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Section 6.4
Constant Coefficient Systems - Part II

Note. In this section we consider two complications that can arise when solving constant
coefficient systems. The first complication is that the coefficient matrix can have complex
eigenvalues. The second is that the n  n coefficient matrix may have fewer than n
eignevalues.

Complex Eigenvalues

Note. Suppose that the real n  n matrix A has a non real complex eigenvalue 0 and a
corresponding eigenvector K0. Then 0 will be an eigenvalue, K0 will be a corresponding
eigenvector, and the functions whose values at t are

e0tK0 and e0tK0

will be independent solutions to

X   AX.

This pair can and should be replaced with the real valued pair of functions whose values at t
are

Ree0tK0 and Ime0tK0.

These functions will also be linearly independent.

To find these real and imaginary parts suppose that

0    i and K0  L  iM

where each of  and  is real and each of L and M is an n-dimensional column vector with
real entries.

Noting that

eit  ete it  etcost  i sint

we have that

e0tK0  etcost  i sintL  iM

 etcostL  sintM  ietcostM  sintL

Thus



Ree0tK0  etcostL  sintM

and Ime0tK0  etcostM  sintL

Example. Consider the equation

X   AX where A 
1 4

1 1
. .

The characteristic polynomial for A is where   1  1    4  2  2  5. The
quadratic formula shows that the zeros of , hence the eigenvalues of A, are 1  2i and
1  2i.

A  1  2iIK  0 is equivalent to
2i 4

1 2i

k1

k2


0

0
.

The augmented matrix for this equation is

2i 4 0

1 2i 0
whose RREF is

1 2i 0

0 0 0
.

Thus K 
k1

k2
is in the eigenspace if and only if k1  2ik2  0 or, setting k2  a,

K  a
2i

1
for some number a.Taking a  1, we see that an eigenvector corresponding

to the eigenvalue 1  2i is
2i

1
. A complex valued solution to X   AX is the function

whose value at t is

e12it 2i

1
.

e12it 2i

1
 ete2it

2i

1

 etcos2t  i sin2t
0

1
 i

2

0



 et cos2t
0

1
 sin2t

2

0
 iet cos2t

2

0
 sin2t

0

1

A fundamental pair of real valued functions for X   AX is X1,X2 where

X1t  et cos2t
0

1
 sin2t

2

0

and

X2t  et cos2t
2

0
 sin2t

0

1
.

X is a solution to X   AX if and only if

X  c1X1  c2X2

for some pair of scalars c1 and c2.

Example. Consider the equation

X   Ax where A 

1 4 1

3 2 3

1 1 3

.

The characteristic polynomial for A is given by

  3  62  21  26.

By inspection, 2 is a zero of and dividing   2 into  produces a quotient of
2  4  13 Thus

    22  4  13

Focusing on 2  4  13, the quadratic formula shows that 2  3i and 2  3i are also
zeros of . The eigenvalues of A are 2, 2  3i, and 2  3i.

An eigenvector corresponding to the eigenvalue 2 is

1

0

1

so one solution to

X   AX is X1 where



X1t  e2t
1

0

1

.

An eigenvector corresponding to the eigenvalue 2  3i is

5  3i

3  3i

2

so a complex

valued solution to X   AX is U where

Ut  e23it

5  3i

3  3i

2

 e2tcos3t  i sin3t

5

3

2

 i

3

3

0

ReUt  e2t cos3t

5

3

2

 sin3t

3

3

0

and

ImUt  e t cos3t

3

3

0

 sin3t

5

3

2

.

A fundamental list for X   AX is X1,X2,X3 where

X1t  e2t
1

0

1

, X2t  e2t cos3t

5

3

2

 sin3t

3

3

0

and



X3t  e t cos3t

3

3

0

 sin3t

5

3

2

The n  n Coefficient Matrix Has Fewer Than n Eigenvalues

The Coefficient Matrix is a 2  2 Diagonal Matrix.

Note. If

A 
0 0

0 0

then there is only one eigenvalue, namely 0, and

1

0
and

0

1

are independent corresponding eigenvectors. A fundamental pair for X   AX is X1,X2

where

X1t  e0
1

0
and X2t  e0t

0

1
.

X   AX if and only if Xt  c1e0
1

0
 c2e0t

0

1
.

The Coefficient Matrix is 2  2, Has Only One Eigenvalue, and is Not a Diagonal
Matrix.

Note. Suppose that A is 2  2, is not a diagonal matrix, and has only one eigenvalue 0.
In this case, the eigenspace will be one dimensional. Let K be an eigenvector corresponding
to 0, and let W be a two dimensional column vector satisfying

A  0IW  K.

Each such vector W is called a generalized eigenvector. There will be infinitely many of
them, but you need only one. In this case, a fundamental pair for X   AX is X1,X2 where



X1t  e0tK and X2t  e0ttK  W.

Example. Suppose that A 
0 1

4 4
.Then A has only one eigenvalue, namely 2.

