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Section 4.1
The Laplace Transform - Introduction

Definition. When g is integrable on a,b for each b  a, saying that
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gxdx

exists means that there is a number l such that
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In this case
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To find
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or show that it does not exist, first find
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and determine whether or not the limit as b   exists. If the limit does exist, then
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is that limit.
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Example.
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Definition. Suppose that f is a function with domain 0, which is integrable on 0,b for
each b  0 and


0


esxfxdx

exists for some number s. The Laplace transform of f is the function F given by
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for all numbers s where the integral exists.

Theorem. If r is a real number and
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for x  0, then the Laplace transform of f is F where
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for s  r.
Proof.


0

b
esxerxdx  

0

b
ersxdx 


0

b
1dx  b if s  r

1
rs e

rsxx0
xb if s  r

so


0

b
esxerxdx  b if s  r and


0

b
esxerxdx  1

r  s e
rsb  e0 if s  r.

So

lim
b


0

b
esxerxdx 

 if r  s  0

1
rs 0  1  1

sr if r  s  0

.

Note that r  s  0 is equivalent to s  r.



Definition. The Laplace transform of f will be denoted by f and formula for fxs
will denote the value at s of the Laplace transform of the function f whose formula is given
by "the formula for fx. " We may also write formula for fx in place of formula for
fxs, interperting s as the identity function

Thus
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s  r for s  r.

or
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Corollary.

1s  1
s for s  0.

Proof. This follows from erxs  1
sr for s  r because e0x  1.
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xs  1
s2

for s  0.

Proof.
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Proof.


0

b
esxx2dx   1

s esxx2x0
xb  

0

b 1
s esx  2xdx

  1
s b2esb  2

s 0

b
esxxdx  0  2

s xs

 2
s

1
s2

 2
s3

as b  .



Theorem.
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Proof.
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Theorem. When n is a positive integer
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Theorem. The Laplace transform is linear. If

f1xs  F1s and f2xs  F2s for s  s0

and each of c1 and c2 is a number, then
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Proof. This follows because
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This extends to
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Definition. When  is a real number

e i  cos  i sin

so

ei  cos  i sin  cos  i sin



consequently

e i  cos  i sin,
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The formula
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remains valid when r is complex provided that s  Re r.

When r    i with each of  and  real, Re r  . Re r is called the real part of r and
Im r  . Im r is called the imaginary part of r.
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Theorem.
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Proof.
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Suggested Problems. Do problems 1-8 for Section 4.1.
Note that

coshx  1
2
ex  ex

and

sinhx  1
2
ex  ex.

Additional Examples: See Section 4.1 of the text and the notes presented on the board
in class.


