Section 3.7 Higher Order Linear Differential Equations | Definition . When n is a positive integer, saying that L is an | | |---|---| | over an interval J means that there is a list of continuous functions $(p_0, p_1, \dots, p_{n-1})$ | | | each defined on J such that | | | | | | | | | whenever y is an n -times differentiable function defined on J . We will be concerned with the | | | homogeneous differential equation | | | | 1 | | the nonhomogeneous differential equation | | | and normalized amore man equation | 2 | | | 2 | | and the initial value problems consisting of (1) or (2) and | | | | | | where x_0 is a number in J and each of $k_0, k_1, \ldots, k_{n-1}$ is a number. | | | where x_0 is a name of x_0 and each of $x_0, x_1, \ldots, x_{n-1}$ is a name of | | | | | | Theorem . If L is an n^{th} order linear differential operator over an interval J, each of y_1 and | | | y_2 is an n -times differentiable function with domain J , and each of c_1 and c_2 is a number, | | | then | | | | | | | | | Special cases are | | | and . | | | | | | | | | Corollary . If L is an n^{th} order linear differential operator over an interval J , m is a | | | positive integer, each of y_1, y_2, \dots, y_m is an n -times differentiable function with domain J , | | | and each of c_1, c_2, \ldots, c_m is a number, then | | | | | | | | We will accept the following uniqueness and existence theorem and use it as a basis for developing a description of all solutions to the homogeneous equation. An indication of proof will be given in a later chapter | Theorem. Suppose that L is an n^{th} order linear differential operator over the interval J . If x_0 is a number in J and each of $k_0, k_1, \ldots, k_{n-1}$ is a number, there is a unique function y defined on J such that | |--| | Theorem . Every linear combination of solutions to the homogeneous equation is also a solution. If | | each of c_1, c_2, \ldots, c_m is a number and | | then | | This is true because | | | | = | | Homogeneous Equations | | Definition . Suppose that y_k is a function with domain J for $k = 1,, m$. Saying that $(y_1,, y_m)$ is a list of functions that are linearly independent over J means that if each of $c_1,, c_m$ is a number and | | then | | шы | | Saying that $(y_1,, y_m)$ is a list of functions that are linearly dependent over J means that is a list of functions that are | **Note**. $(y_1, ..., y_m)$ is a list of functions that are **linearly dependent** over J means if and | only if there | is a list of num | bers c_1, \dots | $,c_m$ | | such that | | |---|----------------------------------|----------------------|--------------------------|------------------------------|-----------------------|--| | | | | | for all x in J . | | | | | | | | | | | | | on. When $(y_1,$ derivatives, th | | | | interval J and each | | | | $M_{\scriptscriptstyle R}$ | $y[y_1,\ldots,y_n]$ | - | | | | | and their | r Wronskian is | given by | | | | | | and thou | | $[y_1,\ldots,y_n] =$ | _ | | | | | Theorem . (First Wronskian Test) Iffor some number x_0 in the interval J , then (y_1, \ldots, y_n) a list of functions that are linearly independent over J . | | | | | | | | Theorer | n (Second Wr | | | () a list of | and | | | linearly depe | endent over J . | ne number | x_0 in J , then | (y_1,\ldots,y_n) a list of | functions that are | | | Definitio | on . Saying that | · (1/1 1/1) | Or $\{v_1, \dots, v_n\}$ | s is a | OI | | | | for $Ly = 0$ mea | | | 10 U | | | | | • | | for $k =$ | 1, <i>n</i> | | | | and | | | | | | | | | | | | | over J. | | The following theorem gives a description of all solutions to the homogeneous equation. | Theorem . If $(y_1,, y_n)$ is a fundamental list for L then | |--| | | | if and only if | | and entry in | | | | for some list of numbers | | (c_1,c_2,\ldots,c_n) | | | | | | Definition . When L is a constant coefficient operator | | | | where the associated or characteristic polynomial is the function <i>P</i> | | given by | | | | for all consular must are | | for all complex numbers r . | | | | Definition . Saying that r_1, r_2, \dots, r_l lists each zero of P exactly once and that r_i has | | multiplicity m_i for $i = 1, 2,, l$ means that | | manipholy m_i for $i=1,2,\ldots,i$ modulo that | | | | where each r_i is a number, possibly complex, $r_i \neq r_j$ when $i \neq j$ and each m_i is a positive | | integer. | | | | Theorem . When P is as above, a fundamental list for L is | | THEOLEM. WHEN I IS AS ADOVE, A MINDAMENTAL LIST OF L IS | | | | | | · | | | | | | If $x^p e^{(\alpha+\beta i)x}$ and $x^p e^{(\alpha-\beta i)x}$ occur in this list, this pair can and should be replaced with | | and | | | | Example Find a fundamental list or act then find all calcutions to | | Example . Find a fundamental list or set then find all solutions to | | | | Solution . The polynomial P is given by | | The sum of the coefficients () is zero | | | | | |---|--|--|--|--| | Long division or synthetic division shows that | | | | | | · = | | | | | | so | | | | | | P(r) = | | | | | | | | | | | | The zeros of <i>P</i> are A fundamental list or set is | | | | | | and its availation to the DE K and are if | | | | | | and y is a solution to the DE if and only if | | | | | | | | | | | | for some triple of numbers c_1 , c_2 , and c_3 . | | | | | | | | | | | | Example. Find a fundamental list or set then find all solutions to | | | | | | | | | | | | Solution . The polynomial P is given by | | | | | | P(r) = | | | | | | The zeros of A fundamental list or set is | | | | | | | | | | | | and y is a solution to the DE if and only if | | | | | | | | | | | | for some list of number c_1 , c_2 , c_3 , and c_4 . | | | | | | | | | | | | | | | | | | Nonhomogeneous Equations. | | | | | | In this part of Section 2.7, we will be concerned with finding the colutions to the | | | | | | In this part of Section 3.7, we will be concerned with finding the solutions to the nonhomogeneous equation | | | | | | N | | | | | | where | | | | | | | | | | | | on an interval J and each p_k and f is a continuous function with domain J . In order to solve | | | | | | (N) we will first need to solve the related homogeneous equation | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | **Theorem**. Suppose that $\{y_1, y_2, \dots, y_n\}$ is a fundamental list or set for L, and Lz = f on J. | It follows that | | | | | |--|--|--|--|--| Note. There | is an extension of the | Variation of Parameters formula that applies to higher | | | | order equations. | . A particular solution <code>2</code> | z satisfying $Lz = f$ is given by | | | | | | | | | | | | | | | | where (y_1, \ldots, y_n) |) is a fundamental list | for L , W is their Wronskian, and W_k is the determinant | | | | | | e k-th column of their Wronski matrix with | However, we will not need this formula for the problems in this section. | | | | | | | | | | | | Note The m | nethod of undetermine | d coefficients can be used to find a particular solution | | | | to | iction of directorining | d coefficients can be used to find a particular solution | | | | | | | | | | when | and | | | | | WIIGII | and | | | | | | | | | | **Additional Examples**: See Section 3.7 of the text and the notes presented on the board in class. **Suggested Problems**. Do the odd numbered problems for Section 3.7. The answers are posted on Dr. Walker's web site.