Engineering Mathematics

Dr. Philip Walker

Section 5.7
 Vector Spaces

Definition. A vector space consists of a set whose members are called vectors, a field (the real numbers or the complex numbers in this course) whose members are called scalars, and two operations where the following conditions are satisfied.

- The first operation is called addition of vectors. When each of A and B is a vector, there is a vector denoted $A+B$.
- The second operation is called multiplication of scalars and vectors. When c is a scalar and A is a vector, there is a vector denoted $c A$.
- Addition of vectors is commutative and associative. When each of A, B, and C is a vector

$$
A+B=B+A
$$

and

$$
A+(B+C)=(A+B)+C
$$

- There is a unique vector called the zero vector and denoted $\mathbf{0}$ with the property that if A is a vector then

$$
A+\mathbf{0}=A
$$

- If A is a vector, there is a unique vector B such that $A+B=\mathbf{0}$.
(This vector B is denoted $-A$)
- If c is a scalar and each of A and B is a vector, then

$$
c(A+B)=c A+c B
$$

- If each of c and d is a scalar and A is a vector, then

$$
(c+d) A=c A+d A \text { and } a(c A)=(a c) A .
$$

- If A is a vector, then the scalar 1 times the vector A is A.

When the field of scalars is the real number system, the vector space is called a real vector space.

When the field of scalars is the complex number system, the vector space is called a complex vector space.

Theorem. In a vector space, if A is a vector and c is a scalar, then

$$
\begin{gathered}
0 A=\mathbf{0} \\
(-1) A=-A \\
c \mathbf{0}=\mathbf{0} .
\end{gathered}
$$

and

Definition. In a vector space,

$$
A-B=A+(-B)
$$

Examples of Real Vector Spaces.

- \mathbb{R}^{n} - all n-tuples or n-dimensional row vectors of real numbers.

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \\
c\left(x_{1}, \ldots, x_{n}\right)=\left(c x_{1}, \ldots, c x_{n}\right) \\
\mathbf{0}=(0, \ldots, 0)
\end{gathered}
$$

and

$$
-\left(x_{1}, \ldots, x_{n}\right)=\left(-x_{1}, \ldots,-x_{n}\right)
$$

- $\mathbb{R}^{m \times n}$ - all $m \times n$ matrices of real numbers with the usual addition of matrices and multiplication of scalars and matrices. The zero vector is the $m \times n$ zero matrix. The additive inverse of a matrix is obtained by taking the negative of each of its entries.

Aspecial case of this is $\mathbb{R}^{m \times 1}$, the space of all m-dimensional column vectors.

- When S is a set, the collection of all real valued functions having domain the set S.

$$
\begin{gathered}
(f+g)(x)=f(x)+g(x) \text { and }(c f)(x)=c f(x) \text { for all } x \text { in } S, \\
\mathbf{0}(x)=0 \text { for all } x \text { in } S
\end{gathered}
$$

and

$$
(-f)(x)=-f(x) \text { for all } x \text { in } S
$$

- When V is a real vector space and S is a set, the collection of all V valued functions having domain the set S.

Examples of Complex Vector Spaces.

- \mathbb{C}^{n} - all n-tuples or n-dimensional row vectors of complex numbers.

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \\
c\left(x_{1}, \ldots, x_{n}\right)=\left(c x_{1}, \ldots, c x_{n}\right), \\
\mathbf{0}=(0, \ldots, 0)
\end{gathered}
$$

and

$$
-\left(x_{1}, \ldots, x_{n}\right)=\left(-x_{1}, \ldots,-x_{n}\right)
$$

- $\mathbb{C}^{m \times n}$ - all $m \times n$ matrices of complex numbers with the usual addition of matrices and multiplication of scalars and matrices. The zero vector is the $m \times n$ zero matrix. The additive inverse of a matrix is obtained by taking the negative of each of its entries.
- When S is a set, the collection of all complex valued functions having domain the set S.

$$
\begin{gathered}
(f+g)(x)=f(x)+g(x) \text { and }(c f)(x)=c f(x) \text { for all } x \text { in } S, \\
\mathbf{0}(x)=0 \text { for all } x \text { in } S,
\end{gathered}
$$

and

$$
(-f)(x)=-f(x) \text { for all } x \text { in } S
$$

- When V is a complex vector space and S is a set, the collection of all V valued functions having domain the set S.

