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Section 5.8
Eigenvalues and Eigenvectors
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Definition. A nonzero vector is one with at least one nonzero entry.
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Definition. Suppose that A is an n× n matrix. The statement that λ0 is
an eigenvalue for A means that λ0 is a scalar and

AK = λ0K

for some nonzero n-dimensional column vector K .
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Definition. Suppose that λ0 is an eigenvalue for an n× n matrix A. The
statement that K is a corresponding eignevector means that K is a
nonzero n-dimensional column vector and

AK = λ0K .

The eigenspace corresponding to λ0 consists of all n-dimensional column
vectors K such that

AK = λ0K .

Note that the eigenspace consists of all the corresponding eigenvectors
together with the n-dimensional zero column vector.
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Note that eigenvector are presented as row vectors in Section 5.8 of the
text. You will need to transpose the row vectors to get eigenvectors as we
have defined them. For example, if the text presents (2,−1, 5) as an
eigenvector, the eigenvector is actually
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(2,−1, 5)T =

 2
−1
5
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Definition. The characteristic polynomial for an n× n matrix A is the
function P given by

P(λ) = det (A− λIn)

for all complex numbers λ.
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Theorem. The number λ0 is an eigenvalue for A if and only if P(λ0) = 0
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Proof. P(λ0) = 0 if and only if A− λ0In is not invertible, if and only if
(A− λ0In)K = 0 has a solution for some nonzero n-dimensional column
vector K , if and only if AK = λ0K for some nonzero n-dimensional
column vector K , if and only if λ0is an eigenvalue for A.
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Note. Eigenvectors are not unique. if K is an eigenvector for A
corresponding to the eigenvalue λ0and c is a nonzero scalar, then cK is
also an eigenvector for A corresponding to λ0.

If AK = λ0K then c(AK ) = c(λ0K ) so A(cK ) = λ0(cK ).
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Theorem. Suppose that λ0 is an eigenvalue for the n× n matrix A.

AK = λ0K if and only if (A− λ0In)K = 0.

So K is in the eigenspace corresponding to λ0if and only if K is an
n-dimensional column vector satisfying (A− λ0In)K = 0,

and K is an eigenvector corresponding to λ0 if and only if K is a nonzero
n-dimensional column vector satisfying (A− λ0In)K = 0.

Dr. Philip Walker () Mathematics 3321 12 / 31



Note. If λ0 is an eigenvalue for the matrix A, to find the corresponding
eigenvectors, find all the solutions K to

(A− λ0In)K = 0

then discard the n-dimensional zero column vector.
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Definition. When λ0 is an eigenvalue for the n× n matrix A, the
dimension of the corresponding eigenspace is the maximum number of
vectors possible in an independent list of corresponding eigenvectors.
Theorem. When λ0 is an eigenvalue for the n× n matrix A,the dimension
of the corresponding eigenspace is the number of all zero rows when the
matrix A− λ0I has been put into row echelon form.
Note. Eigenvectors corresponding to different eigenvalues are
independent, so the maximum number of independent eigenvectors for a
matrix is the sum of the dimensions of its eigenspaces.
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Example. Let

A =
(
−1 2
−7 8

)
.

The characteristic polynomial is P where

P(λ) = det(A− λI ) = det
((
−1 2
−7 8

)
− λ

(
1 0
0 1

))
= det

((
−1 2
−7 8

)
−
(

λ 0
0 λ

))
= det

(
−1− λ 2
−7 8− λ

)
= (−1− λ)(8− λ) + 14 = λ2 − 7λ+ 6 = (λ− 1)(λ− 6)

so the eigenvalues are 1 and 6.
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K =
(
k1
k2

)
is in the eigenspace corresponding to the eigenvalue 1 if and only if

(A− (1)I )K = 0

or
((
−1 2
−7 8

)
− (1)

(
1 0
0 1

))(
k1
k2

)
=

(
0
0

)
or
(
−2 2
−7 7

)(
k1
k2

)
=

(
0
0

)
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The augmented matrix for this system is(
−2 2 0
−7 7 0

)
which has (

1 −1 0
0 0 0

)
as its row echelon form. Note that there is exactly one all zero row so the
eigenspace is one dimensional. The implied equation is

k1 − k2 = 0.

k2 is free so letting k2 = a we have k1 = a and see that K is in the
eigenspace if and only if

K =
(
a
a

)
= a

(
1
1

)
for some number a.
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Consequently, K is an eigenvector corresponding to the eigenvalue 1 if and
only if

K =
(
a
a

)
= a

(
1
1

)
for some number a 6= 0.(

1
1

)
is one eigenvector.
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K =
(
k1
k2