Solving

A  2IK  0 or
2 1

4 2

k1

k2


0

0

we see that the eigenspace is one dimensional, and that an eigenvector corresponding to
the eigenvalue 2 is K where

K 
1

2
.

The equation A  2IW  K is

2 1

4 2

w1

w2


1

2
where W 

w1

w2

.

The augmented matrix for this system is

2 1 1

4 2 2
RREF

1  1
2  1

2

0 0 0

so P is a solution to A  2IW  K if and only if

W 
1
2 a 

1
2

a

for some number a. One such vector W is given by taking a  1 so that

W 
0

1
.

A fundamental pair for X   AX is X1,X2 where

X1t  e2t
1

2
, and X2t  e2t t

1

2


0

1

X is a solution to X   AX if and only if



X  c1X1  c2X2.

The Coefficient Matrix A is 3  3, Has Only Two Eigenvalue, the Characteristic
Polynomial is Given by     1  22 where 1  2 and rankA  2I  1.

Note. If     1  22 where 1and 2 are distinct real numbers so that A
has an eigenvalue 1 of algebraic multiplicity 1 and an eigenvalue 2 of algebraic multiplicity
2, and

rankA  2I  1,

(This happens if and only if a row-echelon form of A  2I has exactly two all zero rows.)
let K1 be an eigenvector corresponding to 1 and let K2 and K3 be independent
eigenvectors corresponding to 2. Then let

x1t  e1tK1, x2t  e2tK2, and x3t  e2tK3.

Example. Consider the system

X   AX

where

A 

1 3 3

3 5 3

6 6 4

.

The characteristic polynomial is given by

    4  22.

A  4I 

3 3 3

3 9 3

6 6 0

and

3 3 3 0

3 9 3 0

6 6 0 0

RREF

1 0  1
2 0

0 1  1
2 0

0 0 0 0



The eigenvectors are of the form

1
2 a
1
2 a

a

.

One eigenvector corresponding to the eigenvalue 4 is K1 where

K1 

1

1

2

.

A  2I  A  2I 

3 3 3

3 3 3

6 6 6

and

3 3 3 0

3 3 3 0

6 6 6 0

RREF

1 1 1 0

0 0 0 0

0 0 0 0

K is in the eigenspace corresponding to -2if and only if

K 

b  a

a

b

 a

1

1

0

 b

1

0

1

for some pair of numbers a and b.

An independent pair K2,K3 of eigenvectors corresponding to 2 is obtained by first
letting a  1 and b  0 then letting a  0 and b  1so that

K2 

1

1

0

and K3 

1

0

1

.

A fundamental triple for X   AX is X1,X2,X3 where

X1t  e4t
1

1

2

, X2t  e2t
1

1

0

, and X3t  e2t
1

0

1

.



X   AX if and only if

X  c1X1  c2X2  c3X3.

The Coefficient Matrix A is 3  3, Has Only Two Eigenvalue, the Characteristic
Polynomial is Given by     1  22 where 1  2 and rankA  2I  2.

NOTE. If     1  22 where 1and 2 are distinct real numbers so that A
has an eigenvalue 1 of algebraic multiplicity 1 and an eigenvalue 2 of algebraic multiplicity
2, and

rankA  2I  2,

(This happens if and only if a row-echelon form of A  2I has exactly one all zero rows.)
let K1 be an eigenvector corresponding to 1, K2 be an eigenvector corresponding to 2 and
let W be a three-dimensional column vector satisfying

A  2IW  K2.

(W is called a generalized eigenvector.) Then let

x1t  e1tK1, x2t  e2tK2, and x3t  e2ttK2  W.

Example. Consider the system X   AX whereA 

6 7 13

5 6 9

2 2 5

.

The characteristic polynomial is given by

    3  12.

A  3I 

9 7 13

5 3 9

2 2 2

and

9 7 13 0

5 3 9 0

2 2 2 0

RREF

1 0 3 0

0 1 2 0

0 0 0 0

An eigenvector K1 corresponding to the eigenvalue 3 is given by



K1 

3

2

1

.

A  1I 

7 7 13

5 5 9

2 2 4

and

7 7 13 0

5 5 9 0

2 2 4 0

RREF

1 1 0 0

0 0 1 0

0 0 0 0

An eigenvector K2 corresponding to the eigenvalue 1 is given by

K2 

1

1

0

Column vectors W such that

A  1IW  K2 or

7 7 13

5 5 9

2 2 4

w1

w2

w3



1

1

0

are given by

W 

2  a

a

1



2

0

1

 a

1

1

0

We need only one solution W so we will let a  0 and use

2

0

1

.

A fundamental triple for X   AX is X1,X2,X3 where



X1t  e3t
3

2

1

, X2t  e1
1

1

0

,

and

X3t  e t t

1

1

0



2

0

1

.

Additional Examples. See the text and the material that is posted online.

Suggested Problems. Do the odd numbers for Section 6.4.