Magnitude and Direction

In \mathbb{R}^{2}, the magnitude and direction associated with vector $\left(x_{1}, x_{2}\right)$ is that of the directed line segment from the origin to $\left(x_{1}, x_{2}\right)$. At each point (a, b), the representative of $\left(x_{1}, x_{2}\right)$ at (a, b) is the directed line segment from (a, b) to $\left(a+x_{1}, b+x_{2}\right)$.

In \mathbb{R}^{3}, the magnitude and direction associated with vector $\left(x_{1}, x_{2}, x_{3}\right)$ is that of the directed line segment from the origin to $\left(x_{1}, x_{2}, x_{3}\right)$. At each point (a, b, c), the representative of $\left(x_{1}, x_{2}, x_{3}\right)$ at (a, b, c) is the directed line segment from (a, b, c) to $\left(a+x_{1}, b+x_{2}, c+x_{3}\right)$.

There is no notion of magnitude and direction in vector spaces of functions.

Definition. Saying that a list of vectors $\left(v_{1}, \ldots, v_{m}\right)$ in a vector space is linearly independent means that if $\left(c_{1}, \ldots, c_{m}\right)$ is a list of scalars and

$$
c_{1} v_{1}+\cdots+c_{m} v_{m}=\mathbf{0}
$$

then

$$
c_{1}=\cdots=c_{m}=0
$$

Saying that the list of vectors is linearly dependent means that it is not linearly independent.

Note. A list of vectors $\left(v_{1}, \ldots, v_{m}\right)$ is linearly dependent if and only it there is a list of scalars $\left(c_{1}, \ldots, c_{m}\right)$ at lease one of which is not zero such that

$$
c_{1} v_{1}+\cdots+c_{m} v_{m}=\mathbf{0}
$$

Theorem. A list of vectors $\left(v_{1}, \ldots, v_{m}\right)$ is linearly dependent if and only if one of the vectors is a linear combination of the others.

$$
v_{k}=c_{1} v_{1}+\cdots+c_{k-1} v_{k-1}+c_{k+1} v_{k+1}+\cdots c_{m} v_{m} .
$$

As a special case of this we have that a pair of vectors $\left(v_{1}, v_{2}\right)$ is linearly dependent if and only if

$$
v_{1}=c v_{2}
$$

for some scalar cor

$$
v_{2}=d v_{1}
$$

for some scalar d.

Tests for Independence and Dependence.

Theorem. Suppose that $\left(v_{1}, \ldots, v_{m}\right)$ is a list of vectors in \mathbb{R}^{n}. If $m>n$ (more vectors than the dimension of the space) then $\left(v_{1}, \ldots, v_{m}\right)$ is linearly dependent.

If $m=n$ let A be the $n \times n$ matrix whose i-th row v_{i} for $i=1, \ldots, n$. If $\operatorname{det} A \neq 0$ then $\left(v_{1}, \ldots, v_{m}\right)$ is linearly independent. If $\operatorname{det} A=0$ then $\left(v_{1}, \ldots, v_{m}\right)$ is linearly dependent.

If $m<n$, solve the system

$$
c_{1} v_{1}+\cdots+c_{m} v_{m}=\mathbf{0}
$$

for $\left(c_{1}, \ldots, c_{m}\right)$. If the only solution is $c_{1}=c_{2}=\cdots=c_{m}=0$, then $\left(v_{1}, \ldots, v_{m}\right)$ is linearly independent. If there is a solution where at least one $c_{k} \neq 0$, then $\left(v_{1}, \ldots, v_{m}\right)$ is linearly dependent.

Multiplying a matrix on the right by a column vector of the correct dimension produces a linear combination of the columns of the matrix.

Example.

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=c_{1}\left(\begin{array}{l}
a \\
d \\
g
\end{array}\right)+c_{2}\left(\begin{array}{l}
b \\
e \\
h
\end{array}\right)+c_{3}\left(\begin{array}{l}
c \\
f \\
i
\end{array}\right)
$$

Note. The system

$$
c_{1} v_{1}+\cdots+c_{m} v_{m}=\mathbf{0}
$$

is equivalent to

$$
c_{1} v_{1}^{T}+\cdots+c_{m} v_{m}^{T}=\mathbf{0}^{T}
$$

which is equivalent to

$$
A\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

where A is the $n \times m$ matrix whose j-th column is v_{j}^{T} for $j=1, \ldots, m$.

