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Section 6.1
Systems of Linear Differential Equations

We will be concerned with systems of the form
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for all t in an interval J. Using vector-matrix notation this becomes
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where A is the coefficient matrix
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Saying tht the system is homogeneous means that

F  0.

Note that
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is equivalent to
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The uniqueness and existence theoem for the homogeneous system as follows.

Theorem. Suppose that J is an interval, t0 is a number in J, E is an n-dimensional constant
column vector, and A is an n  n matrix of continuous functions defined on J. There is a
unique n-dimensional column vector function X such that

X   AX on J and Xt0  E.

Every n-th order scalar linear differential equation can be fromulated as a first order
system of the type we are considering here.

Example. Suppose that
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for all t in an interval J. Let

x1  y and x2  y .

Note that

y   py   qy  f.

Thus

x1
  x2 and x2

  px2  qx1  f.

x1
  x2 and x2

  px2  qx1  f.

or

x1
  0  x1  1  x2  0 and x2

  qx1  px2  f.

or

x1

x2




0 1

q p

x1

x2


0

f

Example. Suppose that
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The standard vector-mtrix formulation of
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is
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Additional Examples. See Section 6.1 of the text and the material posted online.

Suggested Problems. Do the odd numbered problems for Section 6.1.


