cost  c2 sint     2



y  A sint  0     3

let

A  c1
2  c2

2

and choose 0 so that

A sin0  c1 and Acos0  c2.

Assuming c2  0 this means

tan0 
A sin0

Acos0
 c1

c2

so

0  Arctan c1
c2

or 0    Arctan c1
c2

With

y  c1 cost  c2 sint     2

and

y  A sint  0     3

A is called the amplitude and 0 is called the phase constant. The period T is 2
 , the

frequency f is 1
T

 
2

, and the angular frequency is .

Damped Free Vibrations
When there is damping proportional to velocity and no applied force, the differential

equation

my   ky  cy 

will be written

y   c
m y   k

m y  0     4

The polynomial P for this equation is given by

Pr  r2  c
m r  k

m .

Its zeros are

 c
m   c

m 2  4 k
m

2


c  c2  4km
2m

and
c  c2  4km

2m
.

When c2  4km  0, we have what is known as the underdamped case. The zeros of P
are   i and   i where



  c
2m

and  
4km  c2

2m

so y is a solution to

y   c
m y   k

m y  0     4

if and only if

y  c1et cost  c2et sint     5

It is also true that y a solution to (4) if and only if

y  Aet sint  0     6

for some number A  0 and number 0 with 0  0  2. Note that since c  0, it follows
that   0. The weight continues to move up and down through the equilibrium level but with
decreasing amplitude.

When c2  4km  0, we have what is known as the critically underdamped case. P has
only one zero, r0  c

2m
, so y is a solution to

y   c
m y   k

m y  0     4

if and only if

y  c1er0t  c2ter0t     7

for some pair of numbers c1and c2. Since r0  0 it follows that

lim
t

yt  0.

When c2  4km  0, we have what is known as the overdamped case. P has two zeros,

r1 
c  c2  4km

2m
and r2 

c  c2  4km
2m

,

so y is a solution to

y   c
m y   k

m y  0     4

if and only if

y  c1er1t  c2er2t     8

for some pair of numbers c1 and c2. Since each of r1 and r2 is negative it follows that

lim
t

yt  0.

Undamped Forced Vibrations



We consider next the case where there is no damping and a sinusoidal external applied
force. We will take

Gt  F0 cost

so that

my   ky  Gt

becomes

y   2y  F0
m cost     5

where

  k
m .

The method of undetermined coefficients can be used to find a particular solution to (5).
We found all solutions to the reduced equation when we considered undamped free
vibrations.

/2 is called the applied frequency and /2 is called the natural frequency. When   , y
is a solution to

y   2y  F0
m cost     5

if and only if

y  c1 cost  c2 sint 
F0/m
2  2 cost     9

for some pair of numbers c1 and c2. In this case, it is also true that y is a solution to (5) if
and only if

y  A sint  0 
F0/m
2  2 cost     10

for some A  0 and 0 with 0  0  2. In this case the oscillations are bounded but large
in magnitude if  is close to .

When   , we have a situation known as resonance. y is a solution to

y   2y  F0
m cost     5

if and only if

y  c1 cost  c2 sint 
F0/m
2

t sint

for some pair of numbers c1 and c2. In this case, it is also true that y is a solution to (5) if
and only if



y  A sint  0 
F0/m
2

t sint     11

for some A  0 and 0 with 0  0  2.The oscillations increase in magnitude without
bound as t increases.

Damped Forced Vibrations

We consider next the case where there is damping and a sinusoidal external applied
force so that

my   ky  cy   Gt

becomes

y   cy   2y  F0
m cost     12

where

  k
m .

The method of undetermined coefficients can be used to show that a particular solution
z to (12) is given by

zt 
F0m2  2

m22  22  c22 cost 
F0c

m22  22  c22 sint

which can also be expressed by

zt  F0

m22  22  c22
cost  0.

So y is a solution to (12) if and only if

yt  ut  zt

where u is a solution to the related homogeneous or reduced equation

y   cy   2y  0.

Resonance also occurs in this case. The amplidude of the steady state solution z given
by

zt  F0

m22  22  c22
cost  0.

is at a maximum when    where it becomes



F0
c .

The maximum amplitude varies inversely with the ampunt of damping.

Each such solution u to the related homogeneous or reduced equation is called a
transient solution, and the particular solution z is called the steady state solution.

We have seen in the Damped Free Vibration case that

lim
t

yt  0

for each solution to

y   cy   2y  0,

hence the name transient solution in this case.

Additional Examples: See Section 3.6 of the text and the notes presented on the board
in class.

Suggested Problems. Do the odd numbered problems for Section 3.6. The answers
are posted on Dr. Walker’s web site.


