Section 4.1

Section 4.1
 The Laplace Transform - Introduction

Definition. When g is integrable on $[a, b]$ for each $b \geq a$, saying that

$$
\int_{a}^{\infty} g(x) d x
$$

exists means that there is a number l such that

$$
\lim _{b \rightarrow \infty} \int_{a}^{b} g(x) d x=l .
$$

In this case

$$
\int_{a}^{\infty} g(x) d x=l
$$

To find

$$
\int_{a}^{\infty} g(x) d x
$$

or show that it does not exist, first find

$$
\int_{a}^{b} g(x) d x
$$

and determine whether or not the limit as $b \rightarrow \infty$ exists. If the limit does exist, then

$$
\int_{a}^{\infty} g(x) d x
$$

is that limit.

Example.

$$
\int_{1}^{b} \frac{1}{x^{2}} d x=-\left[\frac{1}{x}\right]_{x=1}^{x=b}=\frac{1}{1}-\frac{1}{b}
$$

and

$$
\lim _{b \rightarrow \infty}\left[\frac{1}{1}-\frac{1}{b}\right]=[1-0]=1
$$

so

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x=1
$$

Example.

$$
\int_{1}^{b} \frac{1}{x} d x=[\ln x]_{x=1}^{x=b}=\ln b \rightarrow \infty \text { as } b \rightarrow \infty
$$

so

$$
\int_{1}^{\infty} \frac{1}{x} d x \text { does not exist. }
$$

Definition. Suppose that f is a function with domain $[0, \infty)$ which is integrable on $[0, b]$ for each $b>0$ and

$$
\int_{0}^{\infty} e^{-s x} f(x) d x
$$

exists for some number s. The Laplace transform of f is the function F given by

$$
F(s)=\int_{0}^{\infty} e^{-s x} f(x) d x
$$

for all numbers s where the integral exists.

Theorem. If r is a real number and

$$
f(x)=e^{r x}
$$

for $x \geq 0$, then the Laplace transform of f is F where

$$
F(s)=\frac{1}{s-r}
$$

for $s>r$.
Proof.

$$
\int_{0}^{b} e^{-s x} e^{r x} d x=\int_{0}^{b} e^{(r-s) x} d x=\left\{\begin{array}{cc}
\int_{0}^{b} 1 d x=b & \text { if } s=r \\
\frac{1}{r-s}\left[e^{(r-s) x}\right]_{x=0}^{x=b} & \text { if } s \neq r
\end{array}\right.
$$

so

$$
\begin{aligned}
& \int_{0}^{b} e^{-s x} e^{r x} d x=b \text { if } s=r \text { and } \\
& \int_{0}^{b} e^{-s x} e^{r x} d x=\frac{1}{r-s}\left[e^{(r-s) b}-e^{0}\right] \text { if } s \neq r .
\end{aligned}
$$

So

$$
\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-s x} e^{r x} d x=\left\{\begin{array}{cl}
\infty & \text { if } r-s \geq 0 \\
\frac{1}{r-s}[0-1]=\frac{1}{s-r} & \text { if } r-s<0
\end{array} .\right.
$$

Note that $r-s<0$ is equivalent to $s>r$.

Definition. The Laplace transform of f will be denoted by $\mathcal{L} f$ and $\mathcal{L}\{$ formula for $f(x)\}(s)$ will denote the value at s of the Laplace transform of the function f whose formula is given by "the formula for $f(x)$." We may also write $\mathcal{L}[$ formula for $f(x)]$ in place of $\mathcal{L}\{$ formula for $f(x)\}(s)$, interperting s as the identity function

Thus

$$
\mathcal{L}\left\{e^{r x}\right\}(s)=\frac{1}{s-r} \text { for } s>r .
$$

or

$$
\mathcal{L}\left[e^{r x}\right]=\frac{1}{s-r} \text { for } s>r .
$$

Corollary.

$$
\mathcal{L}\{1\}(s)=\frac{1}{s} \text { for } s>0 .
$$

Proof. This follows from $\mathcal{L}\left\{e^{r x}\right\}(s)=\frac{1}{s-r}$ for $s>r$ because $e^{0 x}=1$.

