
Definition. The inverse Laplace transform is denoted by 1.
1Fsx  fx means fxs  Fs.

Note. Based on the transforms that we know, we have the following.
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Note. Since the transform is linear, the inverse transform is also linear.

Note. In order to find 1Fs when F is a proper rational function with a quadratic factor
in the denominator, factor the quadratic if it has real zeros, otherwise complete the square.

Example.
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Using partial fractions we have
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Adding the fractions, we have
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Equating the numerators, we have
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Letting s  3 in (1), we have

1  A  1 so A  1.

Letting s  4 in (1), we have
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Example.

1 s  3
s2  4s  13

x  1 s  3
s  22  9

x

 1
s  2  1
s  22  9

x

 e2x 1 s  1
s2  9

x

 e2x 1 s
s2  9

x  e2x 1 1
s2  9

x

 e2x 1 s
s2  9

x  1
3
e2x 1 3

s2  9
x

 e2x cos3x  1
3
e2x sin3x

Example. Use the Laplace transform to solve the initial value problem:

y x  2yx  3sin4x for x  0 and y0  5.

Solution. Taking the Laplace transform of each side of the differential equation and letting
Ys  yxs,we have
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Using partial fractions, we have
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Equating numerators, we have
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Letting s  2 in (2) produces
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Example. Use the Laplace transform to solve the initial value problem:

y x  4y x  6yx  1  ex for x  0,

y0  0, and y 0  0.

Solution. Taking the Laplace transform of each side of the differential equation and letting
Ys  yxs,we have
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Using partial fractions, we find that
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Continuing we find that
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Additional Examples: See Section 4.3 of the text and the notes presented on the board
in class.
Suggested Problems. Do the odd numbered problems for Section 4.3. The answers are

posted on Dr. Walker’s web site.