Example. Let $v_{1}=(1,-2,3), v_{2}=(-2,4,1)$, and $v_{3}=(-4,8,9)$. Show whether the list $\left(v_{1}, v_{2}, v_{3}\right)$ of three vectors in \mathbb{R}^{3} is linearly independent or linearly depepndet.

Solution. Using two type three row operations, $2 R_{1}+R_{2} \rightarrow R_{2}$ and $4 R_{1}+R_{3} \rightarrow R 3$, we have

$$
\operatorname{det}\left(\begin{array}{rrr}
1 & -2 & 3 \\
-2 & 4 & 1 \\
-4 & 8 & 9
\end{array}\right)=\operatorname{det}\left(\begin{array}{rrr}
1 & -2 & 3 \\
0 & 0 & 7 \\
0 & 0 & 21
\end{array}\right)=1 \cdot 0 \cdot 21=0
$$

So $\left(v_{1}, v_{2}, v_{3}\right)$ is linearly dependent.

Example. Let $v_{1}=(1,-2,3), v_{2}=(-2,4,1)$, and $v_{3}=(-4,8,9)$. Express one of these vectors as a linear combination of the other two.

Solution.

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=(0,0,0)
$$

is, by transposing each side, equivalent to

$$
c_{1}\left(\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right)+c_{2}\left(\begin{array}{r}
-2 \\
4 \\
1
\end{array}\right)+c_{3}\left(\begin{array}{r}
-4 \\
8 \\
9
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

which is equivalent to

$$
\left(\begin{array}{rrr}
1 & -2 & -4 \\
-2 & 4 & 8 \\
3 & 1 & 9
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Solving this system we have

$$
\left.\begin{array}{l}
\left(\begin{array}{cccc}
1 & -2 & -4 & 0 \\
-2 & 4 & 8 & 0 \\
3 & 1 & 9 & 0
\end{array}\right) \xrightarrow[2 R_{1}+R_{2} \rightarrow R_{2}]{ } \xrightarrow[-3 R_{1}+R_{2} \rightarrow R_{2}]{ }\left(\begin{array}{cccc}
1 & -2 & -4 & 0 \\
0 & 0 & 0 & 0 \\
3 & 1 & 9 & 0
\end{array}\right) \\
0
\end{array} \begin{array}{cccc}
1 & -2 & -4 & 0 \\
0 & 7 & 21 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & -2 & -4 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

$$
\begin{gathered}
c_{1}-2 c_{2}-4 c_{3}=0 \\
c_{2}+3 c_{3}=0
\end{gathered}
$$

There is one non-pivot or free unknown, c_{3}. So set

$$
c_{3}=a .
$$

Then

$$
c_{2}=-3 a
$$

and

$$
c_{1}-2(-3 a)-4 a=0 \text { so } c_{1}=-2 a
$$

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=(0,0,0)
$$

if and only if

$$
\left(c_{1}, c_{2}, c_{3}\right)=a(-2,-3,1)
$$

for some number a. Letting $a=1$ we see that

$$
-2 v_{1}-3 v_{2}+v_{3}=(0,0,0)
$$

Thus

$$
v_{3}=2 v_{1}+3 v_{2} .
$$

Definition. When $\left(y_{1}, \ldots, y_{n}\right)$ is a list of functions each defined on an interval J and each having $n-1$ derivatives, their Wronski matrix is given by

$$
M_{W}\left[y_{1}, \ldots, y_{n}\right]=\left(\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{n} \\
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & \cdots & y_{n}^{\prime \prime} \\
\vdots & \vdots & \vdots & \vdots \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right)
$$

and their Wronskian is given by

$$
W\left[y_{1}, \ldots, y_{n}\right]=\operatorname{det}\left(\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{n} \\
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & \cdots & y_{n}^{\prime \prime} \\
\vdots & \vdots & \vdots & \vdots \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right)
$$

Theorem. (First Wronskian Test) If $W\left[y_{1}, \ldots, y_{n}\right]\left(x_{0}\right) \neq 0$ for some number x_{0} in the interval J, then $\left(y_{1}, \ldots, y_{n}\right)$ a list of functions that are linearly independent over J.I

Additional Examples: See Section of 5.7 the text.

Suggested Problems. Do the odd numbered problems for section 5.7. The answers are posted on Dr. Walker's web site.

