Section 6.3

Section 6.3
 Constant Coefficient Systems - Part I

Note. In this section and the next we will be finding solutions to

$$
X^{\prime}=A X
$$

when A is an $n \times n$ constant matrix. We will take the domain interval to be the set of all real numbers.

Theorem. Suppose that A is an $n \times n$ constant matrix, λ_{0} is an eigenvalue, and K is a corresponding eigenvector. If

$$
X(t)=e^{\lambda_{0} t} K
$$

then X is a solution to

$$
X^{\prime}=A X,
$$

Proof.

$$
\begin{aligned}
X^{\prime}(t) & =\lambda_{0} e^{\lambda_{0} t} K \text { and } A X(t)=A e^{\lambda_{0} t} K=e^{\lambda_{0} t} A K=e^{\lambda_{0} t} \lambda_{0} K \\
& =\lambda_{0} e^{\lambda_{0} t} K
\end{aligned}
$$

Theorem. Suppose that A is an $n \times n$ constant matrix and A has n linearly independent eignevectors $K_{1}, K_{2}, \ldots, K_{n}$ with K_{j} corresponding to an eigenvalue λ_{j} for $j=1,2, \ldots, n$. (This will always be the case when A has n eigenvalues.) Let

$$
X_{j}(t)=e^{\lambda_{j} t} K_{j} \text { for } j=1,2, \ldots, n
$$

It follows that $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a fundamental list for

$$
X^{\prime}=A X .
$$

Proof. We have just seen that $X_{j}^{\prime}=A X_{j}$ for $j=1,2, \ldots, n$. Since $e^{0}=1$, $M_{W}\left[X_{1}, X_{2}, \ldots, X_{n}\right](0)$ is the $n \times n$ matrix whose j-th column is K_{j} for $1,2, \ldots, n$. These columns are linearly independent so $W\left[X_{1}, X_{2}, \ldots, X_{n}\right](0) \neq 0$. This establishes the linear independence of $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.

Example. Suppose that

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-2 & 3
\end{array}\right)
$$

The eigenvalues of A are 1 and 2 . An eigenvector corresponding to the eigenvalue 1 is $\binom{1}{1}$ and an eigenvector corresponding to the eigenvalue 2 is $\binom{1}{2}$. . Thus a fundamental pair for $X^{\prime}=A X$ is $\left(X_{1}, X_{2}\right)$ where

$$
X_{1}(t)=e^{t}\binom{1}{1} \text { and } X_{2}(t)=e^{2 t}\binom{1}{2}
$$

and X is a solution to $X^{\prime}=A X$ if and only if

$$
X(t)=c_{1} e^{t}\binom{1}{1}+c_{2} e^{2 t}\binom{1}{2}
$$

Example. Suppose that

$$
A=\left(\begin{array}{ccc}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)
$$

The characteristic polynomial \mathcal{P} for A is given by

$$
\mathcal{P}(\lambda)=-\lambda^{3}+6 \lambda^{2}-11 \lambda+6 .
$$

The sum of the coefficients is 0 so the number 1 is a zero of \mathcal{P}. Dividing $\mathcal{P}(\lambda)$ by $\lambda-1$ produces a quadratic quotient which can be factored showing that

$$
\mathcal{P}(\lambda)=-(\lambda-1)(\lambda-2)(\lambda-3) .
$$

Computation shows that $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ is an eigenvector corresponding to the eigenvalue 1 , $\left(\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right)$ is an eigenvector corresponding to the eigenvalue 2 , and $\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$ is an eigenvector corresponding to the eigenvalue 3 .

Thus a fundamental triple for $X^{\prime}=A X$ is $\left(X_{1}, X_{2}, X_{3}\right)$ where

$$
X_{1}(t)=e^{t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), X_{2}(t)=e^{2 t}\left(\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right), \text { and } X_{3}(t)=e^{3 t}\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)
$$

and $X^{\prime}=A X$ if and only if

$$
X(t)=c_{1} e^{t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c_{2} e^{2 t}\left(\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right)+c_{3} e^{3 t}\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right) .
$$

Additional Examples. See the text and the material that is posted online..

Suggested Problems. Do the odd numbers for Section 6.3.

