Section 4.2

Section 4.2
 The Laplace Transform - Basic Properties

Definition. Suppose that f is a function with domain $[0, \infty)$ and λ is a real number. Saying that \longrightarrow means that there is a and a
\square such that \square for all $x \geq A$.
Saying that f is of exponential order means that f is of exponential order λ for some number λ.

Note. If $f(x)=$

where \square and each of r and β is a real number, then f is of exponential order.

Example. If
\square
then f is not of exponential order. $f(x)$ grows too fast as $x \rightarrow \infty$.

exists for all $s>\lambda$.

Theorem. If y is of exponential order λ and has a continuous derivative on $[0, \infty)$ then

$$
\mathcal{L}\left\{y^{\prime}(x)\right\}(s)=\square
$$

for all $s>\lambda$.
Proof.

when $s>\lambda$.

Corollary. If y has a continuous n-th derivative and each of y, y^{\prime}, \ldots, and $y^{(n-1)}$ is or exponential order λ, then

$$
\mathcal{L}\left\{y^{(n)}(x)\right\}(s)=\square
$$

Note. If

$$
Y(s)=\mathcal{L}\{y(x)\}(s)
$$

then

$$
\mathcal{L}\left\{y^{\prime}(x)\right\}(s)=\square
$$

and

$$
\mathcal{L}\left\{y^{\prime \prime}(x)\right\}(s)=\square .
$$

Example. Find the Laplace transform of the solution to the following initial value problem.
\square
Solution. Taking the Laplace transform of each side of the differential equation and using the fact that the transform is linear we have

Letting

$$
Y(s)=\square
$$

and using

$$
\mathcal{L}\left\{y^{\prime}(x)\right\}(s)=\square, \mathcal{L}\{x\}(s)=\square
$$

we have

So

Thus

Example. Find the Laplace transform of the solution to the following initial value problem.

$$
\square \text { for } x \geq 0, \square \text {, and } \square .
$$

Solution. Letting $Y(s)=\mathcal{L}\{y(x)\}(s)$ and taking the Laplace transform of each side of the differential equation we have

so

$$
\square=\square
$$

so

From

we have

The next theorem shows how to find the Laplace transform of $e^{r x} f(x)$ if the transform of $f(x)$ can be found.

Theorem. If

$$
\mathcal{L}\{f(x)\}(s)=F(s) \text { for } s>s_{0}
$$

then

$$
\mathcal{L}\left\{e^{r x} f(x)\right\}=F(s-r) \text { for } s>s_{0}+r
$$

Example.

$$
\mathcal{L}\{\cos 3 x\}(s)=\square ;
$$

so

$$
\mathcal{L}\left\{e^{2 x} \cos 3 x\right\}(s)=\square
$$

The next theorem shows how to find the Laplace transform of $x^{n} f(x)$ if the transform of $f(x)$ can be found.

Theorem. If

$$
\mathcal{L}\{f(x)\}(s)=F(s)
$$

then

$$
\mathcal{L}\left\{x^{n} f(x)\right\}(s)=\square
$$

Example.

$$
\mathcal{L}\{\sin 3 x\}(s)=F(s)
$$

where

$$
\begin{aligned}
F(s) & =\square . \\
F^{\prime}(s) & =-\square .
\end{aligned}
$$

and

$$
F^{\prime \prime}(s)=\cdots=\square
$$

SO

$$
\mathcal{L}\left\{x^{2} \sin 3 x\right\}(s)=\square
$$

Additional Examples: See Section 4.2 of the text and the notes presented on the board in class.

Suggested Problems. Do the odd numbered problems for Section 4.2. The answers are posted on Dr. Walker's web site.

