Section 4.3

Definition. The inverse Laplace transform is denoted by \mathcal{L}^{-1}.
means

Note. Based on the transforms that we know, we have the following.

Note. Since the transform is \square , the inverse transform is also \square

Note. In order \qquad when

Example.

$$
\frac{1}{s^{2}+7 s+12}=\square
$$

Using partial fractions we have

$$
\frac{1}{(s+3)(s+4)}=\square
$$

Adding the fractions, we have

$$
\frac{1}{(s+3)(s+4)}=\square
$$

Equating the numerators, we have
\square
Letting \qquad we have

Letting \square we have

Thus \square

$$
\frac{1}{(s+3)(s+4)}=\square
$$

and

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{1}{(s+3)(s+4)}\right\}(x) & =\square \\
& =\square
\end{aligned}
$$

Example.

Example. Use the Laplace transform to solve the initial value problem:

Solution. Taking the Laplace transform of each side of the differential equation and letting $Y(s)=\mathcal{L}\{y(x)\}(s)$, we have

so

So

so

$$
Y(s)=\square
$$

Using partial fractions, we have
\square
Equating numerators, we have

Letting \square (2) produces
so
Letting \square) now produces

so

Letting \square now produces
so

So

$$
y(x)=\square
$$

Example. Use the Laplace transform to solve the initial value problem:

Solution. Taking the Laplace transform of each side of the differential equation and letting $Y(s)=\mathcal{L}\{y(x)\}(s)$, we have

Using partial fractions, we find that

$$
Y(s)=\square
$$

so

Continuing we find that

so

Thus

$$
y(x)=\square=
$$

Additional Examples: See Section 4.3 of the text and the notes presented on the board in class.

Suggested Problems. Do the odd numbered problems for Section 4.3. The answers are posted on Dr. Walker's web site.

