Section 6.1

Section 6.1
 Systems of Linear Differential Equations

We will be concerned with systems of the form

$$
\begin{gathered}
x_{1}^{\prime}(t)=A_{11}(t) x_{1}(t)+A_{12}(t) x_{2}(t)+\cdots+A_{1 n}(t) x_{n}(t)+f_{1}(t) \\
x_{2}^{\prime}(t)=A_{21}(t) x_{1}(t)+A_{22}(t) x_{2}(t)+\cdots+A_{2 n}(t) x_{n}(t)+f_{2}(t) \\
\vdots \\
x_{n}^{\prime}(t)=A_{n 1}(t) x_{1}(t)+A_{n 2}(t) x_{2}(t)+\cdots+A_{n n}(t) x_{n}(t)+f_{n}(t)
\end{gathered}
$$

for all t in an interval J. Using vector-matrix notation this becomes

$$
X^{\prime}=A X+F
$$

where A is the coefficient matrix

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & & \vdots \\
A_{n 1} & A_{n 2} & \cdots & A_{n n}
\end{array}\right) \\
X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), X^{\prime}=\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right), \text { and } F=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right) .
\end{gathered}
$$

Saying tht the system is homogeneous means that

$$
F=\mathbf{0}
$$

Note that

$$
X^{\prime}=A X
$$

is equivalent to

$$
X^{\prime}-A X=\mathbf{0}
$$

The uniqueness and existence theoem for the homogeneous system as follows.

Theorem. Suppose that J is an interval, t_{0} is a number in J, E is an n-dimensional constant column vector, and A is an $n \times n$ matrix of continuous functions defined on J. There is a unique n-dimensional column vector function X such that

$$
X^{\prime}=A X \text { on } J \text { and } X\left(t_{0}\right)=E .
$$

Every n-th order scalar linear differential equation can be fromulated as a first order system of the type we are considering here.

Example. Suppose that

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=f(t)
$$

for all t in an interval J. Let

$$
x_{1}=y \text { and } x_{2}=y^{\prime} .
$$

Note that

$$
y^{\prime \prime}=-p y^{\prime}-q y+f .
$$

Thus

$$
x_{1}^{\prime}=x_{2} \text { and } x_{2}^{\prime}=-p x_{2}-q x_{1}+f .
$$

$$
x_{1}^{\prime}=x_{2} \text { and } x_{2}^{\prime}=-p x_{2}-q x_{1}+f .
$$

or

$$
x_{1}^{\prime}=0 \cdot x_{1}+1 \cdot x_{2}+0 \text { and } x_{2}^{\prime}=-q x_{1}-p x_{2}+f .
$$

or

$$
\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-q & -p
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{f}
$$

Example. Suppose that

$$
y^{\prime \prime \prime}+p_{2} y^{\prime \prime}+p_{1} y^{\prime}+p_{0} y=f
$$

Let

$$
x_{1}=y, x_{2}=y^{\prime}, \text { and } x_{3}=y^{\prime \prime} .
$$

Note that

$$
y^{\prime \prime \prime}=-p_{2} y^{\prime \prime}-p_{1} y^{\prime}-p_{0} y+f .
$$

Thus

$$
x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, \text { and } x_{3}^{\prime}=-p_{2} x_{3}-p_{1} x_{2}-p_{0} x_{1}+f
$$

so

$$
X^{\prime}=A X+F
$$

where

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-p_{0} & -p_{1} & -p_{2}
\end{array}\right), \\
X=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), X^{\prime}=\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right), \text { and } F=\left(\begin{array}{l}
0 \\
0 \\
f
\end{array}\right) .
\end{gathered}
$$

The standard vector-mtrix formulation of

$$
y^{(n)}+p_{n-1} y^{(n-1)}+p_{n-1} y^{(n-2)}+\cdots p_{0} y=f
$$

is

$$
X^{\prime}=A X+F
$$

where

$$
\begin{gathered}
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-p_{0} & -p_{1} & -p_{2} & \cdots & -p_{n-1}
\end{array}\right) \\
X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
y \\
y^{\prime} \\
\vdots \\
y^{(n-1)}
\end{array}\right) \text { and } F=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
f
\end{array}\right) .
\end{gathered}
$$

Additional Examples. See Section 6.1 of the text and the material posted online.

Suggested Problems. Do the odd numbered problems for Section 6.1.