Theorem.

$$
\mathcal{L}\{x\}(s)=\frac{1}{s^{2}} \text { for } s>0 .
$$

Proof.

$$
\begin{aligned}
\int_{0}^{b} e^{-s x} x d x & =\left[-\frac{1}{s} e^{-s x} x\right]_{x=0}^{x=b}+\int_{0}^{b} \frac{1}{s} e^{-s x} \cdot 1 d x \\
& =-\frac{1}{s} b e^{-s b}-\frac{1}{s^{2}} e^{-s b}+\frac{1}{s^{2}} e^{0}
\end{aligned}
$$

so

$$
\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-s x} x d x=-0-0+\frac{1}{s^{2}} \cdot 1=\frac{1}{s^{2}} \text { when } s>0 .
$$

Theorem.

$$
\mathcal{L}\left\{x^{2}\right\}(s)=\frac{2}{s^{3}} \text { for } s>0 .
$$

Proof.

$$
\begin{aligned}
\int_{0}^{b} e^{-s x} x^{2} d x & =\left[-\frac{1}{s} e^{-s x} x^{2}\right]_{x=0}^{x=b}+\int_{0}^{b} \frac{1}{s} e^{-s x} \cdot 2 x d x \\
& =-\frac{1}{s} b^{2} e^{-s b}+\frac{2}{s} \int_{0}^{b} e^{-s x} x d x \rightarrow 0+\frac{2}{s} \mathcal{L}\{x\}(s) \\
& =\frac{2}{s} \frac{1}{s^{2}}=\frac{2}{s^{3}} \text { as } b \rightarrow \infty .
\end{aligned}
$$

Theorem.

$$
\mathcal{L}\left\{x^{3}\right\}(s)=\frac{3!}{s^{4}} \text { for } s>0 .
$$

Proof.

$$
\begin{aligned}
\int_{0}^{b} e^{-s x} x^{3} d x & =\left[-\frac{1}{s} e^{-s x} x^{3}\right]_{x=0}^{x=b}+\int_{0}^{b} \frac{1}{s} e^{-s x} \cdot 3 x^{2} d x \\
& =-\frac{1}{s} b^{2} e^{-s b}+\frac{3}{s} \int_{0}^{b} e^{-s x} x^{2} d x \rightarrow 0+\frac{3}{s} \mathcal{L}\left\{x^{2}\right\}(s) \\
& =\frac{3}{s} \frac{2}{s^{3}}=\frac{3!}{s^{4}} \text { as } b \rightarrow \infty .
\end{aligned}
$$

Theorem. When n is a positive integer

$$
\mathcal{L}\left\{x^{n}\right\}(s)=\frac{n!}{s^{n+1}} \text { for } s>0 .
$$

Theorem. The Laplace transform is linear. If

$$
\mathcal{L}\left\{f_{1}(x)\right\}(s)=F_{1}(s) \text { and } \mathcal{L}\left\{f_{2}(x)\right\}(s)=F_{2}(s) \text { for } s>s_{0}
$$

and each of c_{1} and c_{2} is a number, then

$$
\mathcal{L}\left\{c_{1} f_{1}(x)+c_{2} f_{2}(x)\right\}(s)=c_{1} F_{1}(s)+c_{2} F_{2}(s) \text { for } s>s_{0} .
$$

Proof. This follows because

$$
\int_{0}^{b} e^{-s x}\left(c_{1} f_{1}(x)+c_{2} f_{2}(x)\right) d x=c_{1} \int_{0}^{b} e^{-s x} f_{1}(x) d x+c_{2} \int_{0}^{b} e^{-s x} f_{2}(x) d x
$$

for each $s>s_{0}$.