)
is in the eigenspace corresponding to the eigenvalue 6 if and only if

(A− 6I )K = 0

or
((
−1 2
−7 8

)
− 6

(
1 0
0 1

))(
k1
k2

)
=

(
0
0

)
or
(
−7 2
−7 2

)(
k1
k2

)
=

(
0
0

)

Dr. Philip Walker () Mathematics 3321 19 / 31



The augmented matrix for this system is(
−7 2 0
−7 2 0

)
which has (

1 − 27 0
0 0 0

)
as its row echelon form. Note that there is exactly one all zero row so the
eigenspace is one dimensional. The implied equation is

k1 −
2
7
k2 = 0.

k2 is free so letting k2 = a we have k1 =
2
7
a and see that K is in the

eigenspace if and only if

K =
( 2

7a
a

)
= a

( 2
7
1

)
for some number a.
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Consequently, K is an eigenvector corresponding to the eigenvalue 6 if and
only if

K =
( 2

7a
a

)
= a

( 2
7
1

)
for some number a 6= 0.

Letting a = 7 to avoid fractions, we see that(
2
7

)
is one eigenvector.
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Example. Let

A =
(

3 4
−1 7

)
.

The characteristic polynomial is P where

P(λ) = det(A− λI ) = det
(
3− λ 4
−1 7− λ

)
= (3− λ)(7− λ) + 4 = λ2 − 10λ+ 25

= (λ− 5)2.

So there is only one eigenvalue. It is the number 5.
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K =
(
k1
k2

)
is in the eigenspace corresponding to the eigenvalue 5 if and only if

(A− 5I )K = 0

or
(
3− 5 4
−1 7− 5

)(
k1
k2

)
=

(
0
0

)
or
(
−2 4
−1 2

)(
k1
k2

)
=

(
0
0

)

Dr. Philip Walker () Mathematics 3321 23 / 31



The augmented matrix for this system is(
−2 4 0
−1 2 0

)
which has (

1 −2 0
0 0 0

)
as its row echelon form. Note that there is exactly one all zero row so the
eigenspace is one dimensional. The implied equation is

k1 − 2k2 = 0.

k2 is free so letting k2 = a we have k1 = 2a and see that K is in the
eigenspace if and only if

K =
(
2a
a

)
= a

(
2
1

)
for some number a.
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Consequently, K is an eigenvector corresponding to the eigenvalue 5 if and
only if

K =
(
2a
a

)
= a

(
2
1

)
for some number a 6= 0.

Letting a = 1, we see that(
2
1

)
is one eigenvector.
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Note. Suppose that A is a real n× n matrix that has a non real complex
eigenvalue λ and corresponding eigenvector K .

AK = λK so AK = λK so AK = λK

A = A since A is real, so

AK = λK

It follows that λ is and eigenvalue and K is a corresponding eigenvector
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Example. Let

A =
(
−1 2
−5 1

)
.

The characteristic polynomial is P where

P(λ) = det(A− λI ) = det
(
−1− λ 2
−5 1− λ

)
= λ2 + 9

So the eigenvalues and 3i and − 3i .
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K =
(
k1
k2

)
is in the eigenspace corresponding to the eigenvalue 3i if and only if

(A− 3iI )K = 0

or
(
−1− 3i 2
−5 1− 3i

)(
k1
k2

)
=

(
0
0

)
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The augmented matrix for this system is(
−1− 3i 2 0
−5 1− 3i 0

)−−−−−−−−−−−→
1

−1− 3i R1 → R1

(
1 2

−1−3i 0
−5 1− 3i 0

)
−−−−−−−−−→
5R1 + R2 → R2

(
1 2

−1−3i 0
0 10

−1−3i + 1− 3i 0

)
=

(
1 2

−1−3i 0
0 0 0

)
Note that there is exactly one all zero row so the eigenspace is one
dimensional. The implied equation is

.k1 +
2

−1− 3i k2 = 0

k2 is free so setting k2 = a we have k1 = 2
1+3i a and see that K is in the

eigenspace if and only if

K =
( 2

1+3i a
a

)
= a

( 2
1+3i
1

)
for some number a.

Taking a = 1+ 3i we see that (
2

1+ 3i

)
is one eigenvector corresponding to the eigenvalue 3i . Taking conjugates,
we have that (

2
1− 3i

)
is an eigenvector corresponding to the eigenvalue −3i .
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Additional Examples: See Section of 5.8 the text and the other videos
posted for this section.
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Suggested Problems. Do the odd numbered problems for section 5.8.
The answers are posted on Dr. Walker’s web site.
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