Section 3.7 Higher Order Linear Differential Equations

Definition . When n is a positive integer, saying that L is an	
over an interval J means that there is a list of continuous functions $(p_0, p_1, \dots, p_{n-1})$	
each defined on J such that	
whenever y is an n -times differentiable function defined on J . We will be concerned with the	
homogeneous differential equation	
	1
the nonhomogeneous differential equation	
and normalized amore man equation	2
	2
and the initial value problems consisting of (1) or (2) and	
where x_0 is a number in J and each of $k_0, k_1, \ldots, k_{n-1}$ is a number.	
where x_0 is a name of x_0 and each of $x_0, x_1, \ldots, x_{n-1}$ is a name of	
Theorem . If L is an n^{th} order linear differential operator over an interval J, each of y_1 and	
y_2 is an n -times differentiable function with domain J , and each of c_1 and c_2 is a number,	
then	
Special cases are	
and .	
Corollary . If L is an n^{th} order linear differential operator over an interval J , m is a	
positive integer, each of y_1, y_2, \dots, y_m is an n -times differentiable function with domain J ,	
and each of c_1, c_2, \ldots, c_m is a number, then	

We will accept the following uniqueness and existence theorem and use it as a basis for developing a description of all solutions to the homogeneous equation. An indication of proof will be given in a later chapter

Theorem. Suppose that L is an n^{th} order linear differential operator over the interval J . If x_0 is a number in J and each of $k_0, k_1, \ldots, k_{n-1}$ is a number, there is a unique function y defined on J such that
Theorem . Every linear combination of solutions to the homogeneous equation is also a solution. If
each of c_1, c_2, \ldots, c_m is a number and
then
This is true because
=
Homogeneous Equations
Definition . Suppose that y_k is a function with domain J for $k = 1,, m$. Saying that $(y_1,, y_m)$ is a list of functions that are linearly independent over J means that if each of $c_1,, c_m$ is a number and
then
шы
Saying that $(y_1,, y_m)$ is a list of functions that are linearly dependent over J means that is a list of functions that are

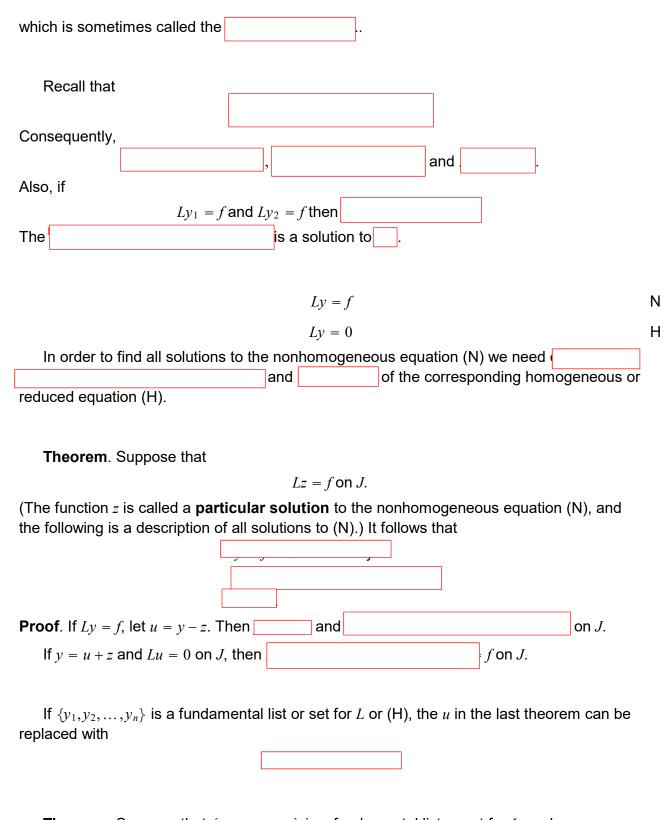
Note. $(y_1, ..., y_m)$ is a list of functions that are **linearly dependent** over J means if and