This extends to

$$
\begin{aligned}
& \mathcal{L}\left\{c_{1} f_{1}(x)+\cdots+c_{n} f_{n}(x)\right\}(s)=c_{1} \mathcal{L}\left\{f_{1}(x)\right\}(s)+\cdots+c_{n} \mathcal{L}\left\{f_{n}(x)\right\}(s) . \\
& \quad \mathcal{L}\left[2 e^{3 x}-5 x^{2}+3\right]=2 \frac{1}{s-3}-5 \frac{2}{s^{3}}+3 \frac{1}{s}=\frac{2}{s-3}-\frac{10}{s^{3}}+\frac{3}{s}
\end{aligned}
$$

Definition. When θ is a real number

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

so

$$
e^{-i \theta}=\cos (-\theta)+i \sin (-\theta)=\cos \theta-i \sin \theta
$$

consequently

$$
\begin{aligned}
e^{i \theta} & =\cos \theta+i \sin \theta, \\
e^{-i \theta} & =\cos \theta-i \sin \theta, \\
\cos \theta & =\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right), \text { and } \\
\sin \theta & =\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right) .
\end{aligned}
$$

The formula

$$
\mathcal{L}\left\{e^{r x}\right\}(s)=\frac{1}{s-r}
$$

remains valid when r is complex provided that $s>\operatorname{Re} r$.

When $r=\alpha+\beta i$ with each of α and β real, $\operatorname{Re} r=\alpha$. $\operatorname{Re} r$ is called the real part of r and $\operatorname{Im} r=\beta . \operatorname{Im} r$ is called the imaginary part of r.

Theorem.

$$
\mathcal{L}\{\cos \beta x\}(s)=\frac{s}{s^{2}+\beta^{2}} \text { for } s>0
$$

Proof.

$$
\begin{aligned}
\mathcal{L}\{\cos \beta x\}(s) & =\mathcal{L}\left\{\frac{1}{2}\left(e^{i \beta x}+e^{-i \beta x}\right)\right\}(s)=\mathcal{L}\left\{\frac{1}{2} e^{i \beta x}+\frac{1}{2} e^{-i \beta x}\right\}(s) \\
& =\frac{1}{2} \mathcal{L}\left\{e^{i \beta x}\right\}(s)+\frac{1}{2} \mathcal{L}\left\{e^{-i \beta x}\right\}(s) \\
& =\frac{1}{2} \frac{1}{s-i \beta}+\frac{1}{2} \frac{1}{s+i \beta} \\
& =\frac{1}{2} \frac{(s+i \beta)+(s-i \beta)}{(s-i \beta)(s+i \beta)} \\
& =\frac{1}{2} \frac{2 s}{s^{2}-(i \beta)^{2}} \\
& =\frac{s}{s^{2}+\beta^{2}}
\end{aligned}
$$

for $s>0$.

Theorem.

$$
\mathcal{L}\{\sin \beta x\}(s)=\frac{\beta}{s^{2}+\beta^{2}} \text { for } s>0 .
$$

Proof.

$$
\begin{aligned}
\mathcal{L}\{\sin \beta x\}(s) & =\mathcal{L}\left\{\frac{1}{2 i}\left(e^{i \beta x}-e^{-i \beta x}\right)\right\}(s)=\mathcal{L}\left\{\frac{1}{2 i} e^{i \beta x}-\frac{1}{2 i} e^{-i \beta x}\right\}(s) \\
& =\frac{1}{2 i} \mathcal{L}\left\{e^{i \beta x}\right\}(s)-\frac{1}{2 i} \mathcal{L}\left\{e^{-i \beta x}\right\}(s) \\
& =\frac{1}{2 i} \frac{1}{s-i \beta}-\frac{1}{2 i} \frac{1}{s+i \beta} \\
& =\frac{1}{2 i} \frac{(s+i \beta)-(s-i \beta)}{(s-i \beta)(s+i \beta)} \\
& =\frac{1}{2 i} \frac{2 i \beta}{s^{2}-(i \beta)^{2}} \\
& =\frac{\beta}{s^{2}+\beta^{2}}
\end{aligned}
$$

for $s>0$.

Suggested Problems. Do problems 1-8 for Section 4.1.
Note that

$$
\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)
$$

and

$$
\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right) .
$$

Additional Examples: See Section 4.1 of the text and the notes presented on the board in class.

