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Section 6.2
Homogeneous Systems

Dr. Philip Walker () Mathematics 3321



We will be concerned with systems of the form
x1(t) = Au(t)x(t) + A (t)x(t) + -+ Ara(t)xa ()

X (1) = Aor (t)x1(t) + A2 (t)xa(t) + - - + Axn(t) x5 (1)

xp(t) = Ant(8)x1(t) + Ao (t)x2(t) + - - + Ann ()30 (1)
for all t in an interval J. Using vector-matrix notation this becomes
X =AXor X' —AX =0

where A is the coefficient matrix
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The uniqueness and existence theorem for the homogeneous system is as

follows.

Theorem. Suppose that J is an interval, ty is a number in J, E is an
n-dimensional constant column vector, and A is an n X n matrix of
continuous functions defined on J. There is a unique n-dimensional
column vector function X such that

X'=AX on J and X(ty) = E.
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Theorem. Every linear combination of solutions to
X' = AX

is also a solution.

Proof. If X! = AX; for i =1,..., m then

(aXi+aXo+ - +cumXn) =aX+ X+ mX], =
aAXi + @AXo + - -+ cmAXm = AlaXi + Xo + - + e Xin)
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Definition. Suppose that X; is an n-dimensional column vector valued
function defined on an interval j for j = 1,..., m. Saying that the list of
functions (Xl, Xo, ... ,Xm) is linearly independent over J means that if
each of ¢1, ¢, ..., ¢y is a constant and

aXi(t)+aXo(t)+ -+ cmXm(t) =0 forall tin J

then
aqg=c=--+-=c¢un,=0.

Saying that (Xi, X2, ..., Xp) is linearly dependent over J means that it is
not linearly independent.
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Note. A list of vector valued functions (X1, Xz, ..., Xi) is linearly
dependent over J if and only it there is a list of scalars (¢i, ..., cp) at
least one of which is not zero such that

aXi(t) +oXo(t)+ -+ cmXn(t) =0 forall tin J
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Definition. Suppose that (X1, X2,..., X,) is a list of n n-dimensional
column vector valued functions. Their Wronski matrix

M (X1, Xa, . .., X,]

is the n X n matrix of function whose j-th column is Xjfor j =1,2,...,n,

and their Wronskian
WXy, Xa, ..., Xp]

is the determinant of their Wronski matrix. Note that there are no
derivatives used in the Wronski matrix or the Wronskian.
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Example. If

t 2
My [ X1, Xo](t) = < sien ; c;st > and WXy, Xo](t) = e cost — t?sint.
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Theorem. (First Wronskian Test) If W[Xi, Xz, ..., X,](to) # 0 for some
to in J, then (X1, X, ..., Xy) is linearly independent over J.
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Theorem. (Second Wronskian Test) If Xj’ =AXforj=1,..., n and
WXy, Xz, ..., Xn](to) = 0 for some ty in J, then (X1, Xz, ..., X,) is
linearly dependent over J
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Definition. Suppose that A is n x n. A fundamental list (or set) for
X' = AX is a linearly independent list of n n-dimensional column vector
valued functions (X1, X2, ..., Xj) such that Xj’ =AXjforj=1,...,n.
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Theorem. (All Solutions to X’ = AX).Suppose that A is an n X n matrix
of continuous functions defined on an interval J and (X1, Xa,..., X,) is a
fundamental list for X’ = AX. It follows that X is a solution to X’ = AX
if and only if

X=aXi+aXo+ -+ X

for some list of scalars c1, ¢, ..., ¢c,. In the text, this last expression is
called the general solution to X’ = AX.
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Definition. When A is n X n, a fundamental matrix for X’ = AX is an
n X n matrix of functions whose columns form a fundamental list for
X' = AX.
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Note. Multiplying a matrix on the right by a column vector of the correct
dimension gives a linear combination of the columns of the matrix. Thus
we have the following alternate way to describe all solutions to

X' = AX.Suppose that A is an n X n matrix of continuous functions
defined on an interval J and ® is a fundamental matrix for X’ = AX. It
follows that X is a solution to X’ = AX if and only if

X=&C

for some n-dimensional constant column vector C.
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Note. (Initial Value Problems) Suppose that a fundamental list
(X1, Xa, ..., Xy) is known for the equation X’ = AX on J, E is an
n-dimensional constant column vector, and tp is a number in J. The
solution X to the initial value problem

X'=AX on Jand X(ty) = E

is given by
X=aXi+oXo+ -+ cpX,

where the coefficients (¢, ¢, ..., ¢n) are determined by

aXi(to) +cXa(ty) + -+ -+ cnXu(to) = E.
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This is equivalent to

a
(&}
Cp(to) . =E
Cn
where @ is the fundamental matrix whose columns are Xi, X5,..., X,.

Fundamental matrices are always invertible so
i
%)
= ® !()E.

Cn
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In term of @, the solution to the initial value problem
X'=AX on Jand X(ty) = E

is given by
X(t) = ®(t)d (t)E.
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Example. Consider the system

where
0 1
Alt) = ( 3/t% 1/t >
Let
t3 t1
Xl(t) = ( 342 ) and Xz(t) = ( 2 )
Then

Dr. Philip Walker () Mathematics 3321



2t

W[X]_,XQ](t) = det < 312 42

) = —4t so W[Xl,XQ](l) = —4 75 0

Thus (X1, X2) is a fundamental pair for X’ = AX and X is a solution if
and only if

X(t) = aXi(t) +oX(t) =q < 3t:2 ) Te < ;tt—; )

for some pair of numbers c;and c.
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The fundamental matrix formed by (X1, X2) is @ where

3 1
Note that

| —t72 —t L\ [ 17483 1/4¢2
® (t)_—4t<—3t2 t3 >_< 3t/4 —t2/4

1/4 1/4 )

So
71 _
(1) = ( 3/4 —1/4
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The solution to the initial value problem

X' = AX and X(1) = ( _i )
is given by
X(t) = @(t)e (1) < 5 >
- (s W) Ga ) (3)

B 5/4t—t3/4
- —5/4t> -3t /4 |-
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Additional Examples. See the text and the material that is posted online.
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Suggested Problems. Do the odd numbered problems for Section 6.2.
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