Engineering Mathematics

Dr. Philip Walker

Dr. Philip Walker ()

Mathematics 3321

2

∃ ► < ∃ ►</p>

Section 6.3 Constant Coefficient Systems - Part I

Note. In this section and the next we will be finding solutions to

$$X' = AX$$

when A is an $n \times n$ constant matrix. We will take the domain interval to be the set of all real numbers.

3

ヨト イヨト

Theorem. Suppose that A is an $n \times n$ constant matrix, λ_0 is an eigenvalue, and K is a corresponding eigenvector. If

$$X(t) = e^{\lambda_0 t} K$$

then X is a solution to

$$X'=AX$$
 ,

Proof.

$$egin{array}{rcl} X'(t)&=&\lambda_0e^{\lambda_0t}K ext{ and }AX(t)=Ae^{\lambda_0t}K=e^{\lambda_0t}AK=e^{\lambda_0t}\lambda_0K\ &=&\lambda_0e^{\lambda_0t}K \end{array}$$

Theorem. Suppose that A is an $n \times n$ constant matrix and A has n linearly independent eignevectors K_1, K_2, \ldots, K_n with K_j corresponding to an eigenvalue λ_j for $j = 1, 2, \ldots, n$. (This will always be the case when A has n eigenvalues.) Let

$$X_j(t)=\mathsf{e}^{\lambda_j t} \mathit{K}_j$$
 for $j=1,2,\ldots$, n .

It follows that (X_1, X_2, \ldots, X_n) is a fundamental list for

X' = AX.

- 4 週 ト - 4 三 ト - 4 三 ト -

Proof. We have just seen that $X'_j = AX_j$ for j = 1, 2, ..., n. Since $e^0 = 1$, $M_W[X_1, X_2, ..., X_n](0)$ is the $n \times n$ matrix whose *j*-th column is K_j for 1, 2, ..., n. These columns are linearly independent so $W[X_1, X_2, ..., X_n](0) \neq 0$. This establishes the linear independence of $(X_1, X_2, ..., X_n)$.

Example. Suppose that

$$A=\left(egin{array}{cc} 0 & 1 \ -2 & 3 \end{array}
ight).$$

The eigenvalues of A are 1 and 2. An eigenvector corresponding to the eigenvalue 1 is $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and an eigenvector corresponding to the eigenvalue 2 is $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Thus a fundamental pair for X' = AX is (X_1, X_2) where

$$X_1(t)=e^t\left(egin{array}{c}1\1\end{array}
ight)$$
 and $X_2(t)=e^{2t}\left(egin{array}{c}1\2\end{array}
ight)$

and X is a solution to X' = AX if and only if

$$X(t) = c_1 e^t \left(\begin{array}{c} 1 \\ 1 \end{array}
ight) + c_2 e^{2t} \left(\begin{array}{c} 1 \\ 2 \end{array}
ight).$$

Example. Suppose that

$$A = \left(egin{array}{cccc} 4 & 0 & 1 \ -2 & 1 & 0 \ -2 & 0 & 1 \end{array}
ight).$$

The characteristic polynomial \mathcal{P} for A is given by

$$\mathcal{P}(\lambda) = -\lambda^3 + 6\lambda^2 - 11\lambda + 6.$$

The sum of the coefficients is 0 so the number 1 is a zero of \mathcal{P} . Dividing $\mathcal{P}(\lambda)$ by $\lambda - 1$ produces a quadratic quotient which can be factored showing that

$$\mathcal{P}(\lambda) = -(\lambda - 1)(\lambda - 2)(\lambda - 3).$$

Computation shows that
$$\begin{pmatrix} 0\\1\\0 \end{pmatrix}$$
 is an eigenvector corresponding to the eigenvalue 1, $\begin{pmatrix} -1\\2\\2 \end{pmatrix}$ is an eigenvector corresponding to the eigenvalue 2, and $\begin{pmatrix} -1\\1\\1 \end{pmatrix}$ is an eigenvector corresponding to the eigenvalue 3.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - の々で

Thus a fundamental triple for X' = AX is (X_1, X_2, X_3) where

$$X_1(t) = e^t \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$
, $X_2(t) = e^{2t} \begin{pmatrix} -1\\2\\2 \end{pmatrix}$, and $X_3(t) = e^{3t} \begin{pmatrix} -1\\1\\1 \end{pmatrix}$

and X' = AX if and only if

$$X(t) = c_1 e^t \begin{pmatrix} 0\\1\\0 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} -1\\2\\2 \end{pmatrix} + c_3 e^{3t} \begin{pmatrix} -1\\1\\1 \end{pmatrix}.$$

æ

(B)

Additional Examples. See the text and the material that is posted online..

æ

∃ ▶ ∢ ∃ ▶

Suggested Problems. Do the odd numbers for Section 6.3.

æ

E ► < E ►