Section 4.3

Definition. The inverse Laplace transform is denoted by £
means

Note. Based on the transforms that we know, we have the following.
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Note. Since the transform is|:|, the inverse transform is also |:|
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Using partial fractions we have
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Adding the fractions, we have
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Equating the numerators, we have
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Example. Use the Laplace transform to solve the initial value problem:

forx > 0 and

Solution. Taking the Laplace transform of each side of the differential equation and letting
Y(s) = L{y(x)}(s),we have
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Using partial fractions, we have
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Equating numerators, we have
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Example. Use the Laplace transform to solve the initial value problem:

\forx >0,
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Solution. Taking the Laplace transform of each side of the differential equation and letting

Y(s) = L)) (s)

,we have

i e |-

Y(s) =

Using partial fractions, we find that
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Y(s) =
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Continuing we find that
Y(s) =
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Y(s) = —
Thus
y(x) = ¢

Additional Examples: See Section 4.3 of the text and the notes presented on the board
in class.

Suggested Problems. Do the odd numbered problems for Section 4.3. The answers are
posted on Dr. Walker’s web site.