only if there	is a list of num	bers c_1, \dots	$,c_m$		such that	
				for all x in J .		
	on. When $(y_1,$ derivatives, th				interval J and each	
	$M_{\scriptscriptstyle R}$	$y[y_1,\ldots,y_n]$	-			
and their	r Wronskian is	given by				
and thou		$[y_1,\ldots,y_n] =$	_			
Theorem . (First Wronskian Test) Iffor some number x_0 in the interval J , then (y_1, \ldots, y_n) a list of functions that are linearly independent over J .						
Theorer	n (Second Wr			() a list of	and	
linearly depe	endent over J .	ne number	x_0 in J , then	(y_1,\ldots,y_n) a list of	functions that are	
Definitio	on . Saying that	· (1/1 1/1)	Or $\{v_1, \dots, v_n\}$	s is a	OI	
	for $Ly = 0$ mea			10 U		
	•		for $k =$	1, <i>n</i>		
and						
					over J.	

The following theorem gives a description of all solutions to the homogeneous equation.

Theorem . If $(y_1,, y_n)$ is a fundamental list for L then
if and only if
and entry in
for some list of numbers
(c_1,c_2,\ldots,c_n)
Definition . When L is a constant coefficient operator
where the associated or characteristic polynomial is the function <i>P</i>
given by
for all consular must are
for all complex numbers r .
Definition . Saying that r_1, r_2, \dots, r_l lists each zero of P exactly once and that r_i has
multiplicity m_i for $i = 1, 2,, l$ means that
manipholy m_i for $i=1,2,\ldots,i$ modulo that
where each r_i is a number, possibly complex, $r_i \neq r_j$ when $i \neq j$ and each m_i is a positive
integer.
Theorem . When P is as above, a fundamental list for L is
THEOLEM. WHEN I IS AS ADOVE, A MINDAMENTAL LIST OF L IS
·
If $x^p e^{(\alpha+\beta i)x}$ and $x^p e^{(\alpha-\beta i)x}$ occur in this list, this pair can and should be replaced with
and
Example Find a fundamental list or act then find all calcutions to
Example . Find a fundamental list or set then find all solutions to
Solution . The polynomial P is given by

The sum of the coefficients () is zero				
Long division or synthetic division shows that				
· =				
so				
P(r) =				
The zeros of <i>P</i> are A fundamental list or set is				
and its availation to the DE K and are if				
and y is a solution to the DE if and only if				
for some triple of numbers c_1 , c_2 , and c_3 .				
Example. Find a fundamental list or set then find all solutions to				
Solution . The polynomial P is given by				
P(r) =				
The zeros of A fundamental list or set is				
and y is a solution to the DE if and only if				
for some list of number c_1 , c_2 , c_3 , and c_4 .				
Nonhomogeneous Equations.				
In this part of Section 2.7, we will be concerned with finding the colutions to the				
In this part of Section 3.7, we will be concerned with finding the solutions to the nonhomogeneous equation				
N				
where				
on an interval J and each p_k and f is a continuous function with domain J . In order to solve				
(N) we will first need to solve the related homogeneous equation				
· · · · · · · · · · · · · · · · · · ·				



Theorem. Suppose that $\{y_1, y_2, \dots, y_n\}$ is a fundamental list or set for L, and Lz = f on J.

It follows that				
Note. There	is an extension of the	Variation of Parameters formula that applies to higher		
order equations.	. A particular solution <code>2</code>	z satisfying $Lz = f$ is given by		
where (y_1, \ldots, y_n)) is a fundamental list	for L , W is their Wronskian, and W_k is the determinant		
		e k-th column of their Wronski matrix with		
However, we will not need this formula for the problems in this section.				
Note The m	nethod of undetermine	d coefficients can be used to find a particular solution		
to	iction of directorining	d coefficients can be used to find a particular solution		
when	and			
WIIGII	and			

Additional Examples: See Section 3.7 of the text and the notes presented on the board in class.

Suggested Problems. Do the odd numbered problems for Section 3.7. The answers are posted on Dr. Walker's web site.