Engineering Mathematics

Dr. Philip Walker

Section 6.2
 Homogeneous Systems

We will be concerned with systems of the form

$$
\begin{gathered}
x_{1}^{\prime}(t)=A_{11}(t) x_{1}(t)+A_{12}(t) x_{2}(t)+\cdots+A_{1 n}(t) x_{n}(t) \\
x_{2}^{\prime}(t)=A_{21}(t) x_{1}(t)+A_{22}(t) x_{2}(t)+\cdots+A_{2 n}(t) x_{n}(t) \\
\vdots \\
x_{n}^{\prime}(t)=A_{n 1}(t) x_{1}(t)+A_{n 2}(t) x_{2}(t)+\cdots+A_{n n}(t) x_{n}(t)
\end{gathered}
$$

for all t in an interval J. Using vector-matrix notation this becomes

$$
X^{\prime}=A X \text { or } X^{\prime}-A X=\mathbf{0}
$$

where A is the coefficient matrix

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & & \vdots \\
A_{n 1} & A_{n 2} & \cdots & A_{n n}
\end{array}\right) \\
X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \text { and } X^{\prime}=\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right)
\end{gathered}
$$

The uniqueness and existence theorem for the homogeneous system is as follows.

Theorem. Suppose that J is an interval, t_{0} is a number in J, E is an n-dimensional constant column vector, and A is an $n \times n$ matrix of continuous functions defined on J. There is a unique n-dimensional column vector function X such that

$$
X^{\prime}=A X \text { on } J \text { and } X\left(t_{0}\right)=E
$$

Theorem. Every linear combination of solutions to

$$
X^{\prime}=A X
$$

is also a solution.
Proof. If $X_{i}^{\prime}=A X_{i}$ for $i=1, \ldots, m$ then
$\left(c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{m} X_{m}\right)^{\prime}=c_{1} X_{1}^{\prime}+c_{2} X_{2}^{\prime}+\cdots c_{m} X_{m}^{\prime}=$ $c_{1} A X_{1}+c_{2} A X_{2}+\cdots+c_{m} A X_{m}=A\left(c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{m} X_{m}\right)$

Definition. Suppose that X_{j} is an n-dimensional column vector valued function defined on an interval j for $j=1, \ldots, m$. Saying that the list of functions $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ is linearly independent over J means that if each of $c_{1}, c_{2}, \ldots, c_{m}$ is a constant and

$$
c_{1} X_{1}(t)+c_{2} X_{2}(t)+\cdots+c_{m} X_{m}(t)=\mathbf{0} \text { for all } t \text { in } J
$$

then

$$
c_{1}=c_{2}=\cdots=c_{m}=0
$$

Saying that $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ is linearly dependent over J means that it is not linearly independent.

Note. A list of vector valued functions $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ is linearly dependent over J if and only it there is a list of scalars $\left(c_{1}, \ldots, c_{m}\right)$ at least one of which is not zero such that

$$
c_{1} X_{1}(t)+c_{2} X_{2}(t)+\cdots+c_{m} X_{m}(t)=\mathbf{0} \text { for all } t \text { in } J
$$

Definition. Suppose that $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a list of $n n$-dimensional column vector valued functions. Their Wronski matrix

$$
M_{W}\left[X_{1}, X_{2}, \ldots, X_{n}\right]
$$

is the $n \times n$ matrix of function whose j-th column is X_{j} for $j=1,2, \ldots, n$, and their Wronskian

$$
W\left[X_{1}, X_{2}, \ldots, X_{n}\right]
$$

is the determinant of their Wronski matrix. Note that there are no derivatives used in the Wronski matrix or the Wronskian.

Example. If

$$
X_{1}(t)=\binom{e^{t}}{\sin t} \text { and } X_{2}(t)=\binom{t^{2}}{\cos t}
$$

then
$M_{W}\left[X_{1}, X_{2}\right](t)=\left(\begin{array}{cc}e^{t} & t^{2} \\ \sin t & \cos t\end{array}\right)$ and $W\left[X_{1}, X_{2}\right](t)=e^{t} \cos t-t^{2} \sin t$

Theorem. (First Wronskian Test) If $W\left[X_{1}, X_{2}, \ldots, X_{n}\right]\left(t_{0}\right) \neq 0$ for some t_{0} in J, then $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is linearly independent over J.

Theorem. (Second Wronskian Test) If $X_{j}^{\prime}=A X_{j}$ for $j=1, \ldots, n$ and $W\left[X_{1}, X_{2}, \ldots, X_{n}\right]\left(t_{0}\right)=0$ for some t_{0} in J, then $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is linearly dependent over J

Definition. Suppose that A is $n \times n$. A fundamental list (or set) for $X^{\prime}=A X$ is a linearly independent list of $n n$-dimensional column vector valued functions $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ such that $X_{j}^{\prime}=A X_{j}$ for $j=1, \ldots, n$.

Theorem. (All Solutions to $X^{\prime}=A X$). Suppose that A is an $n \times n$ matrix of continuous functions defined on an interval J and $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a fundamental list for $X^{\prime}=A X$. It follows that X is a solution to $X^{\prime}=A X$ if and only if

$$
X=c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{n} X_{n}
$$

for some list of scalars $c_{1}, c_{2}, \ldots, c_{n}$. In the text, this last expression is called the general solution to $X^{\prime}=A X$.

Definition. When A is $n \times n$, a fundamental matrix for $X^{\prime}=A X$ is an $n \times n$ matrix of functions whose columns form a fundamental list for $X^{\prime}=A X$.

Note. Multiplying a matrix on the right by a column vector of the correct dimension gives a linear combination of the columns of the matrix. Thus we have the following alternate way to describe all solutions to $X^{\prime}=A X$. Suppose that A is an $n \times n$ matrix of continuous functions defined on an interval J and Φ is a fundamental matrix for $X^{\prime}=A X$. It follows that X is a solution to $X^{\prime}=A X$ if and only if

$$
X=\Phi C
$$

for some n-dimensional constant column vector C.

Note. (Initial Value Problems) Suppose that a fundamental list $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is known for the equation $X^{\prime}=A X$ on J, E is an n-dimensional constant column vector, and t_{0} is a number in J. The solution X to the initial value problem

$$
X^{\prime}=A X \text { on } J \text { and } X\left(t_{0}\right)=E
$$

is given by

$$
X=c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{n} X_{n}
$$

where the coefficients $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ are determined by

$$
c_{1} X_{1}\left(t_{0}\right)+c_{2} X_{2}\left(t_{0}\right)+\cdots+c_{n} X_{n}\left(t_{0}\right)=E
$$

This is equivalent to

$$
\Phi\left(t_{0}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=E
$$

where Φ is the fundamental matrix whose columns are $X_{1}, X_{2}, \ldots, X_{n}$. Fundamental matrices are always invertible so

$$
\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\Phi^{-1}\left(t_{0}\right) E
$$

In term of Φ, the solution to the initial value problem

$$
X^{\prime}=A X \text { on } J \text { and } X\left(t_{0}\right)=E
$$

is given by

$$
X(t)=\Phi(t) \Phi^{-1}\left(t_{0}\right) E .
$$

Example. Consider the system

$$
X^{\prime}=A X \text { on }(0, \infty)
$$

where

$$
A(t)=\left(\begin{array}{cc}
0 & 1 \\
3 / t^{2} & 1 / t
\end{array}\right) .
$$

Let

$$
X_{1}(t)=\binom{t^{3}}{3 t^{2}} \text { and } X_{2}(t)=\binom{t^{-1}}{-t^{-2}}
$$

Then

$$
X_{1}^{\prime}(t)=\binom{3 t^{2}}{6 t}=A(t) X_{1}(t) \text { and } X_{2}^{\prime}(t)=\binom{-t^{-2}}{2 t^{-3}}=A(t) X_{2}(t)
$$

$$
W\left[X_{1}, X_{2}\right](t)=\operatorname{det}\left(\begin{array}{cc}
t^{3} & t^{-1} \\
3 t^{2} & -t^{-2}
\end{array}\right)=-4 t \text { so } W\left[X_{1}, X_{2}\right](1)=-4 \neq 0
$$

Thus $\left(X_{1}, X_{2}\right)$ is a fundamental pair for $X^{\prime}=A X$ and X is a solution if and only if

$$
X(t)=c_{1} X_{1}(t)+c_{2} X_{2}(t)=c_{1}\binom{t^{3}}{3 t^{2}}+c_{2}\binom{-t^{-2}}{2 t^{-3}}
$$

for some pair of numbers c_{1} and c_{2}.

The fundamental matrix formed by $\left(X_{1}, X_{2}\right)$ is Φ where

$$
\Phi(t)=\left(\begin{array}{cc}
t^{3} & t^{-1} \\
3 t^{2} & -t^{-2}
\end{array}\right) .
$$

Note that

$$
\Phi^{-1}(t)=\frac{1}{-4 t}\left(\begin{array}{cc}
-t^{-2} & -t^{-1} \\
-3 t^{2} & t^{3}
\end{array}\right)=\left(\begin{array}{cc}
1 / 4 t^{3} & 1 / 4 t^{2} \\
3 t / 4 & -t^{2} / 4
\end{array}\right)
$$

So

$$
\Phi^{-1}(1)=\left(\begin{array}{cc}
1 / 4 & 1 / 4 \\
3 / 4 & -1 / 4
\end{array}\right)
$$

The solution to the initial value problem

$$
X^{\prime}=A X \text { and } X(1)=\binom{1}{-2}
$$

is given by

$$
\begin{aligned}
X(t) & =\Phi(t) \Phi^{-1}(1)\binom{1}{-2} \\
& =\left(\begin{array}{cc}
t^{3} & t^{-1} \\
3 t^{2} & -t^{-2}
\end{array}\right)\left(\begin{array}{cc}
1 / 4 & 1 / 4 \\
3 / 4 & -1 / 4
\end{array}\right)\binom{1}{-2} \\
& =\binom{5 / 4 t-t^{3} / 4}{-5 / 4 t^{2}-3 t^{2} / 4} .
\end{aligned}
$$

Additional Examples. See the text and the material that is posted online.

Suggested Problems. Do the odd numbered problems for Section 6.2.

